1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// First halfband iterpolator
// Implements impulse responses of the form [A 0 B 0 C .. 0 H 0.5 H 0 .. C 0 B 0 A]
// Strobe in cannot come faster than every 4th clock cycle,
// Strobe out cannot come faster than every 2nd clock cycle
// These taps designed by halfgen4 from ldoolittle
// myfilt = round(2^18 * halfgen4(.7/4,8))
module hb_interp
#(parameter IWIDTH=18, OWIDTH=18, ACCWIDTH=24)
(input clk,
input rst,
input bypass,
input [7:0] cpo, // Clocks per output, must be at least 2
input stb_in,
input [IWIDTH-1:0] data_in,
input stb_out,
output reg [OWIDTH-1:0] data_out);
localparam MWIDTH = ACCWIDTH-2;
localparam CWIDTH = 18;
reg [CWIDTH-1:0] coeff1, coeff2;
reg [3:0] addr_a, addr_b, addr_c, addr_d, addr_e;
wire [IWIDTH-1:0] data_a, data_b, data_c, data_d, data_e, sum1, sum2;
wire [35:0] prod1, prod2;
reg [2:0] phase, phase_d1, phase_d2, phase_d3, phase_d4, phase_d5;
always @(posedge clk)
if(rst)
phase <= 0;
else
if(stb_in)
phase <= 1;
else if(phase==4)
phase <= 0;
else if(phase!=0)
phase <= phase + 1;
always @(posedge clk) phase_d1 <= phase;
always @(posedge clk) phase_d2 <= phase_d1;
always @(posedge clk) phase_d3 <= phase_d2;
always @(posedge clk) phase_d4 <= phase_d3;
always @(posedge clk) phase_d5 <= phase_d4;
srl #(.WIDTH(IWIDTH)) srl_a
(.clk(clk),.rst(rst),.write(stb_in),.in(data_in),.addr(addr_a),.out(data_a));
srl #(.WIDTH(IWIDTH)) srl_b
(.clk(clk),.rst(rst),.write(stb_in),.in(data_in),.addr(addr_b),.out(data_b));
srl #(.WIDTH(IWIDTH)) srl_c
(.clk(clk),.rst(rst),.write(stb_in),.in(data_in),.addr(addr_c),.out(data_c));
srl #(.WIDTH(IWIDTH)) srl_d
(.clk(clk),.rst(rst),.write(stb_in),.in(data_in),.addr(addr_d),.out(data_d));
srl #(.WIDTH(IWIDTH)) srl_e
(.clk(clk),.rst(rst),.write(stb_in),.in(data_in),.addr(addr_e),.out(data_e));
always @*
case(phase)
1 : begin addr_a = 0; addr_b = 15; end
2 : begin addr_a = 1; addr_b = 14; end
3 : begin addr_a = 2; addr_b = 13; end
4 : begin addr_a = 3; addr_b = 12; end
default : begin addr_a = 0; addr_b = 15; end
endcase // case(phase)
always @*
case(phase)
1 : begin addr_c = 4; addr_d = 11; end
2 : begin addr_c = 5; addr_d = 10; end
3 : begin addr_c = 6; addr_d = 9; end
4 : begin addr_c = 7; addr_d = 8; end
default : begin addr_c = 4; addr_d = 11; end
endcase // case(phase)
always @*
case(cpo)
2 : addr_e <= 9;
3,4,5,6,7,8 : addr_e <= 8;
default : addr_e <= 7; // This case works for 256, which = 0 due to overflow outside this block
endcase // case(cpo)
always @* // Outer coeffs
case(phase_d1)
1 : coeff1 = -107;
2 : coeff1 = 445;
3 : coeff1 = -1271;
4 : coeff1 = 2959;
default : coeff1 = -107;
endcase // case(phase)
always @* // Inner coeffs
case(phase_d1)
1 : coeff2 = -6107;
2 : coeff2 = 11953;
3 : coeff2 = -24706;
4 : coeff2 = 82359;
default : coeff2 = -6107;
endcase // case(phase)
add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add1 (.clk(clk),.in1(data_a),.in2(data_b),.sum(sum1));
add2_reg /*_and_round_reg*/ #(.WIDTH(IWIDTH)) add2 (.clk(clk),.in1(data_c),.in2(data_d),.sum(sum2));
// sum1, sum2 available on phase_d1
wire do_mult = 1;
MULT18X18S mult1(.C(clk), .CE(do_mult), .R(rst), .P(prod1), .A(coeff1), .B(sum1) );
MULT18X18S mult2(.C(clk), .CE(do_mult), .R(rst), .P(prod2), .A(coeff2), .B(sum2) );
// prod1, prod2 available on phase_d2
wire [MWIDTH-1:0] sum_of_prod;
add2_and_round_reg #(.WIDTH(MWIDTH))
add3 (.clk(clk),.in1(prod1[35:36-MWIDTH]),.in2(prod2[35:36-MWIDTH]),.sum(sum_of_prod));
// sum_of_prod available on phase_d3
wire [ACCWIDTH-1:0] acc_out;
wire clear = (phase_d3 == 1);
wire do_acc = (phase_d3 != 0);
acc #(.IWIDTH(MWIDTH),.OWIDTH(ACCWIDTH)) //IJB rst
acc (.clk(clk),.clear(rst|clear),.acc(do_acc),.in(sum_of_prod),.out(acc_out));
// acc_out available on phase_d4
wire [ACCWIDTH-6:0] clipped_acc;
clip #(.bits_in(ACCWIDTH),.bits_out(ACCWIDTH-5)) final_clip(.in(acc_out),.out(clipped_acc));
reg [ACCWIDTH-6:0] clipped_reg;
always @(posedge clk)
if (rst)
clipped_reg <= 0;
else if(phase_d4 == 4)
clipped_reg <= clipped_acc;
// clipped_reg available on phase_d5
wire [OWIDTH-1:0] data_out_round;
round #(.bits_in(ACCWIDTH-5),.bits_out(OWIDTH)) final_round (.in(clipped_reg),.out(data_out_round));
reg odd;
always @(posedge clk)
if(rst)
odd <= 0;
else if(stb_in)
odd <= 0;
else if(stb_out)
odd <= 1;
always @(posedge clk)
if (rst)
data_out <= 0;
else if(bypass)
data_out <= data_in;
else if(stb_out)
if(odd)
data_out <= data_e;
else
data_out <= data_out_round;
// data_out available on phase_d6
endmodule // hb_interp
|