1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
//
// Copyright 2021 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Module: gearbox_2x1
//
// Description:
//
// Moves data between two clock domains at a constant data rate. This module
// requires that the clocks be related and that there is a 2:1 ratio between
// the two clocks. Static timing analysis is assumed for the clock domain
// crossing. The module supports going from a slow clock to a fast clock (2
// words per 1x clock cycle to 1 word per 2x clock cycle) or from a fast
// clock to a slow clock (1 word per 1x clock cycle to 2 words per 2x clock
// cycles) depending on the parameters provided.
//
// Note that there are no tready signals, so downstream logic must always be
// ready.
//
// Parameters:
//
// WORD_W : Bits per word
// IN_WORDS : Number of input words per clock cycle
// OUT_WORDS : Number of output words per clock cycle
// BIG_ENDIAN : Order in which to input/output words when multiple words per
// clock cycle are needed. Little endian means the first word is
// in the least-significant position. Big endian means the first
// word is in the most-significant position.
//
module gearbox_2x1 #(
parameter WORD_W = 8,
parameter IN_WORDS = 2,
parameter OUT_WORDS = 1,
parameter BIG_ENDIAN = 0
) (
input wire i_clk,
input wire i_rst,
input wire [IN_WORDS*WORD_W-1:0] i_tdata,
input wire i_tvalid,
input wire o_clk,
input wire o_rst,
output reg [OUT_WORDS*WORD_W-1:0] o_tdata,
output reg o_tvalid = 1'b0
);
localparam IN_W = WORD_W * IN_WORDS;
localparam OUT_W = WORD_W * OUT_WORDS;
generate
// Make sure the ratios are supported
if (IN_WORDS != 2*OUT_WORDS && OUT_WORDS != 2*IN_WORDS) begin : gen_ERROR
IN_WORDS_and_OUT_WORDS_must_have_a_2_to_1_ratio();
end
//-------------------------------------------------------------------------
// 2 words to 1 word (slow clock to fast clock)
//-------------------------------------------------------------------------
if (IN_WORDS > OUT_WORDS) begin : gen_slow_to_fast
reg [IN_W-1:0] i_tdata_reg;
reg i_tvalid_reg;
reg i_toggle = 1'b0;
always @(posedge i_clk) begin
if (i_rst) begin
i_tdata_reg <= 'bX;
i_tvalid_reg <= 1'b0;
i_toggle <= 1'b0;
end else begin
i_tdata_reg <= i_tdata;
i_tvalid_reg <= i_tvalid;
if (i_tvalid) begin
i_toggle <= ~i_toggle;
end
end
end
reg [IN_W-1:0] o_tdata_reg;
reg o_tvalid_reg = 1'b0;
reg o_toggle;
reg o_toggle_dly;
reg o_data_sel;
always @(posedge o_clk) begin
if (o_rst) begin
o_tdata_reg <= 'bX;
o_tvalid <= 1'b0;
o_tvalid_reg <= 1'b0;
o_toggle <= 1'bX;
o_toggle_dly <= 1'bX;
o_data_sel <= 1'bX;
end else begin
// Clock crossing
o_tvalid_reg <= i_tvalid_reg;
o_toggle <= i_toggle;
o_tdata_reg <= i_tdata_reg;
// Determine which output to select
o_toggle_dly <= o_toggle;
o_data_sel <= BIG_ENDIAN ^ (o_toggle == o_toggle_dly);
// Select the correct output for this clock cycle
o_tvalid <= o_tvalid_reg;
o_tdata <= o_data_sel ?
o_tdata_reg[0 +: OUT_W] : o_tdata_reg[IN_W/2 +: OUT_W];
end
end
//-------------------------------------------------------------------------
// 1 word to 2 words (fast clock to slow clock)
//-------------------------------------------------------------------------
end else begin : gen_fast_to_slow
reg [IN_W-1:0] i_gear_reg;
reg [OUT_W-1:0] i_gear_tdata;
reg i_gear_one_word = 1'b0;
reg i_gear_tvalid = 1'b0;
reg i_gear_tvalid_dly = 1'b0;
always @(posedge i_clk) begin
if (i_rst) begin
i_gear_reg <= 'bX;
i_gear_tdata <= 'bX;
i_gear_one_word <= 1'b0;
i_gear_tvalid <= 1'b0;
i_gear_tvalid_dly <= 1'b0;
end else begin
// Default assignments
i_gear_tvalid <= 1'b0;
i_gear_tvalid_dly <= i_gear_tvalid;
if (i_tvalid) begin
// Track if the gearbox has one word saved
i_gear_one_word <= ~i_gear_one_word;
i_gear_reg <= i_tdata;
if (i_gear_one_word) begin
// This is the second word, so output the new word on i_gear_reg_t*
i_gear_tdata <= BIG_ENDIAN ?
{ i_gear_reg, i_tdata } : { i_tdata, i_gear_reg };
i_gear_tvalid <= 1'b1;
end
end
end
end
reg [OUT_W-1:0] o_gear_tdata;
reg o_gear_tvalid = 1'b0;
reg o_gear_tvalid_dly = 1'b0;
reg o_tvalid_reg = 1'b0;
always @(posedge o_clk) begin
if (o_rst) begin
o_gear_tvalid <= 1'b0;
o_gear_tvalid_dly <= 1'b0;
o_gear_tdata <= 'bX;
o_tvalid <= 1'b0;
o_tdata <= 'bX;
end else begin
// Clock crossing
o_gear_tvalid <= i_gear_tvalid;
o_gear_tvalid_dly <= i_gear_tvalid_dly;
o_gear_tdata <= i_gear_tdata;
// Control tvalid
o_tvalid <= o_gear_tvalid | o_gear_tvalid_dly;
o_tdata <= o_gear_tdata;
end
end
end
endgenerate
endmodule
|