1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
//
// Copyright 2011-2013 Ettus Research LLC
//
//! X300/X310 digital down-conversion chain
module ddc_chain_x300
#(
parameter BASE = 0,
parameter DSPNO = 0,
parameter WIDTH = 24
)
(input clk, input rst, input clr,
input set_stb, input [7:0] set_addr, input [31:0] set_data,
// From RX frontend
input [WIDTH-1:0] rx_fe_i,
input [WIDTH-1:0] rx_fe_q,
// To RX control
output [31:0] sample,
input run,
output strobe,
output [31:0] debug
);
localparam cwidth = 25;
localparam zwidth = 24;
wire [31:0] phase_inc;
reg [31:0] phase;
wire [17:0] scale_factor;
wire [cwidth-1:0] i_cordic, q_cordic;
wire [WIDTH-1:0] i_cordic_clip, q_cordic_clip;
wire [WIDTH-1:0] i_cic, q_cic;
wire [46:0] i_hb1, q_hb1;
wire [46:0] i_hb2, q_hb2;
wire [47:0] i_hb3, q_hb3;
wire strobe_cic, strobe_hb1, strobe_hb2, strobe_hb3;
wire [7:0] cic_decim_rate;
reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux;
wire realmode;
wire swap_iq;
wire [1:0] hb_rate;
wire [2:0] enable_hb = { hb_rate == 2'b11, hb_rate[1] == 1'b1, hb_rate != 2'b00 };
wire reload_go, reload_we1, reload_we2, reload_we3, reload_ld1, reload_ld2, reload_ld3;
wire [17:0] coef_din;
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
setting_reg #(.my_addr(BASE+1), .width(18)) sr_1
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(scale_factor),.changed());
setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({hb_rate, cic_decim_rate}),.changed());
setting_reg #(.my_addr(BASE+3), .width(2)) sr_3
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({realmode,swap_iq}),.changed());
setting_reg #(.my_addr(BASE+4), .width(24)) sr_4
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out({reload_ld3,reload_we3,reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din}),.changed(reload_go));
// MUX so we can do realmode signals on either input
always @(posedge clk)
if(swap_iq)
begin
rx_fe_i_mux <= rx_fe_q;
rx_fe_q_mux <= realmode ? 0 : rx_fe_i;
end
else
begin
rx_fe_i_mux <= rx_fe_i;
rx_fe_q_mux <= realmode ? 0 : rx_fe_q;
end
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~run)
phase <= 0;
else
phase <= phase + phase_inc;
//sign extension of cordic input
wire [cwidth-1:0] to_cordic_i, to_cordic_q;
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_i (.in(rx_fe_i_mux), .out(to_cordic_i));
sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_q (.in(rx_fe_q_mux), .out(to_cordic_q));
// CORDIC 24-bit I/O
cordic_z24 #(.bitwidth(cwidth))
cordic(.clock(clk), .reset(rst), .enable(run),
.xi(to_cordic_i),. yi(to_cordic_q), .zi(phase[31:32-zwidth]),
.xo(i_cordic),.yo(q_cordic),.zo() );
clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_cordic_i
(.clk(clk), .in(i_cordic), .strobe_in(1'b1), .out(i_cordic_clip));
clip_reg #(.bits_in(cwidth), .bits_out(WIDTH)) clip_cordic_q
(.clk(clk), .in(q_cordic), .strobe_in(1'b1), .out(q_cordic_clip));
// CIC decimator 24 bit I/O
cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate),
.strobe_fast(1'b1),.strobe_slow(strobe_cic) );
cic_decim #(.bw(WIDTH))
decim_i (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(i_cordic_clip),.signal_out(i_cic));
cic_decim #(.bw(WIDTH))
decim_q (.clock(clk),.reset(rst),.enable(run),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(q_cordic_clip),.signal_out(q_cic));
// Halfbands
wire nd1, nd2, nd3;
wire rfd1, rfd2, rfd3;
wire rdy1, rdy2, rdy3;
wire data_valid1, data_valid2, data_valid3;
localparam HB1_SCALE = 18;
localparam HB2_SCALE = 18;
localparam HB3_SCALE = 18;
assign strobe_hb1 = data_valid1;
assign strobe_hb2 = data_valid2;
assign strobe_hb3 = data_valid3;
assign nd1 = strobe_cic;
assign nd2 = strobe_hb1;
assign nd3 = strobe_hb2;
hbdec1 hbdec1
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb[0]), // input ce
.coef_ld(reload_go & reload_ld1), // input coef_ld
.coef_we(reload_go & reload_we1), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd1), // output rfd
.nd(nd1), // input nd
.din_1(i_cic), // input [23 : 0] din_1
.din_2(q_cic), // input [23 : 0] din_2
.rdy(rdy1), // output rdy
.data_valid(data_valid1), // output data_valid
.dout_1(i_hb1), // output [46 : 0] dout_1
.dout_2(q_hb1)); // output [46 : 0] dout_2
hbdec2 hbdec2
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb[1]), // input ce
.coef_ld(reload_go & reload_ld2), // input coef_ld
.coef_we(reload_go & reload_we2), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd2), // output rfd
.nd(nd2), // input nd
.din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1
.din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2
.rdy(rdy2), // output rdy
.data_valid(data_valid2), // output data_valid
.dout_1(i_hb2), // output [46 : 0] dout_1
.dout_2(q_hb2)); // output [46 : 0] dout_2
hbdec3 hbdec3
(.clk(clk), // input clk
.sclr(rst), // input sclr
.ce(enable_hb[2]), // input ce
.coef_ld(reload_go & reload_ld3), // input coef_ld
.coef_we(reload_go & reload_we3), // input coef_we
.coef_din(coef_din), // input [17 : 0] coef_din
.rfd(rfd3), // output rfd
.nd(strobe_hb2), // input nd
.din_1(i_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_1
.din_2(q_hb2[23+HB2_SCALE:HB2_SCALE]), // input [23 : 0] din_2
.rdy(rdy3), // output rdy
.data_valid(data_valid3), // output data_valid
.dout_1(i_hb3), // output [47 : 0] dout_1
.dout_2(q_hb3)); // output [47 : 0] dout_2
reg [23:0] i_unscaled, q_unscaled;
reg strobe_unscaled;
always @(posedge clk)
case(hb_rate)
2'd0 :
begin
strobe_unscaled <= strobe_cic;
i_unscaled <= i_cic[23:0];
q_unscaled <= q_cic[23:0];
end
2'd1 :
begin
strobe_unscaled <= strobe_hb1;
i_unscaled <= i_hb1[23+HB1_SCALE:HB1_SCALE];
q_unscaled <= q_hb1[23+HB1_SCALE:HB1_SCALE];
end
2'd2 :
begin
strobe_unscaled <= strobe_hb2;
i_unscaled <= i_hb2[23+HB2_SCALE:HB2_SCALE];
q_unscaled <= q_hb2[23+HB2_SCALE:HB2_SCALE];
end
2'd3 :
begin
strobe_unscaled <= strobe_hb3;
i_unscaled <= i_hb3[23+HB3_SCALE:HB3_SCALE];
q_unscaled <= q_hb3[23+HB3_SCALE:HB3_SCALE];
end
endcase // case (hb_rate)
wire [42:0] i_scaled, q_scaled;
wire [23:0] i_clip, q_clip;
reg strobe_scaled;
wire strobe_clip;
MULT_MACRO #(.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_I (.P(i_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({i_unscaled[23],i_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
MULT_MACRO #(.DEVICE("7SERIES"), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
.LATENCY(1), // Desired clock cycle latency, 0-4
.WIDTH_A(25), // Multiplier A-input bus width, 1-25
.WIDTH_B(18)) // Multiplier B-input bus width, 1-18
SCALE_Q (.P(q_scaled), // Multiplier output bus, width determined by WIDTH_P parameter
.A({q_unscaled[23],q_unscaled}), // Multiplier input A bus, width determined by WIDTH_A parameter
.B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
.CE(strobe_unscaled), // 1-bit active high input clock enable
.CLK(clk), // 1-bit positive edge clock input
.RST(rst)); // 1-bit input active high reset
always @(posedge clk) strobe_scaled <= strobe_unscaled;
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_i
(.clk(clk), .in(i_scaled[42:14]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
clip_reg #(.bits_in(29), .bits_out(24), .STROBED(1)) clip_q
(.clk(clk), .in(q_scaled[42:14]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16)) round_i
(.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe));
round_sd #(.WIDTH_IN(24), .WIDTH_OUT(16)) round_q
(.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out());
endmodule // ddc_chain
|