1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
//
// Copyright 2011-2013 Ettus Research LLC
//
//////////////////////////////////////////////////////////////////////////////////
//this is a FIFO master interface for the FX3 in "slave fifo" mode.
module gpif2_slave_fifo32
#(
//sizes for fifo64 2 clock cascade fifos
parameter DATA_RX_FIFO_SIZE = 12, //max vita pkt size
parameter DATA_TX_FIFO_SIZE = 12, //max vita pkt size
parameter CTRL_RX_FIFO_SIZE = 5, //small resp packets
parameter CTRL_TX_FIFO_SIZE = 5, //small ctrl packets
//address constants for the endpoints
parameter ADDR_DATA_TX = 2'b00,
parameter ADDR_DATA_RX = 2'b01,
parameter ADDR_CTRL_TX = 2'b10,
parameter ADDR_CTRL_RX = 2'b11,
parameter END_WITH_COMMA = 0
)
(
// GPIF signals
input gpif_clk,
input gpif_rst,
input gpif_enb,
inout [31:0] gpif_d,
input [3:0] gpif_ctl,
output reg sloe,
output reg slrd,
output reg slwr,
output slcs,
output reg pktend,
output reg [1:0] fifoadr,
// FIFO interfaces
input fifo_clk,
input fifo_rst,
// TX Data interface to DSP
output [63:0] tx_tdata, output tx_tlast, output tx_tvalid, input tx_tready,
// RX Data interface to DSP
input [63:0] rx_tdata, input rx_tlast, input rx_tvalid, output rx_tready,
// Incomming control interface
output [63:0] ctrl_tdata, output ctrl_tlast, output ctrl_tvalid, input ctrl_tready,
// Outgoing control interface
input [63:0] resp_tdata, input resp_tlast, input resp_tvalid, output resp_tready,
// Debug Signals
output [31:0] debug
);
reg fifo_nearly_full;
wire ctrl_tx_fifo_nearly_full, data_tx_fifo_nearly_full;
wire ctrl_tx_fifo_has_space, data_tx_fifo_has_space;
assign slcs = 1'b0;
//DMA FIFO ready and watermark flags
reg EP_READY, EP_READY1, EP_WMARK, EP_WMARK1;
always @(posedge gpif_clk) EP_READY <= gpif_ctl[0];
always @(posedge gpif_clk) EP_WMARK <= gpif_ctl[1];
always @(posedge gpif_clk) EP_READY1 <= EP_READY;
always @(posedge gpif_clk) EP_WMARK1 <= EP_WMARK;
// GPIF output data lines, tristate
reg [31:0] gpif_data_in, gpif_data_out;
always @(posedge gpif_clk) gpif_data_in <= gpif_d;
assign gpif_d = sloe ? gpif_data_out[31:0] : 32'bz;
// ////////////////////////////////////////////////////////////////////
// GPIF bus master state machine
wire wr_fifo_xfer, wr_fifo_eof;
wire [31:0] wr_fifo_data;
reg read_ready_go, write_ready_go;
reg wr_one, rd_one;
reg [3:0] state; //state machine current state
localparam STATE_IDLE = 0;
localparam STATE_THINK = 1;
localparam STATE_READ = 2;
localparam STATE_WRITE = 3;
localparam STATE_WAIT = 4;
reg [2:0] idle_cycles;
reg [1:0] last_addr, next_addr;
wire local_fifo_ready;
reg slrd1, slrd2, slrd3;
always @(posedge gpif_clk)
if (gpif_rst) begin
slrd1 <= 1;
slrd2 <= 1;
slrd3 <= 1;
end else begin
slrd1 <= slrd;
slrd2 <= slrd1;
slrd3 <= slrd2;
end
wire RD_VALID = ~slrd3;
wire RD_LAST = slrd2;
wire WR_VALID = (EP_WMARK1 || !wr_one);
// //////////////////////////////////////////////////////////////
// FX2 slave FIFO bus master state machine
//
always @(posedge gpif_clk)
if(gpif_rst) begin
state <= STATE_IDLE;
sloe <= 0;
slrd <= 1;
slwr <= 1;
pktend <= 1;
gpif_data_out <= 32'b0;
idle_cycles <= 0;
fifoadr <= 0;
wr_one <= 1'b0;
rd_one <= 1'b0;
last_addr <= 2'b0;
end
else if (gpif_enb) begin
case (state)
//
// Increment fifoadr to point at next thread, set all strobes to idle,
//
STATE_IDLE: begin
sloe <= 0;
slrd <= 1;
slwr <= 1;
pktend <= 1;
gpif_data_out <= 32'b0;
fifoadr <= next_addr;
state <= STATE_WAIT;
idle_cycles <= 0;
end
//
// If the current thread we are pointing at (fifoadr) can not immediately proceed
// then quickly move to the next thread. Once we are pointing at a thread that can proceed locally
// wait for 8 clock cycles to allow fifoadr to propogate to FX3, and corresponding flag state to
// propogate back to FPGA and through resampling flops. At this point transition to STATE_THINK
// to evaluate remote flag.
//
STATE_WAIT: begin
// Current thread can proceed locally
if (local_fifo_ready) begin
idle_cycles <= idle_cycles + 1'b1;
if (idle_cycles == 3'b111) state <= STATE_THINK;
end
// ....move onto next thread.
else begin
idle_cycles <= 3'b0;
fifoadr <= fifoadr + 2'b1;
end
end
//
// If there is a read to start, assert SLRD and SLOE and transition to STATE_READ.
// If there is a write to perform, set flags that says there is the possibility to do at least
// one write (wr_one) and transition to STATE_WRITE.
// If the FX3 has nothing ready for this thread return immediately to STATE_IDLE.
//
STATE_THINK: begin
if (EP_READY1 && read_ready_go) begin
state <= STATE_READ;
slrd <= 0;
rd_one <= 0;
end
else if (EP_READY1 && write_ready_go) begin
state <= STATE_WRITE;
sloe <= 1;
wr_one <= 1'b0;
end
else begin
state <= STATE_IDLE;
end
idle_cycles <= 0;
last_addr <= fifoadr;
end
// If flag rd_one is set (armed 5 cycles after slrd goes initialy assrted) and RD_VALID has gone deasserted
// (meaning that the watermark deasserted 5 clock cycles ago) transition to STATE_IDLE.
// If watermark deasserted 2 cycles ago de-assert slrd ...read data is still traveling in the pipeline.
// Whilst RD_VALID stays asserted keep the rd_one flag armed.
STATE_READ: begin
if (rd_one && ~RD_VALID) state <= STATE_IDLE;
if (~EP_WMARK1 | fifo_nearly_full) slrd <= 1;
if (RD_VALID) rd_one <= 1'b1;
end
// If local FIFO goes empty or tlast is set then transition to STATE_IDLE
// Push local FIFO data out onto GPIF data bus.
// if local FIFO has valid data then assert slwr
// if local FIFO assertes tlast then assert pktend
// If WR_VALID asserted (because wr_one already asserted in the first cycle in this state)
// now clear wr_one (watermark will keep WR_VALID asserted from now on if this is a burst).
//
STATE_WRITE: begin
if (~wr_fifo_xfer || wr_fifo_eof) state <= STATE_IDLE;
gpif_data_out <= wr_fifo_data;
slwr <= ~wr_fifo_xfer;
pktend <= ~wr_fifo_eof;
if (WR_VALID) wr_one <= 1'b1;
end
default: state <= STATE_IDLE;
endcase
end
// ///////////////////////////////////////////////////////////////////
// fifo signal assignments and enables
//output from fifos - ready to xfer
wire data_tx_tready, ctrl_tx_tready;
wire ctrl_rx_tvalid, data_rx_tvalid;
//Priority encoding for the the next address to service:
//The next address to service is based on the readiness
//of the internal fifos and last serviced fairness metric.
/* -----\/----- EXCLUDED -----\/-----
always @(posedge gpif_clk) next_addr <=
((ctrl_rx_tvalid && (last_addr != ADDR_CTRL_RX))? ADDR_CTRL_RX :
((ctrl_tx_fifo_has_space && (last_addr != ADDR_CTRL_TX))? ADDR_CTRL_TX :
((data_rx_tvalid && (last_addr != ADDR_DATA_RX))? ADDR_DATA_RX :
((data_tx_fifo_has_space && (last_addr != ADDR_DATA_TX))? ADDR_DATA_TX :
(fifoadr + 2'b1)
))));
-----/\----- EXCLUDED -----/\----- */
always @(posedge gpif_clk) next_addr <= (fifoadr + 2'b1);
//Help the FPGA search to only look for addrs that the FPGA is ready for
assign local_fifo_ready =
(ctrl_rx_tvalid && (fifoadr == ADDR_CTRL_RX)) ||
(ctrl_tx_fifo_has_space && (fifoadr == ADDR_CTRL_TX)) ||
(data_rx_tvalid && (fifoadr == ADDR_DATA_RX)) ||
(data_tx_fifo_has_space && (fifoadr == ADDR_DATA_TX));
always @(posedge gpif_clk) fifo_nearly_full <=
(ctrl_tx_fifo_nearly_full && (fifoadr == ADDR_CTRL_TX)) ||
(data_tx_fifo_nearly_full && (fifoadr == ADDR_DATA_TX));
always @(posedge gpif_clk) read_ready_go <=
(ctrl_tx_fifo_has_space && (fifoadr == ADDR_CTRL_TX)) ||
(data_tx_fifo_has_space && (fifoadr == ADDR_DATA_TX));
always @(posedge gpif_clk) write_ready_go <=
(ctrl_rx_tvalid && (fifoadr == ADDR_CTRL_RX)) ||
(data_rx_tvalid && (fifoadr == ADDR_DATA_RX));
//fifo xfer enable
wire data_rx_tready = (state == STATE_WRITE) && (fifoadr == ADDR_DATA_RX) && WR_VALID;
wire ctrl_rx_tready = (state == STATE_WRITE) && (fifoadr == ADDR_CTRL_RX) && WR_VALID;
wire data_tx_tvalid = (state == STATE_READ) && (fifoadr == ADDR_DATA_TX) && RD_VALID;
wire ctrl_tx_tvalid = (state == STATE_READ) && (fifoadr == ADDR_CTRL_TX) && RD_VALID;
//outputs from rx fifo paths
wire ctrl_rx_tlast, data_rx_tlast;
wire [31:0] ctrl_rx_tdata, data_rx_tdata;
//mux rx outputs for gpif state machine
assign wr_fifo_xfer = (fifoadr == ADDR_CTRL_RX)? (ctrl_rx_tvalid && ctrl_rx_tready) : (data_rx_tvalid && data_rx_tready);
assign wr_fifo_eof = wr_fifo_xfer && ((fifoadr == ADDR_CTRL_RX)? ctrl_rx_tlast : data_rx_tlast);
assign wr_fifo_data = (fifoadr == ADDR_CTRL_RX)? ctrl_rx_tdata : data_rx_tdata;
wire ctrl_bus_error, tx_bus_error;
// ////////////////////////////////////////////////////////////////////
// TX Data Path
gpif2_to_fifo64 #(.FIFO_SIZE(DATA_TX_FIFO_SIZE)) gpif2_to_fifo64_tx(
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.i_tdata(gpif_data_in), .i_tlast(RD_LAST), .i_tvalid(data_tx_tvalid), .i_tready(data_tx_tready),
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.fifo_nearly_full(data_tx_fifo_nearly_full), .fifo_has_space(data_tx_fifo_has_space),
.o_tdata(tx_tdata), .o_tlast(tx_tlast), .o_tvalid(tx_tvalid), .o_tready(tx_tready),
.bus_error(tx_bus_error), .debug()
);
// ////////////////////////////////////////////
// RX Data Path
fifo64_to_gpif2 #(.FIFO_SIZE(DATA_RX_FIFO_SIZE)) fifo64_to_gpif2_rx(
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.i_tdata(rx_tdata), .i_tlast(rx_tlast), .i_tvalid(rx_tvalid), .i_tready(rx_tready),
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.o_tdata(data_rx_tdata), .o_tlast(data_rx_tlast), .o_tvalid(data_rx_tvalid), .o_tready(data_rx_tready)
);
// ////////////////////////////////////////////////////////////////////
// CTRL path
gpif2_to_fifo64 #(.FIFO_SIZE(CTRL_TX_FIFO_SIZE)) gpif2_to_fifo64_ctrl(
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.i_tdata(gpif_data_in), .i_tlast(RD_LAST), .i_tvalid(ctrl_tx_tvalid), .i_tready(ctrl_tx_tready),
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.fifo_nearly_full(ctrl_tx_fifo_nearly_full), .fifo_has_space(ctrl_tx_fifo_has_space),
.o_tdata(ctrl_tdata), .o_tlast(ctrl_tlast), .o_tvalid(ctrl_tvalid), .o_tready(ctrl_tready),
.bus_error(ctrl_bus_error), .debug()
);
// ////////////////////////////////////////////////////////////////////
// RESP path
fifo64_to_gpif2 #(.FIFO_SIZE(CTRL_RX_FIFO_SIZE)) fifo64_to_gpif2_resp(
.fifo_clk(fifo_clk), .fifo_rst(fifo_rst),
.i_tdata(resp_tdata), .i_tlast(resp_tlast), .i_tvalid(resp_tvalid), .i_tready(resp_tready),
.gpif_clk(gpif_clk), .gpif_rst(gpif_rst),
.o_tdata(ctrl_rx_tdata), .o_tlast(ctrl_rx_tlast), .o_tvalid(ctrl_rx_tvalid), .o_tready(ctrl_rx_tready)
);
// ////////////////////////////////////////////
// DEBUG
endmodule // gpif2_slave_fifo32
|