1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
//
// Copyright 2020 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Interface: AxiLiteIf
// Description:
// AXI4-LITE is an ARM standard for lighter weight registers
// axis based on the AXI4 protocol. For more information
// on the spec see - https://developer.arm.com/docs/ihi0022/d
//
// The interface contains methods for
// (1) Writing an address
// (2) Reading an address
//
// Parameters:
// - DATA_WIDTH - Width of the data on AXI4-Lite bus
// - ADDR_WIDTH - Width of the address on AXI4-Lite bus
//
//-----------------------------------------------------------------------------
// AXI4-Lite interface
//-----------------------------------------------------------------------------
interface AxiLiteIf #(
int DATA_WIDTH = 64,
int ADDR_WIDTH = 1
) (
input logic clk,
input logic rst = 1'b0
);
import PkgAxiLite::*;
localparam BYTES_PER_WORD = DATA_WIDTH/8;
// local type defs
typedef logic [DATA_WIDTH-1:0] data_t;
typedef logic [ADDR_WIDTH-1:0] addr_t;
typedef logic [BYTES_PER_WORD-1:0] strb_t;
// Signals that make up an AxiLite interface
// Write Address Channel
addr_t awaddr;
logic awvalid;
logic awready;
// Write Data Channel
data_t wdata;
strb_t wstrb = '1;
logic wvalid;
logic wready;
// Write Response Channel
resp_t bresp;
logic bvalid;
logic bready;
// Read Address Channel
addr_t araddr;
logic arvalid;
logic arready;
// Read Data Channel
data_t rdata;
resp_t rresp;
logic rvalid;
logic rready;
// Master Functions
task automatic drive_aw(input addr_t addr);
awaddr = addr;
awvalid = 1;
endtask
task automatic drive_w(input data_t data,
input strb_t strb = '1);
wdata = data;
wstrb = wstrb;
wvalid = 1;
endtask
task automatic drive_aw_idle();
awaddr = 'X;
awvalid = 0;
endtask
task automatic drive_w_idle();
wdata = 'X;
wstrb = 'X;
wvalid = 0;
endtask
task automatic drive_read(input addr_t addr);
araddr = addr;
arvalid = 1;
endtask
task automatic drive_read_idle();
araddr = 'X;
arvalid = 0;
endtask
// Slave Functions
task automatic drive_write_resp(input resp_t resp=OKAY);
bresp = resp;
bvalid = 1;
endtask
task automatic drive_write_resp_idle();
bresp = OKAY;
bvalid = 0;
endtask
task automatic drive_read_resp(input data_t data,
input resp_t resp=OKAY);
rdata = data;
rresp = resp;
rvalid = 1;
endtask
task automatic drive_read_resp_idle();
rdata = 'X;
rresp = OKAY;
rvalid = 0;
endtask
// Drive Functions (These are not particularly useful
// but they guarantee the modules using the package don't
// drive the interface with a continuous assignment)
task automatic drive_awaddr(input addr_t addr);
awaddr = addr;
endtask
task automatic drive_awvalid(input logic valid);
awvalid = valid;
endtask
task automatic drive_awready(input logic ready);
awready = ready;
endtask
task automatic drive_wdata(input data_t data);
wdata = data;
endtask
task automatic drive_wstrb(input strb_t strb);
wstrb = strb;
endtask
task automatic drive_wvalid(input logic valid);
wvalid = valid;
endtask
task automatic drive_wready(input logic ready);
wready = ready;
endtask
task automatic drive_bresp(input resp_t resp);
bresp = resp;
endtask
task automatic drive_bvalid(input logic valid);
bvalid = valid;
endtask
task automatic drive_bready(input logic ready);
bready = ready;
endtask
task automatic drive_araddr(input addr_t addr);
araddr = addr;
endtask
task automatic drive_arvalid(input logic valid);
arvalid = valid;
endtask
task automatic drive_arready(input logic ready);
arready = ready;
endtask
task automatic drive_rdata(input data_t data);
rdata = data;
endtask
task automatic drive_rresp(input resp_t resp);
rresp = resp;
endtask
task automatic drive_rvalid(input logic valid);
rvalid = valid;
endtask
task automatic drive_rready(input logic ready);
rready = ready;
endtask
// View from the master side
modport master (
input clk, rst,
output awaddr,awvalid,wdata,wstrb,wvalid,bready,araddr,arvalid,rready,
input awready,wready,bresp,bvalid,arready,rdata,rresp,rvalid,
import drive_aw,
import drive_w,
import drive_w_idle,
import drive_aw_idle,
import drive_read,
import drive_read_idle
);
// View from the slave side
modport slave (
input clk, rst,
input awaddr,awvalid,wdata,wstrb,wvalid,bready,araddr,arvalid,rready,
output awready,wready,bresp,bvalid,arready,rdata,rresp,rvalid,
import drive_write_resp,
import drive_write_resp_idle,
import drive_read_resp,
import drive_read_resp_idle
);
endinterface : AxiLiteIf
|