1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: axi_mux
//
// Description:
//
// Takes arbitrary number of AXI streams and merges them to into a single
// output channel. Bubble cycles are inserted after each packet.
//
// Parameters:
//
// PRIO : Controls the arbitration scheme.
// 0 - Round-robin
// 1 - Priority (lower number ports get priority)
// WIDTH : Width of each AXI-Stream (width of TDATA).
// PRE_FIFO_SIZE : Log2 of the input buffer FIFO. Set to 0 for no FIFO.
// POST_FIFO_SIZE : Log2 of the output buffer FIFO. Set to 0 for no FIFO.
// SIZE : Number of input ports to the multiplexer.
//
`default_nettype none
module axi_mux #(
parameter PRIO = 0,
parameter WIDTH = 64,
parameter PRE_FIFO_SIZE = 0,
parameter POST_FIFO_SIZE = 0,
parameter SIZE = 4
) (
input wire clk,
input wire reset,
input wire clear,
// Input streams
input wire [WIDTH*SIZE-1:0] i_tdata,
input wire [ SIZE-1:0] i_tlast,
input wire [ SIZE-1:0] i_tvalid,
output wire [ SIZE-1:0] i_tready,
// Single output stream
output wire [ WIDTH-1:0] o_tdata,
output wire o_tlast,
output wire o_tvalid,
input wire o_tready
);
wire [WIDTH*SIZE-1:0] i_tdata_int;
wire [ SIZE-1:0] i_tlast_int;
wire [ SIZE-1:0] i_tvalid_int;
wire [ SIZE-1:0] i_tready_int;
wire [WIDTH-1:0] o_tdata_int;
wire o_tlast_int;
wire o_tvalid_int;
wire o_tready_int;
reg [$clog2(SIZE)-1:0] st_port;
reg st_active;
//---------------------------------------------------------------------------
// Input FIFO
//---------------------------------------------------------------------------
genvar n;
generate
if (PRE_FIFO_SIZE == 0) begin : gen_no_pre_fifo
assign i_tdata_int = i_tdata;
assign i_tlast_int = i_tlast;
assign i_tvalid_int = i_tvalid;
assign i_tready = i_tready_int;
end else begin : gen_pre_fifo
for (n = 0; n < SIZE; n = n + 1) begin
axi_fifo #(
.WIDTH(WIDTH+1 ),
.SIZE (PRE_FIFO_SIZE)
) axi_fifo (
.clk (clk ),
.reset (reset ),
.clear (clear ),
.i_tdata ({i_tlast[n],i_tdata[WIDTH*(n+1)-1:WIDTH*n]} ),
.i_tvalid(i_tvalid[n] ),
.i_tready(i_tready[n] ),
.o_tdata ({i_tlast_int[n],i_tdata_int[WIDTH*(n+1)-1:WIDTH*n]}),
.o_tvalid(i_tvalid_int[n] ),
.o_tready(i_tready_int[n] ),
.space ( ),
.occupied( )
);
end
end
endgenerate
//---------------------------------------------------------------------------
// Multiplexer Logic
//---------------------------------------------------------------------------
always @(posedge clk) begin
if (reset) begin
st_port <= 0;
st_active <= 1'b0;
end else begin
if (st_active) begin
if (o_tlast_int & o_tvalid_int & o_tready_int) begin
st_active <= 1'b0;
if ((PRIO != 0) | (st_port == (SIZE-1))) begin
st_port <= 0;
end else begin
st_port <= st_port + 1;
end
end
end else begin
if (i_tvalid_int[st_port]) begin
st_active <= 1'b1;
end else begin
if (st_port == (SIZE-1)) begin
st_port <= 0;
end else begin
st_port <= st_port + 1;
end
end
end
end
end
genvar i;
generate
for (i=0; i<SIZE; i=i+1) begin : gen_tready
assign i_tready_int[i] = st_active & o_tready_int & (st_port == i);
end
endgenerate
assign o_tvalid_int = st_active & i_tvalid_int[st_port];
assign o_tlast_int = i_tlast_int[st_port];
genvar j;
generate
for (j=0; j<WIDTH; j=j+1) begin : gen_tdata
assign o_tdata_int[j] = i_tdata_int[st_port*WIDTH+j];
end
endgenerate
//---------------------------------------------------------------------------
// Output FIFO
//---------------------------------------------------------------------------
generate
if (POST_FIFO_SIZE == 0) begin
assign o_tdata = o_tdata_int;
assign o_tlast = o_tlast_int;
assign o_tvalid = o_tvalid_int;
assign o_tready_int = o_tready;
end else begin
axi_fifo #(
.WIDTH(WIDTH+1 ),
.SIZE (POST_FIFO_SIZE)
) axi_fifo (
.clk (clk ),
.reset (reset ),
.clear (clear ),
.i_tdata ({o_tlast_int,o_tdata_int}),
.i_tvalid(o_tvalid_int ),
.i_tready(o_tready_int ),
.o_tdata ({o_tlast,o_tdata} ),
.o_tvalid(o_tvalid ),
.o_tready(o_tready ),
.space ( ),
.occupied( )
);
end
endgenerate
endmodule
`default_nettype wire
|