aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/axi4lite_sv/AxiLiteIf.sv
blob: beb095bc3dad4f5f3a50eff2d165ad49c8c8de73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
//
// Copyright 2020 Ettus Research, A National Instruments Brand
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
// Interface: AxiLiteIf
// Description:
//  AXI4-LITE is an ARM standard for lighter weight registers
//  axis based on the AXI4 protocol. For more information
//  on the spec see - https://developer.arm.com/docs/ihi0022/d
//
//  The interface contains methods for
//  (1) Writing an address
//  (2) Reading an address
//
// Parameters:
//  - DATA_WIDTH - Width of the data on AXI4-Lite bus
//  - ADDR_WIDTH - Width of the address on AXI4-Lite bus
//

//-----------------------------------------------------------------------------
// AXI4-Lite interface
//-----------------------------------------------------------------------------

interface AxiLiteIf #(
  int DATA_WIDTH = 64,
  int ADDR_WIDTH = 1
) (
  input logic clk,
  input logic rst = 1'b0
);

  import PkgAxiLite::*;

  localparam BYTES_PER_WORD = DATA_WIDTH/8;

  // local type defs
  typedef logic [DATA_WIDTH-1:0]     data_t;
  typedef logic [ADDR_WIDTH-1:0]     addr_t;
  typedef logic [BYTES_PER_WORD-1:0] strb_t;

  // Signals that make up an AxiLite interface
  // Write Address Channel
  addr_t awaddr;
  logic  awvalid;
  logic  awready;

  // Write Data Channel
  data_t wdata;
  strb_t wstrb = '1;
  logic  wvalid;
  logic  wready;

  // Write Response Channel
  resp_t bresp;
  logic  bvalid;
  logic  bready;

  // Read Address Channel
  addr_t araddr;
  logic  arvalid;
  logic  arready;

  // Read Data Channel
  data_t rdata;
  resp_t rresp;
  logic  rvalid;
  logic  rready;

  // Master Functions
  task automatic drive_aw(input addr_t addr);
    awaddr  = addr;
    awvalid = 1;
  endtask

  task automatic drive_w(input data_t data,
                         input strb_t strb = '1);
    wdata   = data;
    wstrb   = wstrb;
    wvalid  = 1;
  endtask

  task automatic drive_aw_idle();
    awaddr  = 'X;
    awvalid = 0;
  endtask

  task automatic drive_w_idle();
    wdata   = 'X;
    wstrb   = 'X;
    wvalid  = 0;
  endtask
  task automatic drive_read(input addr_t addr);
    araddr  = addr;
    arvalid = 1;
  endtask

  task automatic drive_read_idle();
    araddr  = 'X;
    arvalid = 0;
  endtask

  // Slave Functions
  task automatic drive_write_resp(input resp_t resp=OKAY);
    bresp  = resp;
    bvalid = 1;
  endtask

  task automatic drive_write_resp_idle();
    bresp  = OKAY;
    bvalid = 0;
  endtask

  task automatic drive_read_resp(input data_t data,
                                 input resp_t resp=OKAY);
    rdata  = data;
    rresp  = resp;
    rvalid = 1;
  endtask

  task automatic drive_read_resp_idle();
    rdata  = 'X;
    rresp  = OKAY;
    rvalid = 0;
  endtask

  // Drive Functions  (These are not particularly useful
  // but they guarantee the modules using the package don't
  // drive the interface with a continuous assignment)
  task automatic drive_awaddr(input  addr_t  addr);
    awaddr = addr;
  endtask
  task automatic drive_awvalid(input  logic valid);
    awvalid = valid;
  endtask
  task automatic drive_awready(input  logic  ready);
    awready = ready;
  endtask
  task automatic drive_wdata(input  data_t data);
    wdata = data;
  endtask
  task automatic drive_wstrb(input  strb_t strb);
    wstrb = strb;
  endtask
  task automatic drive_wvalid(input  logic valid);
    wvalid = valid;
  endtask
  task automatic drive_wready(input  logic  ready);
    wready = ready;
  endtask

  task automatic drive_bresp(input  resp_t resp);
    bresp = resp;
  endtask
  task automatic drive_bvalid(input  logic valid);
    bvalid = valid;
  endtask
  task automatic drive_bready(input  logic  ready);
    bready = ready;
  endtask

  task automatic drive_araddr(input  addr_t  addr);
    araddr = addr;
  endtask
  task automatic drive_arvalid(input  logic valid);
    arvalid = valid;
  endtask
  task automatic drive_arready(input  logic  ready);
    arready = ready;
  endtask

  task automatic drive_rdata(input  data_t data);
    rdata = data;
  endtask
  task automatic drive_rresp(input  resp_t resp);
    rresp = resp;
  endtask
  task automatic drive_rvalid(input  logic valid);
    rvalid = valid;
  endtask
  task automatic drive_rready(input  logic  ready);
    rready = ready;
  endtask

  // View from the master side
  modport master (
    input  clk, rst,
    output awaddr,awvalid,wdata,wstrb,wvalid,bready,araddr,arvalid,rready,
    input  awready,wready,bresp,bvalid,arready,rdata,rresp,rvalid,
    import drive_aw,
    import drive_w,
    import drive_w_idle,
    import drive_aw_idle,
    import drive_read,
    import drive_read_idle
  );

  // View from the slave side
  modport slave (
    input  clk, rst,
    input  awaddr,awvalid,wdata,wstrb,wvalid,bready,araddr,arvalid,rready,
    output awready,wready,bresp,bvalid,arready,rdata,rresp,rvalid,
    import drive_write_resp,
    import drive_write_resp_idle,
    import drive_read_resp,
    import drive_read_resp_idle
  );

endinterface : AxiLiteIf