1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
module axi_dma_master_tb;
wire aclk; // Global AXI clock
wire aresetn; // Global AXI reset, active low.
//
// AXI Write address channel
//
wire [0 : 0] m_axi_awid; // Write address ID. This signal is the identification tag for the write address signals
wire [31 : 0] m_axi_awaddr; // Write address. The write address gives the address of the first transfer in a write burst
wire [7 : 0] m_axi_awlen; // Burst length. The burst length gives the exact number of transfers in a burst.
wire [2 : 0] m_axi_awsize; // Burst size. This signal indicates the size of each transfer in the burst.
wire [1 : 0] m_axi_awburst; // Burst type. The burst type and the size information, determine how the address is calculated
wire [0 : 0] m_axi_awlock; // Lock type. Provides additional information about the atomic characteristics of the transfer.
wire [3 : 0] m_axi_awcache; // Memory type. This signal indicates how transactions are required to progress
wire [2 : 0] m_axi_awprot; // Protection type. This signal indicates the privilege and security level of the transaction
wire [3 : 0] m_axi_awqos; // Quality of Service, QoS. The QoS identifier sent for each write transaction
wire [3 : 0] m_axi_awregion; // Region identifier. Permits a single physical interface on a slave to be re-used.
wire [0 : 0] m_axi_awuser; // User signal. Optional User-defined signal in the write address channel.
wire m_axi_awvalid; // Write address valid. This signal indicates that the channel is signaling valid write addr
wire m_axi_awready; // Write address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Write data channel.
//
wire [63 : 0] m_axi_wdata; // Write data
wire [7 : 0] m_axi_wstrb; // Write strobes. This signal indicates which byte lanes hold valid data.
wire m_axi_wlast; // Write last. This signal indicates the last transfer in a write burst
wire [0 : 0] m_axi_wuser; // User signal. Optional User-defined signal in the write data channel.
wire m_axi_wvalid; // Write valid. This signal indicates that valid write data and strobes are available.
wire m_axi_wready; // Write ready. This signal indicates that the slave can accept the write data.
//
// AXI Write response channel signals
//
wire [0 : 0] m_axi_bid; // Response ID tag. This signal is the ID tag of the write response.
wire [1 : 0] m_axi_bresp; // Write response. This signal indicates the status of the write transaction.
wire [0 : 0] m_axi_buser; // User signal. Optional User-defined signal in the write response channel.
wire m_axi_bvalid; // Write response valid. This signal indicates that the channel is signaling a valid response
wire m_axi_bready; // Response ready. This signal indicates that the master can accept a write response
//
// AXI Read address channel
//
wire [0 : 0] m_axi_arid; // Read address ID. This signal is the identification tag for the read address group of signals
wire [31 : 0] m_axi_araddr; // Read address. The read address gives the address of the first transfer in a read burst
wire [7 : 0] m_axi_arlen; // Burst length. This signal indicates the exact number of transfers in a burst.
wire [2 : 0] m_axi_arsize; // Burst size. This signal indicates the size of each transfer in the burst.
wire [1 : 0] m_axi_arburst; // Burst type. The burst type and the size information determine how the address for each transfer
wire [0 : 0] m_axi_arlock; // Lock type. This signal provides additional information about the atomic characteristics
wire [3 : 0] m_axi_arcache; // Memory type. This signal indicates how transactions are required to progress
wire [2 : 0] m_axi_arprot; // Protection type. This signal indicates the privilege and security level of the transaction
wire [3 : 0] m_axi_arqos; // Quality of Service, QoS. QoS identifier sent for each read transaction.
wire [3 : 0] m_axi_arregion; // Region identifier. Permits a single physical interface on a slave to be re-used
wire [0 : 0] m_axi_aruser; // User signal. Optional User-defined signal in the read address channel.
wire m_axi_arvalid; // Read address valid. This signal indicates that the channel is signaling valid read addr
wire m_axi_arready; // Read address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Read data channel
//
wire [0 : 0] m_axi_rid; // Read ID tag. This signal is the identification tag for the read data group of signals
wire [63 : 0] m_axi_rdata; // Read data.
wire [1 : 0] m_axi_rresp; // Read response. This signal indicates the status of the read transfer
wire m_axi_rlast; // Read last. This signal indicates the last transfer in a read burst.
wire [0 : 0] m_axi_ruser; // User signal. Optional User-defined signal in the read data channel.
wire m_axi_rvalid; // Read valid. This signal indicates that the channel is signaling the required read data.
wire m_axi_rready; // Read ready. This signal indicates that the master can accept the read data and response
//
// DMA interface for Write transaction
//
wire [31:0] write_addr; // Byte address for start of write transaction (should be 64bit alligned)
wire [3:0] write_count; // Count of 64 words to write.
wire write_ctrl_valid;
wire write_ctrl_ready;
wire [63:0] write_data;
wire write_data_valid;
wire write_data_ready;
//
// DMA interface for Read
//
wire [31:0] read_addr; // Byte address for start of read transaction (should be 64bit alligned)
wire [3:0] read_count; // Count of 64 words to read.
wire read_ctrl_valid;
wire read_ctrl_ready;
wire [63:0] read_data;
wire read_data_valid;
wire read_data_ready;
axi_dma_master axi_dma_master_i1
(
.aclk(s_aclk), // input s_aclk
.aresetn(s_aresetn), // input s_aresetn
//
.s_axi_awid(s_axi_awid), // input [0 : 0] s_axi_awid
.s_axi_awaddr(s_axi_awaddr), // input [31 : 0] s_axi_awaddr
.s_axi_awlen(s_axi_awlen), // input [7 : 0] s_axi_awlen
.s_axi_awsize(s_axi_awsize), // input [2 : 0] s_axi_awsize
.s_axi_awburst(s_axi_awburst), // input [1 : 0] s_axi_awburst
.s_axi_awvalid(s_axi_awvalid), // input s_axi_awvalid
.s_axi_awready(s_axi_awready), // output s_axi_awready
//
.s_axi_wdata(s_axi_wdata), // input [63 : 0] s_axi_wdata
.s_axi_wstrb(s_axi_wstrb), // input [7 : 0] s_axi_wstrb
.s_axi_wlast(s_axi_wlast), // input s_axi_wlast
.s_axi_wvalid(s_axi_wvalid), // input s_axi_wvalid
.s_axi_wready(s_axi_wready), // output s_axi_wready
//
.s_axi_bid(s_axi_bid), // output [0 : 0] s_axi_bid
.s_axi_bresp(s_axi_bresp), // output [1 : 0] s_axi_bresp
.s_axi_bvalid(s_axi_bvalid), // output s_axi_bvalid
.s_axi_bready(s_axi_bready), // input s_axi_bready
//
.s_axi_arid(s_axi_arid), // input [0 : 0] s_axi_arid
.s_axi_araddr(s_axi_araddr), // input [31 : 0] s_axi_araddr
.s_axi_arlen(s_axi_arlen), // input [7 : 0] s_axi_arlen
.s_axi_arsize(s_axi_arsize), // input [2 : 0] s_axi_arsize
.s_axi_arburst(s_axi_arburst), // input [1 : 0] s_axi_arburst
.s_axi_arvalid(s_axi_arvalid), // input s_axi_arvalid
.s_axi_arready(s_axi_arready), // output s_axi_arready
//
.s_axi_rid(s_axi_rid), // output [0 : 0] s_axi_rid
.s_axi_rdata(s_axi_rdata), // output [63 : 0] s_axi_rdata
.s_axi_rresp(s_axi_rresp), // output [1 : 0] s_axi_rresp
.s_axi_rlast(s_axi_rlast), // output s_axi_rlast
.s_axi_rvalid(s_axi_rvalid), // output s_axi_rvalid
.s_axi_rready(s_axi_rready) // input s_axi_rready
);
axi4_bram_1kx64 axi4_bram_1kx64_i1
(
.s_aclk(s_aclk), // input s_aclk
.s_aresetn(s_aresetn), // input s_aresetn
.s_axi_awid(s_axi_awid), // input [0 : 0] s_axi_awid
.s_axi_awaddr(s_axi_awaddr), // input [31 : 0] s_axi_awaddr
.s_axi_awlen(s_axi_awlen), // input [7 : 0] s_axi_awlen
.s_axi_awsize(s_axi_awsize), // input [2 : 0] s_axi_awsize
.s_axi_awburst(s_axi_awburst), // input [1 : 0] s_axi_awburst
.s_axi_awvalid(s_axi_awvalid), // input s_axi_awvalid
.s_axi_awready(s_axi_awready), // output s_axi_awready
.s_axi_wdata(s_axi_wdata), // input [63 : 0] s_axi_wdata
.s_axi_wstrb(s_axi_wstrb), // input [7 : 0] s_axi_wstrb
.s_axi_wlast(s_axi_wlast), // input s_axi_wlast
.s_axi_wvalid(s_axi_wvalid), // input s_axi_wvalid
.s_axi_wready(s_axi_wready), // output s_axi_wready
.s_axi_bid(s_axi_bid), // output [0 : 0] s_axi_bid
.s_axi_bresp(s_axi_bresp), // output [1 : 0] s_axi_bresp
.s_axi_bvalid(s_axi_bvalid), // output s_axi_bvalid
.s_axi_bready(s_axi_bready), // input s_axi_bready
.s_axi_arid(s_axi_arid), // input [0 : 0] s_axi_arid
.s_axi_araddr(s_axi_araddr), // input [31 : 0] s_axi_araddr
.s_axi_arlen(s_axi_arlen), // input [7 : 0] s_axi_arlen
.s_axi_arsize(s_axi_arsize), // input [2 : 0] s_axi_arsize
.s_axi_arburst(s_axi_arburst), // input [1 : 0] s_axi_arburst
.s_axi_arvalid(s_axi_arvalid), // input s_axi_arvalid
.s_axi_arready(s_axi_arready), // output s_axi_arready
.s_axi_rid(s_axi_rid), // output [0 : 0] s_axi_rid
.s_axi_rdata(s_axi_rdata), // output [63 : 0] s_axi_rdata
.s_axi_rresp(s_axi_rresp), // output [1 : 0] s_axi_rresp
.s_axi_rlast(s_axi_rlast), // output s_axi_rlast
.s_axi_rvalid(s_axi_rvalid), // output s_axi_rvalid
.s_axi_rready(s_axi_rready) // input s_axi_rready
);
endmodule // axi_dma_master_tb
|