1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: axis_switch
//
// Description:
//
// Implementation of a M-input, N-output AXI-Stream switch. One of the M
// input ports is allocated based on the s_axis_alloc signal and the packet
// on that port is sent to one of the N output ports based on the tdest
// signal.
//
// Parameters:
//
// DATA_W : tdata width
// DEST_W : Output tdest width
// IN_PORTS : Number of input ports
// OUT_PORTS : Number of output ports
// PIPELINE : Instantiate output pipeline stage?
// ALLOC_W : PRIVATE. Do not modify.
//
// Ports:
//
// clk : Switch clock
// reset : Reset
// s_axis_tdata : Input data
// s_axis_tdest : Input destination
// s_axis_tlast : Input EOP (last)
// s_axis_tvalid : Input valid
// s_axis_tready : Input ready
// s_axis_alloc : Input port allocation for switch
// m_axis_tdata : Output data
// m_axis_tdest : Output destination
// m_axis_tlast : Output EOP (last)
// m_axis_tvalid : Output valid
// m_axis_tready : Output ready
//
`default_nettype none
module axis_switch #(
parameter DATA_W = 64,
parameter DEST_W = 1,
parameter IN_PORTS = 3,
parameter OUT_PORTS = 3,
parameter PIPELINE = 1,
parameter ALLOC_W = (IN_PORTS == 1) ? 1 : $clog2(IN_PORTS)
) (
// Clocks and resets
input wire clk,
input wire reset,
// Input ports
input wire [(DATA_W*IN_PORTS)-1:0] s_axis_tdata,
input wire [((DEST_W+$clog2(OUT_PORTS))*IN_PORTS)-1:0] s_axis_tdest,
input wire [IN_PORTS-1:0] s_axis_tlast,
input wire [IN_PORTS-1:0] s_axis_tvalid,
output wire [IN_PORTS-1:0] s_axis_tready,
input wire [ALLOC_W-1:0] s_axis_alloc,
// Output ports
output wire [(DATA_W*OUT_PORTS)-1:0] m_axis_tdata,
output wire [(DEST_W*OUT_PORTS)-1:0] m_axis_tdest,
output wire [OUT_PORTS-1:0] m_axis_tlast,
output wire [OUT_PORTS-1:0] m_axis_tvalid,
input wire [OUT_PORTS-1:0] m_axis_tready
);
localparam CLOG2_OUT_PORTS = $clog2(OUT_PORTS);
//---------------------------------------------------------
// Flatten/unflatten and pipeline
//---------------------------------------------------------
wire [DATA_W-1:0] i_tdata [0:IN_PORTS-1];
wire [DEST_W+$clog2(OUT_PORTS)-1:0] i_tdest [0:IN_PORTS-1];
wire i_tlast [0:IN_PORTS-1];
wire [IN_PORTS-1:0] i_tvalid;
wire [IN_PORTS-1:0] i_tready;
wire [ALLOC_W-1:0] i_alloc;
wire [DATA_W-1:0] o_tdata [0:OUT_PORTS-1];
wire [DEST_W-1:0] o_tdest [0:OUT_PORTS-1];
wire o_tlast [0:OUT_PORTS-1];
wire [OUT_PORTS-1:0] o_tvalid;
wire [OUT_PORTS-1:0] o_tready;
genvar i, o;
generate
for (i = 0; i < IN_PORTS; i = i + 1) begin: in_ports
assign i_tdata [i] = s_axis_tdata [(i*DATA_W)+:DATA_W];
assign i_tdest [i] = s_axis_tdest [(i*(DEST_W+CLOG2_OUT_PORTS))+:(DEST_W+CLOG2_OUT_PORTS)];
assign i_tlast [i] = s_axis_tlast [i];
assign i_tvalid [i] = s_axis_tvalid[i];
assign s_axis_tready[i] = i_tready [i];
end
assign i_alloc = s_axis_alloc; // i_alloc has to be delay-matched to valid
for (o = 0; o < OUT_PORTS; o = o + 1) begin : gen_for_pipeline
if (PIPELINE == 1) begin : gen_pipeline
axi_fifo_flop2 #(.WIDTH(DEST_W+1+DATA_W)) axi_fifo_flop2_i (
.clk(clk), .reset(reset), .clear(1'b0),
.i_tdata({o_tdest[o], o_tlast[o], o_tdata[o]}),
.i_tvalid(o_tvalid[o]), .i_tready(o_tready[o]),
.o_tdata({m_axis_tdest[(o*DEST_W)+:DEST_W], m_axis_tlast[o], m_axis_tdata[(o*DATA_W)+:DATA_W]}),
.o_tvalid(m_axis_tvalid[o]), .o_tready(m_axis_tready[o]),
.space(), .occupied()
);
end else begin : gen_no_pipeline
assign m_axis_tdata [(o*DATA_W)+:DATA_W] = o_tdata [o];
assign m_axis_tdest [(o*DEST_W)+:DEST_W] = o_tdest [o];
assign m_axis_tlast [o] = o_tlast [o];
assign m_axis_tvalid[o] = o_tvalid [o];
assign o_tready [o] = m_axis_tready[o];
end
end
endgenerate
//---------------------------------------------------------
// Allocator
//---------------------------------------------------------
// The "chosen" input port will drive this bus
wire [DATA_W-1:0] master_tdata;
wire [DEST_W+$clog2(OUT_PORTS)-1:0] master_tdest;
wire master_tlast;
wire master_tvalid;
wire master_tready;
generate if (IN_PORTS > 1) begin : gen_mult_in_ports
reg [IN_PORTS-1:0] ialloc_oh;
reg [$clog2(IN_PORTS)-1:0] alloc_reg;
always @(posedge clk) begin
if (reset) begin
ialloc_oh <= {IN_PORTS{1'b0}};
end else begin
if (ialloc_oh == {IN_PORTS{1'b0}}) begin
if (|i_tvalid) begin
ialloc_oh[i_alloc] <= 1'b1;
alloc_reg <= i_alloc;
end
end else begin
if(master_tready & master_tvalid & master_tlast)
ialloc_oh <= {IN_PORTS{1'b0}};
end
end
end
assign master_tdata = i_tdata[alloc_reg];
assign master_tdest = i_tdest[alloc_reg];
assign master_tlast = i_tlast[alloc_reg];
assign master_tvalid = |(i_tvalid & ialloc_oh);
assign i_tready = i_tvalid & ialloc_oh & {IN_PORTS{master_tready}};
end else begin : gen_single_in_port
// Special case: One input port
assign master_tdata = i_tdata[0];
assign master_tdest = i_tdest[0];
assign master_tlast = i_tlast[0];
assign master_tvalid = i_tvalid[0];
assign i_tready[0] = master_tready;
end endgenerate
//---------------------------------------------------------
// Router
//---------------------------------------------------------
generate if (OUT_PORTS > 1) begin : gen_mult_out_ports
reg [OUT_PORTS-1:0] odst_oh;
always @(posedge clk) begin
if (reset) begin
odst_oh <= {OUT_PORTS{1'b0}};
end else begin
if (odst_oh == {OUT_PORTS{1'b0}}) begin
if (master_tvalid)
odst_oh[master_tdest[CLOG2_OUT_PORTS-1:0]] <= 1'b1;
end else begin
if(master_tready & master_tvalid & master_tlast)
odst_oh <= {OUT_PORTS{1'b0}};
end
end
end
assign master_tready = |(o_tready & odst_oh);
assign o_tvalid = {OUT_PORTS{master_tvalid}} & odst_oh;
end else begin : gen_single_out_port
// Special case: One output port
assign master_tready = o_tready[0];
assign o_tvalid[0] = master_tvalid;
end endgenerate
generate for (o = 0; o < OUT_PORTS; o = o + 1) begin : gen_outputs
assign o_tdata[o] = master_tdata;
assign o_tdest[o] = master_tdest[DEST_W+CLOG2_OUT_PORTS-1:CLOG2_OUT_PORTS];
assign o_tlast[o] = master_tlast;
end endgenerate
endmodule
`default_nettype wire
|