1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
//
// Copyright 2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
`define LOG2(N) (\
N < 2 ? 0 : \
N < 4 ? 1 : \
N < 8 ? 2 : \
N < 16 ? 3 : \
N < 32 ? 4 : \
N < 64 ? 5 : \
N < 128 ? 6 : \
N < 256 ? 7 : \
N < 512 ? 8 : \
N < 1024 ? 9 : \
10)
module axi_crossbar
#(
parameter FIFO_WIDTH = 64, // AXI4-STREAM data bus width
parameter DST_WIDTH = 16, // Width of DST field we are routing on.
parameter NUM_INPUTS = 2, // number of input AXI4-STREAM buses
parameter NUM_OUTPUTS = 2 // number of output AXI4-STREAM buses
)
(
input clk,
input reset,
input clear,
input [7:0] local_addr,
// Inputs
input [(FIFO_WIDTH*NUM_INPUTS)-1:0] i_tdata,
input [NUM_INPUTS-1:0] i_tvalid,
input [NUM_INPUTS-1:0] i_tlast,
output [NUM_INPUTS-1:0] i_tready,
input [NUM_INPUTS-1:0] pkt_present,
// Setting Bus
input set_stb,
input [15:0] set_addr,
input [31:0] set_data,
// Output
output [(FIFO_WIDTH*NUM_OUTPUTS)-1:0] o_tdata,
output [NUM_OUTPUTS-1:0] o_tvalid,
output [NUM_OUTPUTS-1:0] o_tlast,
input [NUM_OUTPUTS-1:0] o_tready,
// readback bus
input rb_rd_stb,
input [`LOG2(NUM_OUTPUTS)+`LOG2(NUM_INPUTS)-1:0] rb_addr,
output [31:0] rb_data
);
genvar m,n;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_valid_in;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_ack_in;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_valid_out;
wire [(NUM_INPUTS*NUM_OUTPUTS)-1:0] forward_ack_out;
wire [NUM_INPUTS-1:0] i_tready_slave [0:NUM_OUTPUTS-1];
//
// Instantiate an axi_slave_mux for every slave/output of the Crossbar switch.
// Each axi_slave_mux contains logic to maux and resolve arbitration
// for this particular slave/output.
//
generate
for (m = 0; m < NUM_OUTPUTS; m = m + 1) begin: instantiate_slave_mux
wire [NUM_INPUTS-1:0] i_tready_tmp;
axi_slave_mux
#(
.FIFO_WIDTH(FIFO_WIDTH), // AXI4-STREAM data bus width
.DST_WIDTH(DST_WIDTH), // Width of DST field we are routing on.
.NUM_INPUTS(NUM_INPUTS) // number of input AXI buses
) axi_slave_mux_i
(
.clk(clk),
.reset(reset),
.clear(clear),
// Inputs
.i_tdata(i_tdata),
.i_tvalid(i_tvalid),
.i_tlast(i_tlast),
.i_tready(i_tready_tmp),
// Forwarding flags (One from each Input/Master)
.forward_valid(forward_valid_in[(m+1)*NUM_INPUTS-1:m*NUM_INPUTS]),
.forward_ack(forward_ack_out[(m+1)*NUM_INPUTS-1:m*NUM_INPUTS]),
// Output
.o_tdata(o_tdata[(m*FIFO_WIDTH)+FIFO_WIDTH-1:m*FIFO_WIDTH]),
.o_tvalid(o_tvalid[m]),
.o_tlast(o_tlast[m]),
.o_tready(o_tready[m])
);
if (m==0)
assign i_tready_slave[0] = i_tready_tmp;
else
assign i_tready_slave[m] = i_tready_tmp | i_tready_slave[m-1] ;
end // block: instantiate_slave_mux
endgenerate
assign i_tready = i_tready_slave[NUM_OUTPUTS-1];
//
// Permute the forwarding flag buses
//
generate
for (m = 0; m < NUM_OUTPUTS; m = m + 1) begin: permute_outer
for (n = 0; n < NUM_INPUTS; n = n + 1) begin: permute_inner
assign forward_valid_in[n*NUM_OUTPUTS+m] = forward_valid_out[n+m*NUM_INPUTS];
assign forward_ack_in[n+m*NUM_INPUTS] = forward_ack_out[n*NUM_OUTPUTS+m];
end
end
endgenerate
//
// Instantiate an axi_forwarding_cam for every Input/Master of the Crossbar switch.
// Each contains a TCAM like lookup that allocates an egress port.
//
wire [31:0] rb_data_mux[0:NUM_INPUTS-1];
generate
for (m = 0; m < NUM_INPUTS; m = m + 1) begin: instantiate_cam
axi_forwarding_cam
#(
.BASE(0),
.WIDTH(FIFO_WIDTH), // Bit width of FIFO word.
.NUM_OUTPUTS(NUM_OUTPUTS)
) axi_forwarding_cam_i
(
.clk(clk),
.reset(reset),
.clear(clear),
// Monitored FIFO signals
.o_tdata(i_tdata[(m*FIFO_WIDTH)+FIFO_WIDTH-1:m*FIFO_WIDTH]),
.o_tvalid(i_tvalid[m]),
.o_tready(i_tready[m]),
.o_tlast(i_tlast[m]),
.pkt_present(pkt_present[m]),
// Configuration
.local_addr(local_addr),
// Setting Bus
.set_stb(set_stb),
.set_addr(set_addr),
.set_data(set_data),
// Header signals
.forward_valid(forward_valid_out[(m+1)*NUM_OUTPUTS-1:m*NUM_OUTPUTS]),
.forward_ack(forward_ack_in[(m+1)*NUM_OUTPUTS-1:m*NUM_OUTPUTS]),
// Readback bus
.rb_rd_stb(rb_rd_strobe && (rb_addr[`LOG2(NUM_OUTPUTS)+`LOG2(NUM_INPUTS)-1:`LOG2(NUM_OUTPUTS)] == m)),
.rb_addr(rb_addr[`LOG2(NUM_OUTPUTS)-1:0]),
.rb_data(rb_data_mux[m])
);
end // block: instantiate_fifo_header
endgenerate
assign rb_data = rb_data_mux[rb_addr[`LOG2(NUM_OUTPUTS)+`LOG2(NUM_INPUTS)-1:`LOG2(NUM_OUTPUTS)]];
endmodule // axi_crossbar
|