1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
//
// Copyright 2015 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Assumes 32-bit elements (such as sc16) carried over AXI-Stream
// SIMPLE_MODE -- Automatically handle header (s_axis_data_tuser), packets must be consumed / produced 1-to-1
// RESIZE_INPUT_PACKET -- Resize input packets. m_axis_data_tlast will be based on m_axis_pkt_len_tdata. Otherwise packet length based on actual input packet length (via i_tlast).
// RESIZE_OUTPUT_PACKET -- Resize output packets. s_axis_data_tlast will be ignored and instead use packet length in s_axis_tuser_data. Otherwise use s_axis_data_tlast.
//
// Note: When SIMPLE_MODE = 1 and RESIZE_OUTPUT_PACKET = 1, s_axis_data_tlast is ignored and output packets are sized according to the length
// of the input packet (via the packet length field in the received header). Useful if the user design wants output packet length to
// match the input packet length without having to drive s_axis_data_tlast.
//
// *** Warning: Care should be taken when using RESIZE_INPUT_PACKET and/or RESIZE_OUTPUT_PACKET along with SIMPLE_MODE
// as issues could arise if packets are not produced / consumed in a 1:1 ratio. For instance, the header
// FIFO could overflow or underflow.
// _tuser bit definitions
// [127:64] == CHDR header
// [127:126] == Packet type -- 00 for data, 01 for flow control, 10 for command, 11 for response
// [125] == Has time? (0 for no, 1 for time field on next line)
// [124] == EOB (end of burst indicator)
// [123:112] == 12-bit sequence number
// [111: 96] == 16-bit length in bytes
// [ 95: 80] == SRC SID (stream ID)
// [ 79: 64] == DST SID
// [ 63: 0] == timestamp
module axi_wrapper
#(parameter MTU=10,
parameter SR_AXI_CONFIG_BASE=129, // AXI configuration bus base, settings bus address range size is 2*NUM_AXI_CONFIG_BUS
parameter NUM_AXI_CONFIG_BUS=1, // Number of AXI configuration buses
parameter CONFIG_BUS_FIFO_DEPTH=1, // Depth of AXI configuration bus FIFO. Note: AXI configuration bus lacks back pressure.
parameter SIMPLE_MODE=1, // 0 = User handles CHDR insertion via tuser signals, 1 = Automatically save / insert CHDR with internal FIFO
parameter USE_SEQ_NUM=0, // 0 = Frame will automatically handle sequence number, 1 = Use sequence number provided in s_axis_data_tuser
parameter RESIZE_INPUT_PACKET=0, // 0 = Do not resize, packet length determined by i_tlast, 1 = Generate m_axis_data_tlast based on user input m_axis_pkt_len_tdata
parameter RESIZE_OUTPUT_PACKET=0, // 0 = Do not resize, packet length determined by s_axis_data_tlast, 1 = Use packet length from user header (s_axis_data_tuser)
parameter WIDTH=32) // Specify the output width for the AXI stream data (can be 32 or 64)
(input clk, input reset,
input bus_clk, input bus_rst,
input clear_tx_seqnum,
input [15:0] next_dst, // Used with SIMPLE_MODE=1
// To NoC Shell
input set_stb, input [7:0] set_addr, input [31:0] set_data,
input [63:0] i_tdata, input i_tlast, input i_tvalid, output i_tready,
output [63:0] o_tdata, output o_tlast, output o_tvalid, input o_tready,
// To AXI IP
output [WIDTH-1:0] m_axis_data_tdata, output [127:0] m_axis_data_tuser, output m_axis_data_tlast, output m_axis_data_tvalid, input m_axis_data_tready,
input [WIDTH-1:0] s_axis_data_tdata, input [127:0] s_axis_data_tuser, input s_axis_data_tlast, input s_axis_data_tvalid, output s_axis_data_tready,
input [15:0] m_axis_pkt_len_tdata, input m_axis_pkt_len_tvalid, output m_axis_pkt_len_tready, // Used when RESIZE_INPUT_PACKET=1
// Variable number of AXI configuration buses
output [NUM_AXI_CONFIG_BUS*32-1:0] m_axis_config_tdata,
output [NUM_AXI_CONFIG_BUS-1:0] m_axis_config_tlast,
output [NUM_AXI_CONFIG_BUS-1:0] m_axis_config_tvalid,
input [NUM_AXI_CONFIG_BUS-1:0] m_axis_config_tready
);
wire clear_tx_seqnum_bclk;
pulse_synchronizer clear_tx_seqnum_sync_i (
.clk_a(clk), .rst_a(reset), .pulse_a(clear_tx_seqnum), .busy_a(/*Ignored: Pulses from SW are slow*/),
.clk_b(bus_clk), .pulse_b(clear_tx_seqnum_bclk)
);
// /////////////////////////////////////////////////////////
// Input side handling, chdr_deframer
wire [127:0] s_axis_data_tuser_int, m_axis_data_tuser_int;
wire s_axis_data_tlast_int, m_axis_data_tlast_int;
reg [15:0] m_axis_pkt_len_reg = 16'd8;
reg sof_in = 1'b1;
wire [127:0] header_fifo_i_tdata = {m_axis_data_tuser[127:96],m_axis_data_tuser[79:64],next_dst,m_axis_data_tuser[63:0]};
wire header_fifo_i_tvalid = sof_in & m_axis_data_tvalid & m_axis_data_tready;
chdr_deframer_2clk #(.WIDTH(WIDTH)) chdr_deframer (
.samp_clk(clk), .samp_rst(reset | clear_tx_seqnum), .pkt_clk(bus_clk), .pkt_rst(bus_rst | clear_tx_seqnum_bclk),
.i_tdata(i_tdata), .i_tlast(i_tlast), .i_tvalid(i_tvalid), .i_tready(i_tready),
.o_tdata(m_axis_data_tdata), .o_tuser(m_axis_data_tuser_int), .o_tlast(m_axis_data_tlast_int), .o_tvalid(m_axis_data_tvalid), .o_tready(m_axis_data_tready)
);
assign m_axis_data_tuser[127:80] = m_axis_data_tuser_int[127:80];
assign m_axis_data_tuser[79:64] = RESIZE_INPUT_PACKET ? (m_axis_data_tuser_int[125] ? m_axis_pkt_len_reg+16 : m_axis_pkt_len_reg+8) : m_axis_data_tuser_int[79:64];
assign m_axis_data_tuser[63:0] = m_axis_data_tuser_int[63:0];
// Only store header once per packet
always @(posedge clk)
if(reset | clear_tx_seqnum)
sof_in <= 1'b1;
else
if(m_axis_data_tvalid & m_axis_data_tready)
if(m_axis_data_tlast)
sof_in <= 1'b1;
else
sof_in <= 1'b0;
// SIMPLE MODE: Store input packet header to reuse as output packet header.
generate
if(SIMPLE_MODE)
begin
// FIFO
axi_fifo #(.WIDTH(128), .SIZE(5)) header_fifo
(.clk(clk), .reset(reset), .clear(clear_tx_seqnum),
.i_tdata(header_fifo_i_tdata),
.i_tvalid(header_fifo_i_tvalid), .i_tready(),
.o_tdata(s_axis_data_tuser_int), .o_tvalid(), .o_tready(s_axis_data_tlast_int & s_axis_data_tvalid & s_axis_data_tready),
.occupied(), .space());
end else begin
assign s_axis_data_tuser_int = s_axis_data_tuser;
end
endgenerate
// RESIZE INPUT PACKET
// Size input packets based on m_axis_pkt_len_tdata (RESIZE_INPUT_PACKET=1) or based on i_tdata
generate
if (RESIZE_INPUT_PACKET) begin
reg m_axis_data_tlast_reg;
reg [15:0] m_axis_pkt_cnt;
always @(posedge clk) begin
if (reset | clear_tx_seqnum) begin
m_axis_data_tlast_reg <= 1'b0;
m_axis_pkt_cnt <= (WIDTH/8); // Number of bytes in packet
m_axis_pkt_len_reg <= 2*(WIDTH/8); // Double size by default
end else begin
// Only update packet length at the beginning of a new packet
if (m_axis_pkt_len_tvalid & m_axis_pkt_len_tready) begin
m_axis_pkt_len_reg <= m_axis_pkt_len_tdata;
end
if (m_axis_data_tvalid & m_axis_data_tready) begin
if (m_axis_pkt_cnt >= m_axis_pkt_len_reg) begin
m_axis_pkt_cnt <= (WIDTH/8);
end else begin
m_axis_pkt_cnt <= m_axis_pkt_cnt + (WIDTH/8);
end
if (m_axis_pkt_cnt >= m_axis_pkt_len_reg-(WIDTH/8)) begin
m_axis_data_tlast_reg <= 1'b1;
end else begin
m_axis_data_tlast_reg <= 1'b0;
end
end
end
end
assign m_axis_data_tlast = m_axis_data_tlast_reg;
assign m_axis_pkt_len_tready = sof_in;
end else begin
assign m_axis_data_tlast = m_axis_data_tlast_int;
assign m_axis_pkt_len_tready = 1'b0;
end
endgenerate
// RESIZE OUTPUT PACKET
// Size output packets based on either s_axis_data_tlast (RESIZE_OUTPUT_PACKETS=1) or packet length from user header (s_axis_data_tuser)
// TODO: There could be a race condition on s_axis_data_tuser_int when
// receiving very short packets, but latency in chdr_deframer
// prevents this from occurring. Need to fix so it cannot
// occur by design.
generate
if (RESIZE_OUTPUT_PACKET) begin
reg [15:0] s_axis_pkt_cnt;
reg [15:0] s_axis_pkt_len;
always @(posedge clk) begin
if (reset | clear_tx_seqnum) begin
s_axis_pkt_cnt <= (WIDTH/8);
s_axis_pkt_len <= 0;
end else begin
// Remove header
s_axis_pkt_len <= s_axis_data_tuser_int[125] ? s_axis_data_tuser_int[111:96]-16 : s_axis_data_tuser_int[111:96]-8;
if (s_axis_data_tvalid & s_axis_data_tready) begin
if ((s_axis_pkt_cnt >= s_axis_pkt_len) | s_axis_data_tlast) begin
s_axis_pkt_cnt <= (WIDTH/8);
end else begin
s_axis_pkt_cnt <= s_axis_pkt_cnt + (WIDTH/8);
end
end
end
end
assign s_axis_data_tlast_int = (s_axis_pkt_cnt >= s_axis_pkt_len) | s_axis_data_tlast;
end else begin
// chdr_framer will automatically fill in the packet length based on user provided tlast
assign s_axis_data_tlast_int = s_axis_data_tlast;
end
endgenerate
// /////////////////////////////////////////////////////////
// Output side handling, chdr_framer
chdr_framer_2clk #(.SIZE(MTU), .WIDTH(WIDTH), .USE_SEQ_NUM(USE_SEQ_NUM)) chdr_framer (
.samp_clk(clk), .samp_rst(reset | clear_tx_seqnum), .pkt_clk(bus_clk), .pkt_rst(bus_rst | clear_tx_seqnum_bclk),
.i_tdata(s_axis_data_tdata), .i_tuser(s_axis_data_tuser_int), .i_tlast(s_axis_data_tlast_int), .i_tvalid(s_axis_data_tvalid), .i_tready(s_axis_data_tready),
.o_tdata(o_tdata), .o_tlast(o_tlast), .o_tvalid(o_tvalid), .o_tready(o_tready)
);
// /////////////////////////////////////////////////////////
// Control bus handling
// FIXME we could put inline control here...
// Generate additional AXI stream interfaces for configuration.
// FIXME need to make sure we don't overrun this if core can backpressure us
// Write to SR_AXI_CONFIG_BASE+1+2*(CONFIG BUS #) asserts tvalid, SR_AXI_CONFIG_BASE+1+2*(CONFIG BUS #)+1 asserts tvalid & tlast
genvar k;
generate
for (k = 0; k < NUM_AXI_CONFIG_BUS; k = k + 1) begin
axi_fifo #(.WIDTH(33), .SIZE(CONFIG_BUS_FIFO_DEPTH)) config_stream
(.clk(clk), .reset(reset), .clear(clear_tx_seqnum),
.i_tdata({(set_addr == (SR_AXI_CONFIG_BASE+2*k+1)),set_data}),
.i_tvalid(set_stb & ((set_addr == (SR_AXI_CONFIG_BASE+2*k))|(set_addr == (SR_AXI_CONFIG_BASE+2*k+1)))),
.i_tready(),
.o_tdata({m_axis_config_tlast[k],m_axis_config_tdata[32*k+31:32*k]}),
.o_tvalid(m_axis_config_tvalid[k]),
.o_tready(m_axis_config_tready[k]),
.occupied(), .space());
end
endgenerate
endmodule // axi_wrapper
|