aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/extramfifo/test_sram_if.v
blob: 26b805804dd019c57c60b468d06fbb9f32207e80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//
// Copyright 2011 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

// Instantiate this block at the core level to conduct closed 
// loop testing of the AC performance of the USRP2 SRAM interface


`define WIDTH 18
`define DEPTH 19

module   test_sram_if
  (
   input clk,
   input rst,
   input [`WIDTH-1:0] RAM_D_pi,
   output [`WIDTH-1:0] RAM_D_po,
   output RAM_D_poe,
   output [`DEPTH-1:0] RAM_A,
   output RAM_WEn,
   output RAM_CENn,
   output RAM_LDn,
   output RAM_OEn,
   output RAM_CE1n,
   output reg correct
   );
   
   reg [`DEPTH-1:0] write_count;
   reg [`DEPTH-1:0] read_count;
   reg 		    enable;
   reg 		    write;
   reg 		    write_cycle;
   reg 		    read_cycle;
   reg 		    enable_reads;
   reg [18:0] 	    address;
   reg [17:0] 	    data_out;
   wire [17:0] 	    data_in;
   wire 	    data_in_valid;
   
   reg [17:0] 	    check_data;
   reg [17:0] 	    check_data_old;
   reg [17:0] 	    check_data_old2;
    
  //
  // Create counter that generates both external modulo 2^19 address and modulo 2^18 data to test RAM.
  //

   always @(posedge clk)
     if (rst)
       begin
	  write_count <= 19'h0;
	  read_count <= 19'h0; 
       end
     else if (write_cycle) // Write cycle
       if (write_count == 19'h7FFFF)
	 begin
	    write_count <= 19'h0;
	 end
       else
	 begin
	    write_count <= write_count + 1'b1;
	 end
     else if (read_cycle) // Read cycle
       if (read_count == 19'h7FFFF)
	 begin
	    read_count <= 19'h0;
	 end
       else
	 begin
	    read_count <= read_count + 1'b1;
	 end
   
   always @(posedge clk)
     if (rst)
       begin
	  enable_reads <= 0;
	  read_cycle <= 0;
	  write_cycle <= 0;
       end
     else
       begin
	  write_cycle <= ~write_cycle;
	  if (enable_reads)
	    read_cycle <= write_cycle;
	  if (write_count == 15) // Enable reads 15 writes after reset terminates.
	    enable_reads <= 1;
       end // else: !if(rst)
   
   always @(posedge clk)
     if (rst)
       begin
	  enable <= 0;
       end
     else if (write_cycle)
       begin
	  address <= write_count;
	  data_out <= write_count[17:0];
	  enable <= 1;
	  write <= 1;
       end
     else if (read_cycle)
       begin
	  address <= read_count;
	  check_data <= read_count[17:0];
	  check_data_old <= check_data;
	  check_data_old2 <= check_data_old;
	  enable <= 1;
	  write <= 0;
       end
     else
       enable <= 0;

   always @(posedge clk)
     if (data_in_valid)
       begin
	  correct <= (data_in == check_data_old2);
       end
	  
    
   nobl_if nobl_if_i1
     (
      .clk(clk),
      .rst(rst),
      .RAM_D_pi(RAM_D_pi),
      .RAM_D_po(RAM_D_po),
      .RAM_D_poe(RAM_D_poe),
      .RAM_A(RAM_A),
      .RAM_WEn(RAM_WEn),
      .RAM_CENn(RAM_CENn),
      .RAM_LDn(RAM_LDn),
      .RAM_OEn(RAM_OEn),
      .RAM_CE1n(RAM_CE1n),
      .address(address),
      .data_out(data_out),
      .data_in(data_in),
      .data_in_valid(data_in_valid),
      .write(write),
      .enable(enable)
      );


   wire [35:0] CONTROL0;
   reg [7:0]   data_in_reg, data_out_reg, address_reg;
   reg 	       data_in_valid_reg,write_reg,enable_reg,correct_reg;

   always @(posedge clk)
     begin
	data_in_reg <= data_in[7:0];
	data_out_reg <= data_out[7:0];
	data_in_valid_reg <= data_in_valid;
	write_reg <= write;
	enable_reg <= enable;
	correct_reg <= correct;
	address_reg <= address;
	
     end
   
   
   icon icon_i1
     (
      .CONTROL0(CONTROL0)
      );
   
   ila ila_i1
     (    
	  .CLK(clk), 
	  .CONTROL(CONTROL0), 
	  //    .TRIG0(address_reg), 
	  .TRIG0(data_in_reg[7:0]), 
	  .TRIG1(data_out_reg[7:0]),
	  .TRIG2(address_reg[7:0]),
	  .TRIG3({data_in_valid_reg,write_reg,enable_reg,correct_reg})
	  );
 

   
endmodule // test_sram_if