1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
//
// Copyright 2011 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// NOTE: This module uses Xilinx IP that is not available in Spartan3 and older FPGA's
// Final halfband decimator
// Implements impulse responses of the form [A 0 B 0 C .. 0 H 0.5 H 0 .. C 0 B 0 A]
// Strobe in cannot come faster than every 2nd clock cycle
// These taps designed by halfgen4 from ldoolittle
// myfilt = round(2^18 * halfgen4(.7/4,8))
module hb_dec
#(parameter WIDTH=24,
parameter DEVICE = "SPARTAN6")
(input clk,
input rst,
input bypass,
input run,
input [8:0] cpi, // Clocks per input -- equal to the decimation ratio ahead of this block
input stb_in,
input [WIDTH-1:0] data_in,
output reg stb_out,
output reg [WIDTH-1:0] data_out);
localparam INTWIDTH = 17;
localparam ACCWIDTH = WIDTH + 3;
// Round off inputs to 17 bits because of 18 bit multipliers
wire [INTWIDTH-1:0] data_rnd;
wire stb_rnd;
round_sd #(.WIDTH_IN(WIDTH),.WIDTH_OUT(INTWIDTH)) round_in
(.clk(clk),.reset(rst),.in(data_in),.strobe_in(stb_in),.out(data_rnd),.strobe_out(stb_rnd));
// Control
reg [3:0] addr_odd_a, addr_odd_b, addr_odd_c, addr_odd_d;
wire write_odd, write_even, do_mult;
reg odd;
reg [2:0] phase, phase_d1;
reg stb_out_int;
wire clear, do_acc;
assign do_mult = 1;
always @(posedge clk)
if(rst | ~run)
odd <= 0;
else if(stb_rnd)
odd <= ~odd;
assign write_odd = stb_rnd & odd;
assign write_even = stb_rnd & ~odd;
always @(posedge clk)
if(rst | ~run)
phase <= 0;
else if(stb_rnd & odd)
phase <= 1;
else if(phase == 4)
phase <= 0;
else if(phase != 0)
phase <= phase + 1;
always @(posedge clk)
phase_d1 <= phase;
reg [15:0] stb_out_pre;
always @(posedge clk)
if(rst)
stb_out_pre <= 0;
else
stb_out_pre <= {stb_out_pre[14:0],(stb_rnd & odd)};
always @*
case(phase)
1 : begin addr_odd_a = 0; addr_odd_b = 15; end
2 : begin addr_odd_a = 1; addr_odd_b = 14; end
3 : begin addr_odd_a = 2; addr_odd_b = 13; end
4 : begin addr_odd_a = 3; addr_odd_b = 12; end
default : begin addr_odd_a = 0; addr_odd_b = 15; end
endcase // case(phase)
always @*
case(phase)
1 : begin addr_odd_c = 4; addr_odd_d = 11; end
2 : begin addr_odd_c = 5; addr_odd_d = 10; end
3 : begin addr_odd_c = 6; addr_odd_d = 9; end
4 : begin addr_odd_c = 7; addr_odd_d = 8; end
default : begin addr_odd_c = 4; addr_odd_d = 11; end
endcase // case(phase)
assign do_acc = |stb_out_pre[6:3];
assign clear = stb_out_pre[3];
// Data
wire [INTWIDTH-1:0] data_odd_a, data_odd_b, data_odd_c, data_odd_d;
reg [INTWIDTH:0] sum1, sum2; // these are 18-bit inputs to mult
reg [WIDTH:0] final_sum;
wire [WIDTH-1:0] final_sum_clip;
reg [17:0] coeff1, coeff2;
wire [35:0] prod1, prod2;
always @* // Outer coeffs
case(phase_d1)
1 : coeff1 = -107;
2 : coeff1 = 445;
3 : coeff1 = -1271;
4 : coeff1 = 2959;
default : coeff1 = -107;
endcase // case(phase)
always @* // Inner coeffs
case(phase_d1)
1 : coeff2 = -6107;
2 : coeff2 = 11953;
3 : coeff2 = -24706;
4 : coeff2 = 82359;
default : coeff2 = -6107;
endcase // case(phase)
srl #(.WIDTH(INTWIDTH)) srl_odd_a
(.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_a),.out(data_odd_a));
srl #(.WIDTH(INTWIDTH)) srl_odd_b
(.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_b),.out(data_odd_b));
srl #(.WIDTH(INTWIDTH)) srl_odd_c
(.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_c),.out(data_odd_c));
srl #(.WIDTH(INTWIDTH)) srl_odd_d
(.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_d),.out(data_odd_d));
always @(posedge clk) sum1 <= {data_odd_a[INTWIDTH-1],data_odd_a} + {data_odd_b[INTWIDTH-1],data_odd_b};
always @(posedge clk) sum2 <= {data_odd_c[INTWIDTH-1],data_odd_c} + {data_odd_d[INTWIDTH-1],data_odd_d};
wire [INTWIDTH-1:0] data_even;
reg [3:0] addr_even;
always @(posedge clk)
case(cpi)
// 1 is an error
2 : addr_even <= 9; // Maximum speed (overall decim by 4)
3, 4, 5, 6, 7 : addr_even <= 8;
default : addr_even <= 7;
endcase // case(cpi)
srl #(.WIDTH(INTWIDTH)) srl_even
(.clk(clk),.rst(rst),.write(write_even),.in(data_rnd),.addr(addr_even),.out(data_even));
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult1 (.P(prod1), // Multiplier output bus, width determined by WIDTH_P parameter
.A(coeff1), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(sum1), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(do_mult), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(18), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
mult2 (.P(prod2), // Multiplier output bus, width determined by WIDTH_P parameter
.A(coeff2), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(sum2), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(do_mult), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
reg [35:0] sum_of_prod;
always @(posedge clk) sum_of_prod <= prod1 + prod2; // Can't overflow
wire [ACCWIDTH-1:0] acc_out;
acc #(.IWIDTH(ACCWIDTH-2),.OWIDTH(ACCWIDTH))
acc (.clk(clk),.clear(clear),.acc(do_acc),.in(sum_of_prod[35:38-ACCWIDTH]),.out(acc_out));
wire [ACCWIDTH-1:0] data_even_signext;
localparam SHIFT_FACTOR = 6;
sign_extend #(.bits_in(INTWIDTH),.bits_out(ACCWIDTH-SHIFT_FACTOR)) signext_data_even
(.in(data_even),.out(data_even_signext[ACCWIDTH-1:SHIFT_FACTOR]));
assign data_even_signext[SHIFT_FACTOR-1:0] = 0;
always @(posedge clk) final_sum <= acc_out + data_even_signext;
clip #(.bits_in(WIDTH+1), .bits_out(WIDTH)) clip (.in(final_sum), .out(final_sum_clip));
// Output MUX to allow for bypass
wire selected_stb = bypass ? stb_in : stb_out_pre[8];
always @(posedge clk)
begin
stb_out <= selected_stb;
if(selected_stb)
data_out <= bypass ? data_in : final_sum_clip;
end
endmodule // hb_dec
|