1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
//
// Copyright 2012-2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Block RAM AXI fifo
module axi_fifo_bram
#(parameter WIDTH=32, SIZE=9)
(input clk, input reset, input clear,
input [WIDTH-1:0] i_tdata,
input i_tvalid,
output i_tready,
output reg [WIDTH-1:0] o_tdata = 'd0,
output reg o_tvalid = 1'b0,
input o_tready,
output reg [15:0] space,
output reg [15:0] occupied);
wire [WIDTH-1:0] int_tdata;
wire int_tready;
wire full, empty;
wire write = i_tvalid & i_tready;
// read_int will assert when either a read occurs or the output register is empty (and there is data in the shift register fifo)
wire read_int = ~empty & int_tready;
// read will only assert when an actual 1read request occurs at the interface
wire read = o_tready & o_tvalid;
assign i_tready = ~full;
// Read side states
localparam ST_EMPTY = 0;
localparam PRE_READ = 1;
localparam READING = 2;
reg [SIZE-1:0] wr_addr, rd_addr;
reg [1:0] read_state;
reg empty_reg = 1'b1, full_reg = 1'b0;
always @(posedge clk)
if(reset)
wr_addr <= 0;
else if(clear)
wr_addr <= 0;
else if(write)
wr_addr <= wr_addr + 1;
ram_2port #(.DWIDTH(WIDTH),.AWIDTH(SIZE))
ram (.clka(clk),
.ena(1'b1),
.wea(write),
.addra(wr_addr),
.dia(i_tdata),
.doa(),
.clkb(clk),
.enb((read_state==PRE_READ)|read_int),
.web(1'b0),
.addrb(rd_addr),
.dib({WIDTH{1'b1}}),
.dob(int_tdata));
always @(posedge clk)
if(reset)
begin
read_state <= ST_EMPTY;
rd_addr <= 0;
empty_reg <= 1;
end
else
if(clear)
begin
read_state <= ST_EMPTY;
rd_addr <= 0;
empty_reg <= 1;
end
else
case(read_state)
ST_EMPTY :
if(write)
begin
//rd_addr <= wr_addr;
read_state <= PRE_READ;
end
PRE_READ :
begin
read_state <= READING;
empty_reg <= 0;
rd_addr <= rd_addr + 1;
end
READING :
if(read_int)
if(rd_addr == wr_addr)
begin
empty_reg <= 1;
if(write)
read_state <= PRE_READ;
else
read_state <= ST_EMPTY;
end
else
rd_addr <= rd_addr + 1;
endcase // case(read_state)
wire [SIZE-1:0] dont_write_past_me = rd_addr - 2;
wire becoming_full = wr_addr == dont_write_past_me;
always @(posedge clk)
if(reset)
full_reg <= 0;
else if(clear)
full_reg <= 0;
else if(read_int & ~write)
full_reg <= 0;
//else if(write & ~read_int & (wr_addr == (rd_addr-3)))
else if(write & ~read_int & becoming_full)
full_reg <= 1;
//assign empty = (read_state != READING);
assign empty = empty_reg;
// assign full = ((rd_addr - 1) == wr_addr);
assign full = full_reg;
// Output registered stage
always @(posedge clk)
begin
// Valid flag
if (reset | clear)
o_tvalid <= 1'b0;
else if (int_tready)
o_tvalid <= ~empty;
// Data
if (int_tready)
o_tdata <= int_tdata;
end
assign int_tready = o_tready | ~o_tvalid;
//////////////////////////////////////////////
// space and occupied are for diagnostics only
// not guaranteed exact
localparam NUMLINES = (1<<SIZE)+1; //Output register increases capacity by 1
always @(posedge clk)
if(reset)
space <= NUMLINES;
else if(clear)
space <= NUMLINES;
else if(read & ~write)
space <= space + 16'b1;
else if(write & ~read)
space <= space - 16'b1;
always @(posedge clk)
if(reset)
occupied <= 16'b0;
else if(clear)
occupied <= 16'b0;
else if(read & ~write)
occupied <= occupied - 16'b1;
else if(write & ~read)
occupied <= occupied + 16'b1;
endmodule // fifo_long
|