1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
// Write xilinx DSP48E1 primitive for mult-add-clip (signed)
`default_nettype none
module mult_add_clip #(
parameter WIDTH_A=25, // Max 25
parameter BIN_PT_A=24,
parameter WIDTH_B=18, // Max 18
parameter BIN_PT_B=17,
parameter WIDTH_C=43, // Max 43
// Min (47-WIDTH_C-1)+BIN_PT_A+BIN_PT_B,
// Max WIDTH_C-1+BIN_PT_A+BIN_PT_B
parameter BIN_PT_C=42,
parameter WIDTH_O=43, // Max 43-(BIN_PT_A+BIN_PT_B-BIN_PT_O)
parameter BIN_PT_O=42,
parameter LATENCY=2 // Maximum is 4
) (
input wire clk,
input wire reset,
input wire CE, // Ordinarily set to 1'b1
input wire [WIDTH_A-1:0] A,
input wire [WIDTH_B-1:0] B,
input wire [WIDTH_C-1:0] C,
output reg [WIDTH_O-1:0] O
);
// DSP operations:
// O = clip(A * B + C)
//
// Mux settings:
// X,Y (01,01) = M
// Z (011) = C
localparam MREG_IN = (LATENCY >= 1) ? 1 : 0;
localparam CREG_IN = MREG_IN;
localparam PREG_IN = (LATENCY >= 2) ? 1 : 0;
localparam A2REG_IN = (LATENCY >= 3) ? 1 : 0;
localparam A1REG_IN = (LATENCY == 4) ? 1 : 0;
localparam AREG_IN = A1REG_IN + A2REG_IN;
// See OPMODE Control Bits Settings, Table 2-7,2-8,2-9
localparam ZMUX_C = 3'b011;
localparam YMUX_M = 2'b01;
localparam XMUX_M = 2'b01;
localparam [6:0] OPMODE = {ZMUX_C, YMUX_M, XMUX_M};
// A_IN is 25 bits; B_IN is 18 bits. Product M's binary point shifts:
localparam BIN_PT_M = BIN_PT_A+(25-WIDTH_A) + BIN_PT_B+(18-WIDTH_B);
// Calculate shift for C to align binary point to A*B product (M)
// Determine top and bottom indices of C (in C_IN), normalized to M
// Divide by 2**BIN_PT_C then multiply up by 2**BIN_PT_M
localparam C_TOP = WIDTH_C-1 - BIN_PT_C + BIN_PT_M;
localparam C_BOT = 0 - BIN_PT_C + BIN_PT_M;
// Determine number of sign-extended bits above C_TOP
localparam C_EXT = 47 - C_TOP;
// P is a 43-bit fixed point number with bin pt BIN_PT_M
// O is extracted from those bits
// Sign extend if more bits to left of bin pt
localparam O_EXT = ((WIDTH_O-BIN_PT_O) > (43-BIN_PT_M)) ?
(WIDTH_O-BIN_PT_O) - (43-BIN_PT_M) : 0;
// If extending, use highest bit of P, else extract bits based on bin pt
localparam P_TOP = (O_EXT > 0) ? 42 :
(42 + (WIDTH_O-BIN_PT_O) - (43-BIN_PT_M));
// Pad bottom of O if remaining P not enough bits
localparam O_PAD = (WIDTH_O > P_TOP+1) ? (WIDTH_O-P_TOP-1) : 0;
// If padding O, grab lowest bit of P, else determine based on O's width
localparam P_BOT = (O_PAD > 0) ? 0 : (P_TOP+1-WIDTH_O);
//------------------------------------------------
// Normalize C input to A*B product's binary point
//------------------------------------------------
function automatic [47:0] align_c;
input [WIDTH_C-1:0] c;
begin
// Do sign extension
if (C_EXT > 0) begin
align_c[47 -: C_EXT] = {C_EXT{c[WIDTH_C-1]}};
end
if (C_BOT < 0) begin
// Chop off lower bits of C
align_c[C_TOP:0] = c[WIDTH_C-1:(-C_BOT)];
end else begin
// Place C and zero pad if necessary
align_c[C_TOP:C_BOT] = c;
if (C_BOT > 0) begin
align_c[C_BOT-1:0] = {C_BOT{1'b0}};
end
end
end
endfunction
wire [24:0] A_IN = (WIDTH_A < 25) ? { A, {(25-(WIDTH_A)){1'b0}}} : A;
wire [17:0] B_IN = (WIDTH_B < 18) ? { B, {(18-(WIDTH_B)){1'b0}}} : B;
wire [47:0] C_IN;
wire [47:0] P_OUT;
//--------------------------------------------------
// C needs more pipeline registers at higher latency
//--------------------------------------------------
generate if (AREG_IN > 0) begin
reg [AREG_IN*WIDTH_C-1:0] c_r;
if (AREG_IN > 1) begin
always @ (posedge clk)
begin
if (CE) begin
c_r <= {c_r[0 +: (AREG_IN-1)*WIDTH_C], C};
end
end
end else begin
always @ (posedge clk)
begin
if (CE) begin
c_r <= C;
end
end
end
wire [WIDTH_C-1:0] c_pre = c_r[AREG_IN*WIDTH_C-1 -: WIDTH_C];
assign C_IN = align_c(c_pre);
end else begin
assign C_IN = align_c(C);
end endgenerate
//----------------------------------------------
// Track signs for overflow/underflow processing
//----------------------------------------------
reg [LATENCY-1:0] mult_sign;
reg [LATENCY-1:0] c_sign;
wire bin_pt_overflow;
wire adder_overflow;
wire [WIDTH_O-1:0] p_extract;
generate if (LATENCY > 1) begin
always @ (posedge clk)
begin
if (CE) begin
mult_sign <= {mult_sign[0 +: LATENCY-1], A[WIDTH_A-1] ^ B[WIDTH_B-1]};
c_sign <= {c_sign[0 +: LATENCY-1], C[WIDTH_C-1]};
end
end
end else begin
always @ (posedge clk)
begin
if (CE) begin
mult_sign <= A[WIDTH_A-1] ^ B[WIDTH_B-1];
c_sign <= C[WIDTH_C-1];
end
end
end endgenerate
assign adder_overflow = (mult_sign[LATENCY-1] == c_sign[LATENCY-1]) &&
(P_OUT[42] != c_sign[LATENCY-1]);
//----------------------------------------------
// Extract renormalized bits from P_OUT
//----------------------------------------------
generate
if (P_TOP < 42) begin
assign bin_pt_overflow = (|P_OUT[42:P_TOP]) != (&P_OUT[42:P_TOP]);
end else begin
assign bin_pt_overflow = 1'b0;
end
if (O_EXT > 0) begin
assign p_extract[WIDTH_O-1 -: O_EXT] = {O_EXT{P_OUT[42]}};
end
if (O_PAD > 0) begin
assign p_extract[O_PAD-1:0] = {O_PAD{1'b0}};
end
endgenerate
assign p_extract[WIDTH_O-1-O_EXT:O_PAD] = P_OUT[P_TOP:P_BOT];
//----------------------------------
// Clip if underflowed or overflowed
//----------------------------------
always @ (*)
begin
if (bin_pt_overflow || adder_overflow) begin
O <= {c_sign[LATENCY-1], {WIDTH_O-1{!c_sign[LATENCY-1]}}};
end else begin
O <= p_extract;
end
end
DSP48E1 #(
.ACASCREG(AREG_IN),
.AREG(AREG_IN),
.ADREG(0),
.DREG(0),
.BCASCREG(AREG_IN),
.BREG(AREG_IN),
.MREG(MREG_IN),
.CREG(CREG_IN),
.PREG(PREG_IN)
) DSP48_inst (
// Outputs
.ACOUT(),
.BCOUT(),
.CARRYCASCOUT(),
.CARRYOUT(),
.MULTSIGNOUT(),
.OVERFLOW(),
.P(P_OUT),
.PATTERNBDETECT(),
.PATTERNDETECT(),
.PCOUT(),
.UNDERFLOW(),
// Inputs
.A({5'b0,A_IN}),
.ACIN(30'b0),
.ALUMODE(4'b0000),
.B(B_IN),
.BCIN(18'b0),
.C(C_IN),
.CARRYCASCIN(1'b0),
.CARRYIN(1'b0),
.CARRYINSEL(3'b0),
.CEA1(CE),
.CEA2(CE),
.CEAD(1'b0),
.CEALUMODE(1'b1),
.CEB1(CE),
.CEB2(CE),
.CEC(CE),
.CECARRYIN(CE),
.CECTRL(CE),
.CED(1'b0),
.CEINMODE(CE),
.CEM(CE),
.CEP(CE),
.CLK(clk),
.D({25{1'b1}}),
.INMODE(5'b0),
.MULTSIGNIN(1'b0),
.OPMODE(OPMODE),
.PCIN(48'b0),
.RSTA(reset),
.RSTALLCARRYIN(reset),
.RSTALUMODE(reset),
.RSTB(reset),
.RSTC(reset),
.RSTD(reset),
.RSTCTRL(reset),
.RSTINMODE(reset),
.RSTM(reset),
.RSTP(reset)
);
endmodule // mult_add_clip
`default_nettype wire
|