1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
//
// Copyright 2011 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// NOTE: This module uses Xilinx IP that is not available in Spartan3 and older FPGA's
// Short halfband decimator (intended to be followed by another stage)
// Implements impulse responses of the form [A 0 B 0.5 B 0 A]
//
// These taps designed by halfgen4 from ldoolittle:
// 2 * 131072 * halfgen4(.75/8,2)
module small_hb_dec
#(parameter WIDTH=18,
parameter DEVICE = "SPARTAN6")
(input clk,
input rst,
input bypass,
input run,
input stb_in,
input [WIDTH-1:0] data_in,
output reg stb_out,
output reg [WIDTH-1:0] data_out);
// Round off inputs to 17 bits because of 18 bit multipliers
localparam INTWIDTH = 17;
wire [INTWIDTH-1:0] data_rnd;
wire stb_rnd;
round_sd #(.WIDTH_IN(WIDTH),.WIDTH_OUT(INTWIDTH)) round_in
(.clk(clk),.reset(rst),.in(data_in),.strobe_in(stb_in),.out(data_rnd),.strobe_out(stb_rnd));
reg stb_rnd_d1;
reg [INTWIDTH-1:0] data_rnd_d1;
always @(posedge clk) stb_rnd_d1 <= stb_rnd;
always @(posedge clk) data_rnd_d1 <= data_rnd;
wire go;
reg phase, go_d1, go_d2, go_d3, go_d4;
always @(posedge clk)
if(rst | ~run)
phase <= 0;
else if(stb_rnd_d1)
phase <= ~phase;
assign go = stb_rnd_d1 & phase;
always @(posedge clk)
if(rst | ~run)
begin
go_d1 <= 0;
go_d2 <= 0;
go_d3 <= 0;
go_d4 <= 0;
end
else
begin
go_d1 <= go;
go_d2 <= go_d1;
go_d3 <= go_d2;
go_d4 <= go_d3;
end
wire [17:0] coeff_a = -10690;
wire [17:0] coeff_b = 75809;
reg [INTWIDTH-1:0] d1, d2, d3, d4 , d5, d6;
always @(posedge clk)
if(stb_rnd_d1 | rst)
begin
d1 <= data_rnd_d1;
d2 <= d1;
d3 <= d2;
d4 <= d3;
d5 <= d4;
d6 <= d5;
end
reg [17:0] sum_a, sum_b, middle, middle_d1;
always @(posedge clk)
if(go)
begin
sum_a <= {data_rnd_d1[INTWIDTH-1],data_rnd_d1} + {d6[INTWIDTH-1],d6};
sum_b <= {d2[INTWIDTH-1],d2} + {d4[INTWIDTH-1],d4};
//middle <= {d3[INTWIDTH-1],d3};
middle <= {d3,1'b0};
end
always @(posedge clk)
if(go_d1)
middle_d1 <= middle;
wire [17:0] sum = go_d1 ? sum_b : sum_a;
wire [17:0] coeff = go_d1 ? coeff_b : coeff_a;
wire [35:0] prod;
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult (.P(prod), // Multiplier output bus, width determined by WIDTH_P parameter
.A(coeff), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(sum), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(go_d1 | go_d2), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
localparam ACCWIDTH = 30;
reg [ACCWIDTH-1:0] accum;
always @(posedge clk)
if(rst)
accum <= 0;
else if(go_d2)
accum <= {middle_d1[17],middle_d1[17],middle_d1,{(16+ACCWIDTH-36){1'b0}}} + {prod[35:36-ACCWIDTH]};
else if(go_d3)
accum <= accum + {prod[35:36-ACCWIDTH]};
wire [WIDTH:0] accum_rnd;
wire [WIDTH-1:0] accum_rnd_clip;
wire stb_round;
round_sd #(.WIDTH_IN(ACCWIDTH),.WIDTH_OUT(WIDTH+1)) round_acc
(.clk(clk), .reset(rst), .in(accum), .strobe_in(go_d4), .out(accum_rnd), .strobe_out(stb_round));
clip #(.bits_in(WIDTH+1),.bits_out(WIDTH)) clip (.in(accum_rnd), .out(accum_rnd_clip));
// Output
always @(posedge clk)
begin
stb_out <= bypass ? stb_in : stb_round;
data_out <= bypass ? data_in : accum_rnd_clip;
end
endmodule // small_hb_dec
|