aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/dsp/hb_dec.v
blob: 0cae5c46087c19511bc7ea247a4a8ffd696c7642 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
//
// Copyright 2011 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// NOTE: This module uses Xilinx IP that is not available in Spartan3 and older FPGA's

// Final halfband decimator
// Implements impulse responses of the form [A 0 B 0 C .. 0 H 0.5 H 0 .. C 0 B 0 A]
// Strobe in cannot come faster than every 2nd clock cycle
// These taps designed by halfgen4 from ldoolittle
// myfilt = round(2^18 * halfgen4(.7/4,8))

module hb_dec
  #(parameter WIDTH=24,
    parameter DEVICE = "SPARTAN6")
    (input clk,
     input rst,
     input bypass,
     input run,
     input [8:0] cpi,  // Clocks per input -- equal to the decimation ratio ahead of this block
     input stb_in,
     input [WIDTH-1:0] data_in,
     output reg stb_out,
     output reg [WIDTH-1:0] data_out);

   localparam INTWIDTH = 17;
   localparam ACCWIDTH = WIDTH + 3;

   // Round off inputs to 17 bits because of 18 bit multipliers
   wire [INTWIDTH-1:0] 	     data_rnd;
   wire 		     stb_rnd;

   round_sd #(.WIDTH_IN(WIDTH),.WIDTH_OUT(INTWIDTH)) round_in
     (.clk(clk),.reset(rst),.in(data_in),.strobe_in(stb_in),.out(data_rnd),.strobe_out(stb_rnd));

   // Control
   reg [3:0] 		addr_odd_a, addr_odd_b, addr_odd_c, addr_odd_d;
   wire 		write_odd, write_even, do_mult;
   reg 			odd;
   reg [2:0] 		phase, phase_d1;
   reg 			stb_out_int;
   wire 		clear, do_acc;
   assign 		do_mult = 1;

   always @(posedge clk)
     if(rst | ~run)
       odd <= 0;
     else if(stb_rnd)
       odd <= ~odd;

   assign 		write_odd = stb_rnd & odd;
   assign 		write_even = stb_rnd & ~odd;

   always @(posedge clk)
     if(rst | ~run)
       phase <= 0;
     else if(stb_rnd & odd)
       phase <= 1;
     else if(phase == 4)
       phase <= 0;
     else if(phase != 0)
       phase <= phase + 1;

   always @(posedge clk)
     phase_d1 <= phase;

   reg [15:0] 		stb_out_pre;
   always @(posedge clk)
     if(rst)
       stb_out_pre <= 0;
     else
       stb_out_pre <= {stb_out_pre[14:0],(stb_rnd & odd)};

   always @*
     case(phase)
       1 : begin addr_odd_a = 0; addr_odd_b = 15; end
       2 : begin addr_odd_a = 1; addr_odd_b = 14; end
       3 : begin addr_odd_a = 2; addr_odd_b = 13; end
       4 : begin addr_odd_a = 3; addr_odd_b = 12; end
       default : begin addr_odd_a = 0; addr_odd_b = 15; end
     endcase // case(phase)

   always @*
     case(phase)
       1 : begin addr_odd_c = 4; addr_odd_d = 11; end
       2 : begin addr_odd_c = 5; addr_odd_d = 10; end
       3 : begin addr_odd_c = 6; addr_odd_d = 9; end
       4 : begin addr_odd_c = 7; addr_odd_d = 8; end
       default : begin addr_odd_c = 4; addr_odd_d = 11; end
     endcase // case(phase)

   assign do_acc = |stb_out_pre[6:3];
   assign clear = stb_out_pre[3];

   // Data
   wire [INTWIDTH-1:0] data_odd_a, data_odd_b, data_odd_c, data_odd_d;
   reg [INTWIDTH:0]    sum1, sum2;    // these are 18-bit inputs to mult
   reg [WIDTH:0]       final_sum;
   wire [WIDTH-1:0]    final_sum_clip;
   reg [17:0] 	       coeff1, coeff2;
   wire [35:0] 	       prod1, prod2;

   always @*            // Outer coeffs
     case(phase_d1)
       1 : coeff1 = -107;
       2 : coeff1 = 445;
       3 : coeff1 = -1271;
       4 : coeff1 = 2959;
       default : coeff1 = -107;
     endcase // case(phase)

   always @*            //  Inner coeffs
     case(phase_d1)
       1 : coeff2 = -6107;
       2 : coeff2 = 11953;
       3 : coeff2 = -24706;
       4 : coeff2 = 82359;
       default : coeff2 = -6107;
     endcase // case(phase)

   srl #(.WIDTH(INTWIDTH)) srl_odd_a
     (.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_a),.out(data_odd_a));
   srl #(.WIDTH(INTWIDTH)) srl_odd_b
     (.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_b),.out(data_odd_b));
   srl #(.WIDTH(INTWIDTH)) srl_odd_c
     (.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_c),.out(data_odd_c));
   srl #(.WIDTH(INTWIDTH)) srl_odd_d
     (.clk(clk),.rst(rst),.write(write_odd),.in(data_rnd),.addr(addr_odd_d),.out(data_odd_d));

   always @(posedge clk) sum1 <= {data_odd_a[INTWIDTH-1],data_odd_a} + {data_odd_b[INTWIDTH-1],data_odd_b};
   always @(posedge clk) sum2 <= {data_odd_c[INTWIDTH-1],data_odd_c} + {data_odd_d[INTWIDTH-1],data_odd_d};

   wire [INTWIDTH-1:0] data_even;
   reg [3:0] 	     addr_even;

   always @(posedge clk)
     case(cpi)
       //  1 is an error
       2 : addr_even <= 9;  // Maximum speed (overall decim by 4)
       3, 4, 5, 6, 7 : addr_even <= 8;
       default : addr_even <= 7;
     endcase // case(cpi)

   srl #(.WIDTH(INTWIDTH)) srl_even
     (.clk(clk),.rst(rst),.write(write_even),.in(data_rnd),.addr(addr_even),.out(data_even));


    MULT_MACRO #(.DEVICE(DEVICE),  // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
		.LATENCY(1),         // Desired clock cycle latency, 0-4
		.WIDTH_A(18),        // Multiplier A-input bus width, 1-25
		.WIDTH_B(18))        // Multiplier B-input bus width, 1-18
      mult1 (.P(prod1),     // Multiplier output bus, width determined by WIDTH_P parameter
	       .A(coeff1),     // Multiplier input A bus, width determined by WIDTH_A parameter
	       .B(sum1),                    // Multiplier input B bus, width determined by WIDTH_B parameter
	       .CE(do_mult),   // 1-bit active high input clock enable
	       .CLK(clk),              // 1-bit positive edge clock input
	       .RST(rst));             // 1-bit input active high reset

    MULT_MACRO #(.DEVICE(DEVICE),  // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
		.LATENCY(1),         // Desired clock cycle latency, 0-4
		.WIDTH_A(18),        // Multiplier A-input bus width, 1-25
		.WIDTH_B(18))        // Multiplier B-input bus width, 1-18
      mult2 (.P(prod2),     // Multiplier output bus, width determined by WIDTH_P parameter
	       .A(coeff2),     // Multiplier input A bus, width determined by WIDTH_A parameter
	       .B(sum2),                    // Multiplier input B bus, width determined by WIDTH_B parameter
	       .CE(do_mult),   // 1-bit active high input clock enable
	       .CLK(clk),              // 1-bit positive edge clock input
	       .RST(rst));             // 1-bit input active high reset


   reg [35:0] 	     sum_of_prod;
   always @(posedge clk) sum_of_prod <= prod1 + prod2;   // Can't overflow

   wire [ACCWIDTH-1:0] 	acc_out;
   acc #(.IWIDTH(ACCWIDTH-2),.OWIDTH(ACCWIDTH))
     acc (.clk(clk),.clear(clear),.acc(do_acc),.in(sum_of_prod[35:38-ACCWIDTH]),.out(acc_out));

   wire [ACCWIDTH-1:0] 	data_even_signext;

   localparam SHIFT_FACTOR = 6;

   sign_extend #(.bits_in(INTWIDTH),.bits_out(ACCWIDTH-SHIFT_FACTOR)) signext_data_even
     (.in(data_even),.out(data_even_signext[ACCWIDTH-1:SHIFT_FACTOR]));
   assign 		data_even_signext[SHIFT_FACTOR-1:0] = 0;

   always @(posedge clk) final_sum <= acc_out + data_even_signext;

   clip #(.bits_in(WIDTH+1), .bits_out(WIDTH)) clip (.in(final_sum), .out(final_sum_clip));

   // Output MUX to allow for bypass
   wire 		selected_stb = bypass ? stb_in : stb_out_pre[8];

   always @(posedge clk)
     begin
	stb_out  <= selected_stb;
	if(selected_stb)
	  data_out <= bypass ? data_in : final_sum_clip;
     end

endmodule // hb_dec