1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
//
// Copyright 2013 Ettus Research LLC
//
//
// This module implements a highly customized TCAM that enbales forwarding
// decisions to be made on a 16bit field from a VITA SID field.
// The 16bits are allocated by convention as 8 bits of Network address
// (Addresses USRP's etc) and 8 bits of Host address (adresses endpoints in
// a USRP). By definition if the DEST field in the SID addresses a different
// USRP than this one then we don't care about the Host field, only the Network Field.
// We only look at the Host Field when the Network field addresses us.
// Thus Need TCAM of 256+256 entries with Log2(N) bits, where N is the number of
// slave(output) ports on the crossbar switch.
//
//
//
// SID format:
//
// |--------|---------|--------|---------|
// | SOURCE | DEST | DEST |
// | ADDRESS | NETWORK| HOST |
// |--------|---------|--------|---------|
// 8 8 8 8
//
`define LOG2(N) (\
N < 2 ? 0 : \
N < 4 ? 1 : \
N < 8 ? 2 : \
N < 16 ? 3 : \
N < 32 ? 4 : \
N < 64 ? 5 : \
N < 128 ? 6 : \
N < 256 ? 7 : \
N < 512 ? 8 : \
N < 1024 ? 9 : \
10)
module axi_forwarding_cam
#(
parameter BASE = 0, // BASE address for setting registers in this block. (512 addrs used)
parameter WIDTH=64, // Bit width of FIFO word.
parameter NUM_OUTPUTS=2 // Number of outputs (destinations) in crossbar.
)
(
input clk,
input reset,
input clear,
// Monitored FIFO signals
input [WIDTH-1:0] o_tdata,
input o_tvalid,
input o_tready,
input o_tlast,
input pkt_present,
// Configuration
input [7:0] local_addr,
// Setting Bus
input set_stb,
input [15:0] set_addr,
input [31:0] set_data,
// Forwarding Flags
output reg [NUM_OUTPUTS-1:0] forward_valid,
input [NUM_OUTPUTS-1:0] forward_ack,
// readback bus
input rb_rd_stb,
input [`LOG2(NUM_OUTPUTS)-1:0] rb_addr,
output [31:0] rb_data
);
localparam WAIT_SOF = 0;
localparam WAIT_EOF = 1;
reg state;
localparam IDLE = 0;
localparam FORWARD = 1;
localparam WAIT = 2;
reg [1:0] demux_state;
reg [15:0] dst;
reg dst_valid, dst_valid_reg;
wire local_dst;
wire [8:0] read_addr;
//
// Monitor packets leaving FIFO
//
always @(posedge clk)
if (reset | clear) begin
state <= WAIT_SOF;
end else
case(state)
//
// After RESET or the EOF of previous packet, the first cycle with
// output valid asserted is the SOF and presents the Header word.
// The cycle following the concurrent presentation of asserted output
// valid and output ready presents the word following the header.
//
WAIT_SOF:
if (o_tvalid && o_tready) begin
state <= WAIT_EOF;
end else begin
state <= WAIT_SOF;
end
//
// EOF is signalled by o_tlast asserted whilst output valid and ready asserted.
//
WAIT_EOF:
if (o_tlast && o_tvalid && o_tready) begin
state <= WAIT_SOF;
end else begin
state <= WAIT_EOF;
end
endcase // case(in_state)
//
// Extract Destination fields(s) from SID
//
always @(posedge clk)
if (reset | clear) begin
dst <= 0;
dst_valid <= 0;
dst_valid_reg <= 0;
end else if (o_tvalid && (state == WAIT_SOF) && pkt_present) begin
// SID will remain valid until o_tready is asserted as this will cause a state transition.
dst <= o_tdata[15:0];
dst_valid <= 1;
dst_valid_reg <= dst_valid;
end else begin
dst_valid <= 0;
dst_valid_reg <= dst_valid;
end
//
// Is Network field in DST our local address?
//
assign local_dst = (dst[15:8] == local_addr) && dst_valid;
//
// Mux address to RAM so that it searches CAM for Network field or Host field.
// Network addresses are stored in the lower 256 locations, host addresses the upper 256.
//
assign read_addr = {local_dst,(local_dst ? dst[7:0] : dst[15:8])};
//
// Imply a block RAM here, 512xCeil(Log2(NUM_OUTPUTS))
//
//synthesis attribute ram_style of mem is block
reg [(`LOG2(NUM_OUTPUTS))-1 : 0] mem [0:511];
reg [8:0] read_addr_reg;
wire write;
wire [`LOG2(NUM_OUTPUTS)-1:0] read_data;
assign write = (set_addr[15:9] == (BASE >>9)) && set_stb; // Addr decode.
always @(posedge clk)
begin
read_addr_reg <= read_addr;
if (write) begin
mem[set_addr[8:0]] <= set_data[`LOG2(NUM_OUTPUTS)-1:0];
end
end
assign read_data = mem[read_addr_reg];
//
// State machine to manage forwarding flags.
//
always @(posedge clk)
if (reset | clear) begin
demux_state <= IDLE;
end else
case(demux_state)
// Wait for Valid DST which indicates a new packet lookup in the CAM.
IDLE: begin
if (dst_valid_reg == 1) begin
forward_valid <= 1 << read_data;
demux_state <= FORWARD;
end
end
// When Slave/Output thats forwarding ACK's the forward flag, clear request and wait for packet to be transfered
FORWARD: begin
if ((forward_ack & forward_valid) != 0) begin
forward_valid <= 0;
demux_state <= WAIT;
end
end
// When packet transfered go back to idle.
WAIT: begin
if (forward_ack == 0)
demux_state <= IDLE;
end
endcase // case (demux_state)
//
// Compile forwarding statistics
// (This uses a lot of registers!)
//
genvar m;
reg [31:0] statistics [0:NUM_OUTPUTS-1];
generate
for (m = 0; m < NUM_OUTPUTS; m = m + 1) begin: generate_stats
always @(posedge clk)
if (reset | clear)
statistics[m] <= 0;
else if ((rb_addr == m) && rb_rd_stb)
statistics[m] <= 0;
else if (forward_ack[m] & forward_valid[m])
statistics[m] <= statistics[m] + 1;
end
endgenerate
assign rb_data = statistics[rb_addr];
endmodule
|