1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/*
Copyright (c) 2015-2016 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Content Addressable Memory (block RAM based)
*/
module cam_bram #(
// search data bus width
parameter DATA_WIDTH = 64,
// memory size in log2(words)
parameter ADDR_WIDTH = 5,
// width of data bus slices
parameter SLICE_WIDTH = 9
)
(
input wire clk,
input wire rst,
input wire [ADDR_WIDTH-1:0] write_addr,
input wire [DATA_WIDTH-1:0] write_data,
input wire write_delete,
input wire write_enable,
output wire write_busy,
input wire [DATA_WIDTH-1:0] compare_data,
output wire [2**ADDR_WIDTH-1:0] match_many,
output wire [2**ADDR_WIDTH-1:0] match_single,
output wire [ADDR_WIDTH-1:0] match_addr,
output wire match
);
// total number of slices (enough to cover DATA_WIDTH with address inputs)
localparam SLICE_COUNT = (DATA_WIDTH + SLICE_WIDTH - 1) / SLICE_WIDTH;
// depth of RAMs
localparam RAM_DEPTH = 2**ADDR_WIDTH;
localparam [2:0]
STATE_INIT = 3'd0,
STATE_IDLE = 3'd1,
STATE_DELETE_1 = 3'd2,
STATE_DELETE_2 = 3'd3,
STATE_WRITE_1 = 3'd4,
STATE_WRITE_2 = 3'd5;
reg [2:0] state_reg = STATE_INIT, state_next;
wire [SLICE_COUNT*SLICE_WIDTH-1:0] compare_data_padded = {{SLICE_COUNT*SLICE_WIDTH-DATA_WIDTH{1'b0}}, compare_data};
wire [SLICE_COUNT*SLICE_WIDTH-1:0] write_data_padded = {{SLICE_COUNT*SLICE_WIDTH-DATA_WIDTH{1'b0}}, write_data};
reg [SLICE_WIDTH-1:0] count_reg = {SLICE_WIDTH{1'b1}}, count_next;
reg [SLICE_COUNT*SLICE_WIDTH-1:0] ram_addr = {SLICE_COUNT*SLICE_WIDTH{1'b0}};
reg [RAM_DEPTH-1:0] set_bit;
reg [RAM_DEPTH-1:0] clear_bit;
reg wr_en;
reg [ADDR_WIDTH-1:0] write_addr_reg = {ADDR_WIDTH{1'b0}}, write_addr_next;
reg [SLICE_COUNT*SLICE_WIDTH-1:0] write_data_padded_reg = {SLICE_COUNT*SLICE_WIDTH{1'b0}}, write_data_padded_next;
reg write_delete_reg = 1'b0, write_delete_next;
reg write_busy_reg = 1'b1;
assign write_busy = write_busy_reg;
reg [RAM_DEPTH-1:0] match_raw_out[SLICE_COUNT-1:0];
reg [RAM_DEPTH-1:0] match_many_raw;
assign match_many = match_many_raw;
reg [DATA_WIDTH-1:0] erase_ram [RAM_DEPTH-1:0];
reg [DATA_WIDTH-1:0] erase_data = {DATA_WIDTH{1'b0}};
reg erase_ram_wr_en;
integer i;
initial begin
for (i = 0; i < RAM_DEPTH; i = i + 1) begin
erase_ram[i] = {SLICE_COUNT*SLICE_WIDTH{1'b0}};
end
end
integer k;
always @* begin
match_many_raw = {RAM_DEPTH{1'b1}};
for (k = 0; k < SLICE_COUNT; k = k + 1) begin
match_many_raw = match_many_raw & match_raw_out[k];
end
end
cam_priority_encoder #(
.WIDTH(RAM_DEPTH),
.LSB_PRIORITY("HIGH")
)
priority_encoder_inst (
.input_unencoded(match_many_raw),
.output_valid(match),
.output_encoded(match_addr),
.output_unencoded(match_single)
);
// BRAMs
genvar slice_ind;
generate
for (slice_ind = 0; slice_ind < SLICE_COUNT; slice_ind = slice_ind + 1) begin : slice
localparam W = slice_ind == SLICE_COUNT-1 ? DATA_WIDTH-SLICE_WIDTH*slice_ind : SLICE_WIDTH;
wire [RAM_DEPTH-1:0] match_data;
wire [RAM_DEPTH-1:0] ram_data;
ram_2port #(
.DWIDTH(RAM_DEPTH),
.AWIDTH(W)
)
ram_inst
(
.clka(clk),
.ena(1'b1),
.wea(1'b0),
.addra(compare_data[SLICE_WIDTH * slice_ind +: W]),
.dia({RAM_DEPTH{1'b0}}),
.doa(match_data),
.clkb(clk),
.enb(1'b1),
.web(wr_en),
.addrb(ram_addr[SLICE_WIDTH * slice_ind +: W]),
.dib((ram_data & ~clear_bit) | set_bit),
.dob(ram_data)
);
always @* begin
match_raw_out[slice_ind] <= match_data;
end
end
endgenerate
// erase
always @(posedge clk) begin
erase_data <= erase_ram[write_addr_next];
if (erase_ram_wr_en) begin
erase_data <= write_data_padded_reg;
erase_ram[write_addr_next] <= write_data_padded_reg;
end
end
// write
always @* begin
state_next = STATE_IDLE;
count_next = count_reg;
ram_addr = erase_data;
set_bit = {RAM_DEPTH{1'b0}};
clear_bit = {RAM_DEPTH{1'b0}};
wr_en = 1'b0;
erase_ram_wr_en = 1'b0;
write_addr_next = write_addr_reg;
write_data_padded_next = write_data_padded_reg;
write_delete_next = write_delete_reg;
case (state_reg)
STATE_INIT: begin
// zero out RAMs
ram_addr = {SLICE_COUNT{count_reg}} & {{SLICE_COUNT*SLICE_WIDTH-DATA_WIDTH{1'b0}}, {DATA_WIDTH{1'b1}}};
set_bit = {RAM_DEPTH{1'b0}};
clear_bit = {RAM_DEPTH{1'b1}};
wr_en = 1'b1;
if (count_reg == 0) begin
state_next = STATE_IDLE;
end else begin
count_next = count_reg - 1;
state_next = STATE_INIT;
end
end
STATE_IDLE: begin
// idle state
write_addr_next = write_addr;
write_data_padded_next = write_data_padded;
write_delete_next = write_delete;
if (write_enable) begin
// wait for read from erase_ram
state_next = STATE_DELETE_1;
end else begin
state_next = STATE_IDLE;
end
end
STATE_DELETE_1: begin
// wait for read
state_next = STATE_DELETE_2;
end
STATE_DELETE_2: begin
// clear bit and write back
clear_bit = 1'b1 << write_addr;
wr_en = 1'b1;
if (write_delete_reg) begin
state_next = STATE_IDLE;
end else begin
erase_ram_wr_en = 1'b1;
state_next = STATE_WRITE_1;
end
end
STATE_WRITE_1: begin
// wait for read
state_next = STATE_WRITE_2;
end
STATE_WRITE_2: begin
// set bit and write back
set_bit = 1'b1 << write_addr;
wr_en = 1'b1;
state_next = STATE_IDLE;
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_INIT;
count_reg <= {SLICE_WIDTH{1'b1}};
write_busy_reg <= 1'b1;
end else begin
state_reg <= state_next;
count_reg <= count_next;
write_busy_reg <= state_next != STATE_IDLE;
end
write_addr_reg <= write_addr_next;
write_data_padded_reg <= write_data_padded_next;
write_delete_reg <= write_delete_next;
end
endmodule
|