1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
|
//
// Copyright 2015 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: LGPL-3.0-or-later
//
//
// There are various obligations put on this code not present in regular BRAM based FIFO's
//
// 1) Bursts are way more efficient, use local small FIFO's to interact with DRAM
// 2) Never cross a 4KByte address boundary within a single transaction, this is an AXI4 rule.
// 3) 2^SIZE must be greater than 4KB so that the 4KByte page protection also deals with FIFO wrap corner case.
//
module axi_dma_fifo
#(
parameter SIMULATION = 0, // Shorten flush counter for simulation
parameter DEFAULT_BASE = 30'h00000000,
parameter DEFAULT_MASK = 30'hFF000000,
parameter DEFAULT_TIMEOUT = 12'd256,
parameter BUS_CLK_RATE = 32'd166666666, // Frequency in Hz of bus_clk
parameter SR_BASE = 0, // Base address for settings registers
parameter EXT_BIST = 0, // If 1 then instantiate extended BIST with dynamic SID, delays and BW counters
parameter MAX_PKT_LEN = 12 // Log2 of maximum packet length
) (
input bus_clk,
input bus_reset,
input dram_clk,
input dram_reset,
//
// AXI Write address channel
//
output [0 : 0] m_axi_awid, // Write address ID. This signal is the identification tag for the write address signals
output [31 : 0] m_axi_awaddr, // Write address. The write address gives the address of the first transfer in a write burst
output [7 : 0] m_axi_awlen, // Burst length. The burst length gives the exact number of transfers in a burst.
output [2 : 0] m_axi_awsize, // Burst size. This signal indicates the size of each transfer in the burst.
output [1 : 0] m_axi_awburst, // Burst type. The burst type and the size information, determine how the address is calculated
output [0 : 0] m_axi_awlock, // Lock type. Provides additional information about the atomic characteristics of the transfer.
output [3 : 0] m_axi_awcache, // Memory type. This signal indicates how transactions are required to progress
output [2 : 0] m_axi_awprot, // Protection type. This signal indicates the privilege and security level of the transaction
output [3 : 0] m_axi_awqos, // Quality of Service, QoS. The QoS identifier sent for each write transaction
output [3 : 0] m_axi_awregion, // Region identifier. Permits a single physical interface on a slave to be re-used.
output [0 : 0] m_axi_awuser, // User signal. Optional User-defined signal in the write address channel.
output m_axi_awvalid, // Write address valid. This signal indicates that the channel is signaling valid write addr
input m_axi_awready, // Write address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Write data channel.
//
output [63 : 0] m_axi_wdata, // Write data
output [7 : 0] m_axi_wstrb, // Write strobes. This signal indicates which byte lanes hold valid data.
output m_axi_wlast, // Write last. This signal indicates the last transfer in a write burst
output [0 : 0] m_axi_wuser, // User signal. Optional User-defined signal in the write data channel.
output m_axi_wvalid, // Write valid. This signal indicates that valid write data and strobes are available.
input m_axi_wready, // Write ready. This signal indicates that the slave can accept the write data.
//
// AXI Write response channel signals
//
input [0 : 0] m_axi_bid, // Response ID tag. This signal is the ID tag of the write response.
input [1 : 0] m_axi_bresp, // Write response. This signal indicates the status of the write transaction.
input [0 : 0] m_axi_buser, // User signal. Optional User-defined signal in the write response channel.
input m_axi_bvalid, // Write response valid. This signal indicates that the channel is signaling a valid response
output m_axi_bready, // Response ready. This signal indicates that the master can accept a write response
//
// AXI Read address channel
//
output [0 : 0] m_axi_arid, // Read address ID. This signal is the identification tag for the read address group of signals
output [31 : 0] m_axi_araddr, // Read address. The read address gives the address of the first transfer in a read burst
output [7 : 0] m_axi_arlen, // Burst length. This signal indicates the exact number of transfers in a burst.
output [2 : 0] m_axi_arsize, // Burst size. This signal indicates the size of each transfer in the burst.
output [1 : 0] m_axi_arburst, // Burst type. The burst type and the size information determine how the address for each transfer
output [0 : 0] m_axi_arlock, // Lock type. This signal provides additional information about the atomic characteristics
output [3 : 0] m_axi_arcache, // Memory type. This signal indicates how transactions are required to progress
output [2 : 0] m_axi_arprot, // Protection type. This signal indicates the privilege and security level of the transaction
output [3 : 0] m_axi_arqos, // Quality of Service, QoS. QoS identifier sent for each read transaction.
output [3 : 0] m_axi_arregion, // Region identifier. Permits a single physical interface on a slave to be re-used
output [0 : 0] m_axi_aruser, // User signal. Optional User-defined signal in the read address channel.
output m_axi_arvalid, // Read address valid. This signal indicates that the channel is signaling valid read addr
input m_axi_arready, // Read address ready. This signal indicates that the slave is ready to accept an address
//
// AXI Read data channel
//
input [0 : 0] m_axi_rid, // Read ID tag. This signal is the identification tag for the read data group of signals
input [63 : 0] m_axi_rdata, // Read data.
input [1 : 0] m_axi_rresp, // Read response. This signal indicates the status of the read transfer
input m_axi_rlast, // Read last. This signal indicates the last transfer in a read burst.
input [0 : 0] m_axi_ruser, // User signal. Optional User-defined signal in the read data channel.
input m_axi_rvalid, // Read valid. This signal indicates that the channel is signaling the required read data.
output m_axi_rready, // Read ready. This signal indicates that the master can accept the read data and response
//
// CHDR friendly AXI stream input
//
input [63:0] i_tdata,
input i_tlast,
input i_tvalid,
output i_tready,
//
// CHDR friendly AXI Stream output
//
output [63:0] o_tdata,
output o_tlast,
output o_tvalid,
input o_tready,
//
// Settings and Readback
//
input set_stb,
input [7:0] set_addr,
input [31:0] set_data,
output reg [31:0] rb_data,
//
// Debug Bus
//
output [197:0] debug
);
//
// We are only solving for width 64bits here, since it's our standard CHDR quanta
//
localparam DWIDTH = 64;
localparam AWIDTH = 30; //Can address 1GiB of memory
//
// Settings and Readback
//
wire [2:0] rb_addr;
wire clear_bclk, flush_bclk;
wire supress_enable_bclk;
wire [15:0] supress_threshold_bclk;
wire [11:0] timeout_bclk;
wire [AWIDTH-1:0] fifo_base_addr_bclk;
wire [AWIDTH-1:0] fifo_addr_mask_bclk;
wire [0:0] ctrl_reserved;
wire [31:0] rb_fifo_status;
wire [3:0] rb_bist_status;
wire [95:0] rb_bist_bw_ratio;
reg [31:0] out_pkt_count = 32'd0;
localparam RB_FIFO_STATUS = 3'd0;
localparam RB_BIST_STATUS = 3'd1;
localparam RB_BIST_XFER_CNT = 3'd2;
localparam RB_BIST_CYC_CNT = 3'd3;
localparam RB_BUS_CLK_RATE = 3'd4;
localparam RB_OUT_PKT_CNT = 3'd5;
// SETTING: Readback Address Register
// Fields:
// - [2:0] : Address for readback register
// - 0 = RB_FIFO_STATUS
// - 1 = RB_BIST_STATUS
// - 2 = RB_BIST_XFER_CNT
// - 3 = RB_BIST_CYC_CNT
// - 4 = RB_BUS_CLK_RATE
// - rest reserved
setting_reg #(.my_addr(SR_BASE + 0), .awidth(8), .width(3), .at_reset(3'b000)) sr_readback
(.clk(bus_clk), .rst(bus_reset),
.strobe(set_stb), .addr(set_addr), .in(set_data),
.out(rb_addr), .changed());
// SETTING: FIFO Control Register
// Fields:
// - [0] : Clear FIFO and discard stored data
// - [1] : Enable read suppression to prioritize writes
// - [2] : Flush all packets from the FIFO
// - [3] : Reserved
// - [15:4] : Timeout (in memory clock beats) for issuing smaller than optimal bursts
// - [31:16] : Read suppression threshold in number of words
setting_reg #(.my_addr(SR_BASE + 1), .awidth(8), .width(32), .at_reset({16'h0, DEFAULT_TIMEOUT[11:0], 1'b0, 1'b0, 1'b0, 1'b1})) sr_fifo_ctrl
(.clk(bus_clk), .rst(bus_reset),
.strobe(set_stb), .addr(set_addr), .in(set_data),
.out({supress_threshold_bclk, timeout_bclk, ctrl_reserved, flush_bclk, supress_enable_bclk, clear_bclk}), .changed());
// SETTING: Base Address for FIFO in memory space
// Fields:
// - [29:0] : Base address
setting_reg #(.my_addr(SR_BASE + 2), .awidth(8), .width(AWIDTH), .at_reset(DEFAULT_BASE)) sr_fifo_base_addr
(.clk(bus_clk), .rst(bus_reset),
.strobe(set_stb), .addr(set_addr), .in(set_data),
.out(fifo_base_addr_bclk), .changed());
// SETTING: Address Mask for FIFO in memory space. The mask is ANDed with the base address to define
// a unique address for this FIFO. A zero in the mask signifies that the DRAM FIFO can
// utilize the address bit internally for maintaining FIFO data
// Fields:
// - [29:0] : Address mask
setting_reg #(.my_addr(SR_BASE + 3), .awidth(8), .width(AWIDTH), .at_reset(DEFAULT_MASK)) sr_fifo_addr_mask
(.clk(bus_clk), .rst(bus_reset),
.strobe(set_stb), .addr(set_addr), .in(set_data),
.out(fifo_addr_mask_bclk), .changed());
always @(*) begin
case(rb_addr)
RB_FIFO_STATUS: rb_data = rb_fifo_status;
RB_BIST_STATUS: rb_data = {(EXT_BIST?1'b1:1'b0), 27'h0, rb_bist_status};
RB_BIST_XFER_CNT: rb_data = rb_bist_bw_ratio[79:48];
RB_BIST_CYC_CNT: rb_data = rb_bist_bw_ratio[31:0];
RB_BUS_CLK_RATE: rb_data = BUS_CLK_RATE;
RB_OUT_PKT_CNT: rb_data = out_pkt_count;
default: rb_data = 32'h0;
endcase
end
//
// Synchronize settings register values to dram_clk
//
wire clear;
synchronizer #(.INITIAL_VAL(1'b1)) clear_sync_inst (.clk(dram_clk), .rst(1'b0), .in(clear_bclk), .out(clear));
wire set_suppress_en;
wire [15:0] set_supress_threshold;
wire [11:0] set_timeout;
wire [AWIDTH-1:0] set_fifo_base_addr, set_fifo_addr_mask, set_fifo_addr_mask_bar;
wire [(72-AWIDTH-29-1):0] set_sync_discard0;
wire [(72-(2*AWIDTH)-1):0] set_sync_discard1;
fifo_short_2clk set_sync_fifo0(
.rst(bus_reset),
.wr_clk(bus_clk), .din({{(72-AWIDTH-29){1'b0}}, timeout_bclk, supress_enable_bclk, supress_threshold_bclk, fifo_base_addr_bclk}),
.wr_en(1'b1), .full(), .wr_data_count(),
.rd_clk(dram_clk), .dout({set_sync_discard0, set_timeout, set_suppress_en, set_supress_threshold, set_fifo_base_addr}),
.rd_en(1'b1), .empty(), .rd_data_count()
);
fifo_short_2clk set_sync_fifo1(
.rst(bus_reset),
.wr_clk(bus_clk), .din({{(72-(2*AWIDTH)){1'b0}}, ~fifo_addr_mask_bclk, fifo_addr_mask_bclk}),
.wr_en(1'b1), .full(), .wr_data_count(),
.rd_clk(dram_clk), .dout({set_sync_discard1, set_fifo_addr_mask_bar, set_fifo_addr_mask}),
.rd_en(1'b1), .empty(), .rd_data_count()
);
//
// Input side declarations
//
localparam [2:0] INPUT_IDLE = 0;
localparam [2:0] INPUT1 = 1;
localparam [2:0] INPUT2 = 2;
localparam [2:0] INPUT3 = 3;
localparam [2:0] INPUT4 = 4;
localparam [2:0] INPUT5 = 5;
localparam [2:0] INPUT6 = 6;
reg [2:0] input_state;
reg input_timeout_triggered;
reg input_timeout_reset;
reg [8:0] input_timeout_count;
reg [AWIDTH-1:0] write_addr;
reg write_ctrl_valid;
wire write_ctrl_ready;
reg [7:0] write_count = 8'd0;
reg [8:0] write_count_plus_one = 9'd1; // Maintain a +1 version to break critical timing paths
reg update_write;
//
// Output side declarations
//
localparam [2:0] OUTPUT_IDLE = 0;
localparam [2:0] OUTPUT1 = 1;
localparam [2:0] OUTPUT2 = 2;
localparam [2:0] OUTPUT3 = 3;
localparam [2:0] OUTPUT4 = 4;
localparam [2:0] OUTPUT5 = 5;
localparam [2:0] OUTPUT6 = 6;
reg [2:0] output_state;
reg output_timeout_triggered;
reg output_timeout_reset;
reg [8:0] output_timeout_count;
reg [AWIDTH-1:0] read_addr;
reg read_ctrl_valid;
wire read_ctrl_ready;
reg [7:0] read_count = 8'd0;
reg [8:0] read_count_plus_one = 9'd1; // Maintain a +1 version to break critical timing paths
reg update_read;
// Track main FIFO active size.
reg [AWIDTH-3:0] space, occupied, occupied_minus_one; // Maintain a -1 version to break critical timing paths
reg [AWIDTH-3:0] input_page_boundry, output_page_boundry; // Cache in a register to break critical timing paths
// Assign FIFO status bits
wire [71:0] status_out_bclk;
fifo_short_2clk status_fifo_2clk(
.rst(dram_reset),
.wr_clk(dram_clk), .din({{(72-(AWIDTH-2)){1'b0}}, occupied}),
.wr_en(1'b1), .full(), .wr_data_count(),
.rd_clk(bus_clk), .dout(status_out_bclk),
.rd_en(1'b1), .empty(), .rd_data_count()
);
assign rb_fifo_status[31] = 1'b1; //DRAM FIFO signature (validates existence of DRAM FIFO)
assign rb_fifo_status[30:27] = {o_tvalid, o_tready, i_tvalid, i_tready}; //Ready valid flags
assign rb_fifo_status[26:0] = status_out_bclk[26:0]; //FIFO fullness count in 64bit words (max 27 bits = 1GiB)
///////////////////////////////////////////////////////////////////////////////
// Inline BIST for production testing
//
wire i_tready_int;
wire [DWIDTH-1:0] i_tdata_fifo;
wire i_tvalid_fifo, i_tready_fifo, i_tlast_fifo;
wire [DWIDTH-1:0] i_tdata_bist;
wire i_tvalid_bist, i_tready_bist, i_tlast_bist;
wire [DWIDTH-1:0] o_tdata_int;
wire o_tvalid_int, o_tready_int, o_tlast_int;
wire [DWIDTH-1:0] o_tdata_fifo;
wire o_tvalid_fifo, o_tready_fifo, o_tlast_fifo;
wire [DWIDTH-1:0] o_tdata_bist;
wire o_tvalid_bist, o_tready_bist, o_tlast_bist;
wire [DWIDTH-1:0] o_tdata_gate;
wire o_tvalid_gate, o_tready_gate, o_tlast_gate;
axi_mux4 #(.PRIO(1), .WIDTH(DWIDTH), .BUFFER(1)) axi_mux (
.clk(bus_clk), .reset(bus_reset), .clear(clear_bclk),
.i0_tdata(i_tdata), .i0_tlast(i_tlast), .i0_tvalid(i_tvalid), .i0_tready(i_tready_int),
.i1_tdata(i_tdata_bist), .i1_tlast(i_tlast_bist), .i1_tvalid(i_tvalid_bist), .i1_tready(i_tready_bist),
.i2_tdata({DWIDTH{1'b0}}), .i2_tlast(1'b0), .i2_tvalid(1'b0), .i2_tready(),
.i3_tdata({DWIDTH{1'b0}}), .i3_tlast(1'b0), .i3_tvalid(1'b0), .i3_tready(),
.o_tdata(i_tdata_fifo), .o_tlast(i_tlast_fifo), .o_tvalid(i_tvalid_fifo), .o_tready(i_tready_fifo)
);
assign i_tready = i_tready_int & (~clear_bclk);
wire bist_running, bist_done;
wire [1:0] bist_error;
axi_chdr_test_pattern #(
.DELAY_MODE(EXT_BIST ? "DYNAMIC" : "STATIC"),
.SID_MODE(EXT_BIST ? "DYNAMIC" : "STATIC"),
.BW_COUNTER(EXT_BIST ? 1 : 0),
.SR_BASE(SR_BASE + 4)
) axi_chdr_test_pattern_i (
.clk(bus_clk), .reset(bus_reset | clear_bclk),
.i_tdata(i_tdata_bist), .i_tlast(i_tlast_bist), .i_tvalid(i_tvalid_bist), .i_tready(i_tready_bist),
.o_tdata(o_tdata_bist), .o_tlast(o_tlast_bist), .o_tvalid(o_tvalid_bist), .o_tready(o_tready_bist),
.set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),
.running(bist_running), .done(bist_done), .error(bist_error), .status_vtr(), .bw_ratio(rb_bist_bw_ratio)
);
assign rb_bist_status = {bist_error, bist_done, bist_running};
axi_demux4 #(.ACTIVE_CHAN(4'b0011), .WIDTH(DWIDTH)) axi_demux(
.clk(bus_clk), .reset(bus_reset), .clear(clear_bclk),
.header(), .dest({1'b0, bist_running}),
.i_tdata(o_tdata_fifo), .i_tlast(o_tlast_fifo), .i_tvalid(o_tvalid_fifo), .i_tready(o_tready_fifo),
.o0_tdata(o_tdata_gate), .o0_tlast(o_tlast_gate), .o0_tvalid(o_tvalid_gate), .o0_tready(o_tready_gate),
.o1_tdata(o_tdata_bist), .o1_tlast(o_tlast_bist), .o1_tvalid(o_tvalid_bist), .o1_tready(o_tready_bist),
.o2_tdata(), .o2_tlast(), .o2_tvalid(), .o2_tready(1'b0),
.o3_tdata(), .o3_tlast(), .o3_tvalid(), .o3_tready(1'b0)
);
//Insert package gate before output to absorb any intra-packet bubble cycles
axi_packet_gate #(.WIDTH(DWIDTH), .SIZE(MAX_PKT_LEN)) out_pkt_gate (
.clk(bus_clk), .reset(bus_reset), .clear(clear_bclk),
.i_tdata(o_tdata_gate), .i_tlast(o_tlast_gate), .i_tvalid(o_tvalid_gate), .i_tready(o_tready_gate),
.i_terror(1'b0),
.o_tdata(o_tdata_int), .o_tlast(o_tlast_int), .o_tvalid(o_tvalid_int), .o_tready(o_tready_int)
);
axis_packet_flush #(
.WIDTH(DWIDTH), .FLUSH_PARTIAL_PKTS(0), .TIMEOUT_W(1), .PIPELINE("NONE")
) flusher_i (
.clk(bus_clk), .reset(bus_reset),
.enable(clear_bclk | flush_bclk), .timeout(1'b0), .flushing(), .done(),
.s_axis_tdata(o_tdata_int), .s_axis_tlast(o_tlast_int),
.s_axis_tvalid(o_tvalid_int), .s_axis_tready(o_tready_int),
.m_axis_tdata(o_tdata), .m_axis_tlast(o_tlast),
.m_axis_tvalid(o_tvalid), .m_axis_tready(o_tready)
);
always @(posedge bus_clk) begin
if (bus_reset) begin
out_pkt_count <= 32'd0;
end else if (o_tlast_int & o_tvalid_int & o_tready_int) begin
out_pkt_count <= out_pkt_count + 32'd1;
end
end
//
// Buffer input in FIFO's. Embeded tlast signal using ESCape code.
//
wire [DWIDTH-1:0] i_tdata_i0;
wire i_tvalid_i0, i_tready_i0, i_tlast_i0;
wire [DWIDTH-1:0] i_tdata_i1;
wire i_tvalid_i1, i_tready_i1, i_tlast_i1;
wire [DWIDTH-1:0] i_tdata_i2;
wire i_tvalid_i2, i_tready_i2;
wire [DWIDTH-1:0] i_tdata_i3;
wire i_tvalid_i3, i_tready_i3;
wire [DWIDTH-1:0] i_tdata_input;
wire i_tvalid_input, i_tready_input;
wire [15:0] space_input, occupied_input;
reg [15:0] space_input_reg;
reg supress_reads;
///////////////////////////////////////////////////////////////////////////////
wire write_in, read_in, empty_in, full_in;
assign i_tready_fifo = ~full_in;
assign write_in = i_tvalid_fifo & i_tready_fifo;
assign i_tvalid_i0 = ~empty_in;
assign read_in = i_tvalid_i0 & i_tready_i0;
wire [6:0] discard_i0;
fifo_short_2clk fifo_short_2clk_i0 (
.rst(bus_reset),
.wr_clk(bus_clk),
.din({7'h0,i_tlast_fifo,i_tdata_fifo}), // input [71 : 0] din
.wr_en(write_in), // input wr_en
.full(full_in), // output full
.wr_data_count(), // output [9 : 0] wr_data_count
.rd_clk(dram_clk), // input rd_clk
.dout({discard_i0,i_tlast_i0,i_tdata_i0}), // output [71 : 0] dout
.rd_en(read_in), // input rd_en
.empty(empty_in), // output empty
.rd_data_count() // output [9 : 0] rd_data_count
);
axi_fifo_flop2 #(.WIDTH(DWIDTH+1)) input_pipe_i0
(
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata({i_tlast_i0, i_tdata_i0}),
.i_tvalid(i_tvalid_i0),
.i_tready(i_tready_i0),
//
.o_tdata({i_tlast_i1, i_tdata_i1}),
.o_tvalid(i_tvalid_i1),
.o_tready(i_tready_i1)
);
axi_embed_tlast #(.WIDTH(DWIDTH), .ADD_CHECKSUM(0)) axi_embed_tlast_i (
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(i_tdata_i1),
.i_tlast(i_tlast_i1),
.i_tvalid(i_tvalid_i1),
.i_tready(i_tready_i1),
//
.o_tdata(i_tdata_i2),
.o_tvalid(i_tvalid_i2),
.o_tready(i_tready_i2)
);
axi_fifo_flop2 #(.WIDTH(DWIDTH)) input_pipe_i1 (
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(i_tdata_i2),
.i_tvalid(i_tvalid_i2),
.i_tready(i_tready_i2),
//
.o_tdata(i_tdata_i3),
.o_tvalid(i_tvalid_i3),
.o_tready(i_tready_i3)
);
axi_fifo #(.WIDTH(DWIDTH),.SIZE(10)) fifo_i1 (
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(i_tdata_i3),
.i_tvalid(i_tvalid_i3),
.i_tready(i_tready_i3),
//
.o_tdata(i_tdata_input),
.o_tvalid(i_tvalid_input),
.o_tready(i_tready_input),
//
.space(space_input),
.occupied(occupied_input)
);
//
// Monitor occupied_input to deduce when DRAM FIFO is running short of bandwidth and there is a danger of backpressure
// passing upstream of the DRAM FIFO.
// In this situation supress read requests to the DRAM FIFO so that more bandwidth is available to writes.
//
always @(posedge dram_clk)
begin
space_input_reg <= space_input;
if ((space_input_reg < set_supress_threshold[15:0]) && set_suppress_en)
supress_reads <= 1'b1;
else
supress_reads <= 1'b0;
end
//
// Buffer output in 32entry FIFO's. Extract embeded tlast signal.
//
wire [DWIDTH-1:0] o_tdata_output;
wire o_tvalid_output, o_tready_output;
wire [15:0] space_output, occupied_output;
wire [DWIDTH-1:0] o_tdata_i0;
wire o_tvalid_i0, o_tready_i0;
wire [DWIDTH-1:0] o_tdata_i1;
wire o_tvalid_i1, o_tready_i1;
wire [DWIDTH-1:0] o_tdata_i2;
wire o_tvalid_i2, o_tready_i2;
wire [DWIDTH-1:0] o_tdata_i3;
wire o_tvalid_i3, o_tready_i3;
wire [DWIDTH-1:0] o_tdata_i4;
wire o_tvalid_i4, o_tready_i4, o_tlast_i4;
wire [DWIDTH-1:0] o_tdata_i5;
wire o_tvalid_i5, o_tready_i5, o_tlast_i5;
wire checksum_error;
axi_fifo #(.WIDTH(DWIDTH),.SIZE(10)) fifo_i2 (
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(o_tdata_output),
.i_tvalid(o_tvalid_output),
.i_tready(o_tready_output),
//
.o_tdata(o_tdata_i0),
.o_tvalid(o_tvalid_i0),
.o_tready(o_tready_i0),
//
.space(space_output),
.occupied(occupied_output)
);
// Place FLops straight after SRAM read access for timing.
axi_fifo_flop2 #(.WIDTH(DWIDTH)) output_pipe_i0
(
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(o_tdata_i0),
.i_tvalid(o_tvalid_i0),
.i_tready(o_tready_i0),
//
.o_tdata(o_tdata_i1),
.o_tvalid(o_tvalid_i1),
.o_tready(o_tready_i1 && ~supress_reads)
);
// Read suppression logic
// The CL part of this exists between these
// axi_flops
axi_fifo_flop2 #(.WIDTH(DWIDTH)) output_pipe_i1
(
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(o_tdata_i1),
.i_tvalid(o_tvalid_i1 && ~supress_reads),
.i_tready(o_tready_i1),
//
.o_tdata(o_tdata_i2),
.o_tvalid(o_tvalid_i2),
.o_tready(o_tready_i2)
);
// Pipeline flop before tlast extraction logic
axi_fifo_flop2 #(.WIDTH(DWIDTH)) output_pipe_i2
(
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(o_tdata_i2),
.i_tvalid(o_tvalid_i2),
.i_tready(o_tready_i2),
//
.o_tdata(o_tdata_i3),
.o_tvalid(o_tvalid_i3),
.o_tready(o_tready_i3)
);
axi_extract_tlast #(.WIDTH(DWIDTH), .VALIDATE_CHECKSUM(0)) axi_extract_tlast_i (
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata(o_tdata_i3),
.i_tvalid(o_tvalid_i3),
.i_tready(o_tready_i3),
//
.o_tdata(o_tdata_i4),
.o_tlast(o_tlast_i4),
.o_tvalid(o_tvalid_i4),
.o_tready(o_tready_i4),
//
.checksum_error()
);
// Pipeline flop after tlast extraction logic
axi_fifo_flop2 #(.WIDTH(DWIDTH+1)) output_pipe_i3
(
.clk(dram_clk),
.reset(dram_reset),
.clear(clear),
//
.i_tdata({o_tlast_i4,o_tdata_i4}),
.i_tvalid(o_tvalid_i4),
.i_tready(o_tready_i4),
//
.o_tdata({o_tlast_i5,o_tdata_i5}),
.o_tvalid(o_tvalid_i5),
.o_tready(o_tready_i5)
);
wire write_out, read_out, empty_out, full_out;
assign o_tready_i5 = ~full_out;
assign write_out = o_tvalid_i5 & o_tready_i5;
assign o_tvalid_fifo = ~empty_out;
assign read_out = o_tvalid_fifo & o_tready_fifo;
wire [6:0] discard_i1;
fifo_short_2clk fifo_short_2clk_i1 (
.rst(dram_reset),
.wr_clk(dram_clk),
.din({7'h0,o_tlast_i5,o_tdata_i5}), // input [71 : 0] din
.wr_en(write_out), // input wr_en
.full(full_out), // output full
.wr_data_count(), // output [9 : 0] wr_data_count
.rd_clk(bus_clk), // input rd_clk
.dout({discard_i1,o_tlast_fifo,o_tdata_fifo}), // output [71 : 0] dout
.rd_en(read_out), // input rd_en
.empty(empty_out), // output empty
.rd_data_count() // output [9 : 0] rd_data_count
);
//
// Simple input timeout counter for now.
// Timeout count only increments when there is some data waiting to be written.
//
always @(posedge dram_clk)
if (dram_reset | clear) begin
input_timeout_count <= 9'd0;
input_timeout_triggered <= 1'b0;
end else if (input_timeout_reset) begin
input_timeout_count <= 9'd0;
input_timeout_triggered <= 1'b0;
end else if (input_timeout_count == set_timeout[8:0]) begin
input_timeout_triggered <= 1'b1;
end else if (input_state == INPUT_IDLE) begin
input_timeout_count <= input_timeout_count + ((occupied_input != 16'd0) ? 9'd1 : 9'd0);
end
//
// Wait for 16 entries in input FIFO to trigger DRAM write burst.
// Timeout can also trigger burst so fragments of data are not left to rot in the input FIFO.
// Also if enough data is present in the input FIFO to complete a burst upto the edge
// of a 4KByte page then immediately start the burst.
//
always @(posedge dram_clk)
if (dram_reset | clear) begin
input_state <= INPUT_IDLE;
write_addr <= set_fifo_base_addr & set_fifo_addr_mask;
input_timeout_reset <= 1'b0;
write_ctrl_valid <= 1'b0;
write_count <= 8'd0;
write_count_plus_one <= 9'd1;
update_write <= 1'b0;
end else
case (input_state)
//
// INPUT_IDLE.
// To start an input transfer to DRAM need:
// 1) Space in the DRAM FIFO
// and either
// 2) 256 entrys in the input FIFO
// or
// 3) Timeout waiting for more data.
//
INPUT_IDLE: begin
write_ctrl_valid <= 1'b0;
update_write <= 1'b0;
if (space[AWIDTH-3:8] != 'd0) begin // (space > 255): Space in the DRAM FIFO
if (occupied_input[15:8] != 'd0) begin // (occupied_input > 255): 256 or more entries in input FIFO
input_state <= INPUT1;
input_timeout_reset <= 1'b1;
// Calculate number of entries remaining until next 4KB page boundry is crossed minus 1.
// Note, units of calculation are 64bit wide words. Address is always 64bit alligned.
input_page_boundry <= {write_addr[AWIDTH-1:12],9'h1ff} - write_addr[AWIDTH-1:3];
end else if (input_timeout_triggered) begin // input FIFO timeout waiting for new data.
input_state <= INPUT2;
input_timeout_reset <= 1'b1;
// Calculate number of entries remaining until next 4KB page boundry is crossed minus 1.
// Note, units of calculation are 64bit wide words. Address is always 64bit alligned.
input_page_boundry <= {write_addr[AWIDTH-1:12],9'h1ff} - write_addr[AWIDTH-1:3];
end else begin
input_timeout_reset <= 1'b0;
input_state <= INPUT_IDLE;
end
end else begin
input_timeout_reset <= 1'b0;
input_state <= INPUT_IDLE;
end
end
//
// INPUT1.
// Caused by input FIFO reaching 256 entries.
// Request write burst of lesser of:
// 1) Entrys until page boundry crossed
// 2) 256.
//
INPUT1: begin
// Replicated write logic to break a read timing critical path for write_count
write_count <= (input_page_boundry[11:8] == 4'd0) ? input_page_boundry[7:0] : 8'd255;
write_count_plus_one <= (input_page_boundry[11:8] == 4'd0) ? ({1'b0,input_page_boundry[7:0]} + 9'd1) : 9'd256;
write_ctrl_valid <= 1'b1;
if (write_ctrl_ready)
input_state <= INPUT4; // Pre-emptive ACK
else
input_state <= INPUT3; // Wait for ACK
end
//
// INPUT2.
// Caused by timeout of input FIFO. (occupied_input was implicitly less than 256 last cycle)
// Request write burst of lesser of:
// 1) Entries until page boundry crossed
// 2) Entries in input FIFO
//
INPUT2: begin
// Replicated write logic to break a read timing critical path for write_count
write_count <= (input_page_boundry < ({3'h0,occupied_input[8:0]} - 12'd1)) ? input_page_boundry[7:0] : (occupied_input[8:0] - 9'd1);
write_count_plus_one <= (input_page_boundry < ({3'h0,occupied_input[8:0]} - 12'd1)) ? ({1'b0,input_page_boundry[7:0]} + 9'd1) : occupied_input[8:0];
write_ctrl_valid <= 1'b1;
if (write_ctrl_ready)
input_state <= INPUT4; // Pre-emptive ACK
else
input_state <= INPUT3; // Wait for ACK
end
//
// INPUT3.
// Wait in this state for AXI4_DMA engine to accept transaction.
//
INPUT3: begin
if (write_ctrl_ready) begin
write_ctrl_valid <= 1'b0;
input_state <= INPUT4; // ACK
end else begin
write_ctrl_valid <= 1'b1;
input_state <= INPUT3; // Wait for ACK
end
end
//
// INPUT4.
// Wait here until write_ctrl_ready_deasserts.
// This is important as the next time it asserts we know that a write response was receieved.
INPUT4: begin
write_ctrl_valid <= 1'b0;
if (!write_ctrl_ready)
input_state <= INPUT5; // Move on
else
input_state <= INPUT4; // Wait for deassert
end
//
// INPUT5.
// Transaction has been accepted by AXI4 DMA engine. Now we wait for the re-assertion
// of write_ctrl_ready which signals that the AXI4 DMA engine has receieved a response
// for the whole write transaction and we assume that this means it is commited to DRAM.
// We are now free to update write_addr pointer and go back to idle state.
//
INPUT5: begin
write_ctrl_valid <= 1'b0;
if (write_ctrl_ready) begin
write_addr <= ((write_addr + (write_count_plus_one << 3)) & set_fifo_addr_mask_bar) | (write_addr & set_fifo_addr_mask);
input_state <= INPUT6;
update_write <= 1'b1;
end else begin
input_state <= INPUT5;
end
end
//
// INPUT6:
// Need to let space update before looking if there's more to do.
//
INPUT6: begin
input_state <= INPUT_IDLE;
update_write <= 1'b0;
end
default:
input_state <= INPUT_IDLE;
endcase // case(input_state)
//
// Simple output timeout counter for now
//
always @(posedge dram_clk)
if (dram_reset | clear) begin
output_timeout_count <= 9'd0;
output_timeout_triggered <= 1'b0;
end else if (output_timeout_reset) begin
output_timeout_count <= 9'd0;
output_timeout_triggered <= 1'b0;
end else if (output_timeout_count == set_timeout[8:0]) begin
output_timeout_triggered <= 1'b1;
end else if (output_state == OUTPUT_IDLE) begin
output_timeout_count <= output_timeout_count + ((occupied != 'd0) ? 9'd1 : 9'd0);
end
//
// Wait for 64 entries in main FIFO to trigger DRAM read burst.
// Timeout can also trigger burst so fragments of data are not left to rot in the main FIFO.
// Also if enough data is present in the main FIFO to complete a burst upto the edge
// of a 4KByte page then immediately start the burst.
//
always @(posedge dram_clk)
if (dram_reset | clear) begin
output_state <= OUTPUT_IDLE;
read_addr <= set_fifo_base_addr & set_fifo_addr_mask;
output_timeout_reset <= 1'b0;
read_ctrl_valid <= 1'b0;
read_count <= 8'd0;
read_count_plus_one <= 9'd1;
update_read <= 1'b0;
end else
case (output_state)
//
// OUTPUT_IDLE.
// To start an output tranfer from DRAM
// 1) Space in the small output FIFO
// and either
// 2) 256 entrys in the DRAM FIFO
// or
// 3) Timeout waiting for more data.
//
OUTPUT_IDLE: begin
read_ctrl_valid <= 1'b0;
update_read <= 1'b0;
if (space_output[15:8] != 'd0) begin // (space_output > 255): Space in the output FIFO.
if (occupied[AWIDTH-3:8] != 'd0) begin // (occupied > 255): 64 or more entrys in main FIFO
output_state <= OUTPUT1;
output_timeout_reset <= 1'b1;
// Calculate number of entries remaining until next 4KB page boundry is crossed minus 1.
// Note, units of calculation are 64bit wide words. Address is always 64bit alligned.
output_page_boundry <= {read_addr[AWIDTH-1:12],9'h1ff} - read_addr[AWIDTH-1:3];
end else if (output_timeout_triggered) begin // output FIFO timeout waiting for new data.
output_state <= OUTPUT2;
output_timeout_reset <= 1'b1;
// Calculate number of entries remaining until next 4KB page boundry is crossed minus 1.
// Note, units of calculation are 64bit wide words. Address is always 64bit alligned.
output_page_boundry <= {read_addr[AWIDTH-1:12],9'h1ff} - read_addr[AWIDTH-1:3];
end else begin
output_timeout_reset <= 1'b0;
output_state <= OUTPUT_IDLE;
end
end else begin
output_timeout_reset <= 1'b0;
output_state <= OUTPUT_IDLE;
end
end // case: OUTPUT_IDLE
//
// OUTPUT1.
// Caused by main FIFO reaching 256 entries.
// Request read burst of lesser of lesser of:
// 1) Entrys until page boundry crossed
// 2) 256.
//
OUTPUT1: begin
// Replicated write logic to break a read timing critical path for read_count
read_count <= (output_page_boundry[11:8] == 4'd0) ? output_page_boundry[7:0] : 8'd255;
read_count_plus_one <= (output_page_boundry[11:8] == 4'd0) ? ({1'b0,output_page_boundry[7:0]} + 9'd1) : 9'd256;
read_ctrl_valid <= 1'b1;
if (read_ctrl_ready)
output_state <= OUTPUT4; // Pre-emptive ACK
else
output_state <= OUTPUT3; // Wait for ACK
end
//
// OUTPUT2.
// Caused by timeout of main FIFO
// Request read burst of lesser of:
// 1) Entries until page boundry crossed
// 2) Entries in main FIFO
//
OUTPUT2: begin
// Replicated write logic to break a read timing critical path for read_count
read_count <= (output_page_boundry < occupied_minus_one) ? output_page_boundry[7:0] : occupied_minus_one[7:0];
read_count_plus_one <= (output_page_boundry < occupied_minus_one) ? ({1'b0,output_page_boundry[7:0]} + 9'd1) : {1'b0, occupied[7:0]};
read_ctrl_valid <= 1'b1;
if (read_ctrl_ready)
output_state <= OUTPUT4; // Pre-emptive ACK
else
output_state <= OUTPUT3; // Wait for ACK
end
//
// OUTPUT3.
// Wait in this state for AXI4_DMA engine to accept transaction.
//
OUTPUT3: begin
if (read_ctrl_ready) begin
read_ctrl_valid <= 1'b0;
output_state <= OUTPUT4; // ACK
end else begin
read_ctrl_valid <= 1'b1;
output_state <= OUTPUT3; // Wait for ACK
end
end
//
// OUTPUT4.
// Wait here unitl read_ctrl_ready_deasserts.
// This is important as the next time it asserts we know that a read response was receieved.
OUTPUT4: begin
read_ctrl_valid <= 1'b0;
if (!read_ctrl_ready)
output_state <= OUTPUT5; // Move on
else
output_state <= OUTPUT4; // Wait for deassert
end
//
// OUTPUT5.
// Transaction has been accepted by AXI4 DMA engine. Now we wait for the re-assertion
// of read_ctrl_ready which signals that the AXI4 DMA engine has receieved a last signal and good response
// for the whole read transaction.
// We are now free to update read_addr pointer and go back to idle state.
//
OUTPUT5: begin
read_ctrl_valid <= 1'b0;
if (read_ctrl_ready) begin
read_addr <= ((read_addr + (read_count_plus_one << 3)) & set_fifo_addr_mask_bar) | (read_addr & set_fifo_addr_mask);
output_state <= OUTPUT6;
update_read <= 1'b1;
end else begin
output_state <= OUTPUT5;
end
end // case: OUTPUT5
//
// OUTPUT6.
// Need to get occupied value updated before checking if there's more to do.
//
OUTPUT6: begin
update_read <= 1'b0;
output_state <= OUTPUT_IDLE;
end
default:
output_state <= OUTPUT_IDLE;
endcase // case(output_state)
//
// Count number of used entries in main DRAM FIFO.
// Note that this is expressed in units of 64bit wide words.
//
always @(posedge dram_clk)
if (dram_reset | clear) begin
occupied <= 'd0;
occupied_minus_one <= {(AWIDTH-2){1'b1}};
end else begin
occupied <= occupied + (update_write ? write_count_plus_one : 9'd0) - (update_read ? read_count_plus_one : 9'd0);
occupied_minus_one <= occupied_minus_one + (update_write ? write_count_plus_one : 9'd0) - (update_read ? read_count_plus_one : 9'd0);
end
always @(posedge dram_clk)
if (dram_reset | clear)
space <= set_fifo_addr_mask_bar[AWIDTH-1:3] & ~('d63); // Subtract 64 from space to make allowance for read/write reordering in DRAM controller
else
space <= space - (update_write ? write_count_plus_one : 9'd0) + (update_read ? read_count_plus_one : 9'd0);
//
// Instamce of axi_dma_master
//
axi_dma_master axi_dma_master_i
(
.aclk(dram_clk), // input aclk
.areset(dram_reset | clear), // input aresetn
// Write control
.m_axi_awid(m_axi_awid), // input [0 : 0] m_axi_awid
.m_axi_awaddr(m_axi_awaddr), // input [31 : 0] m_axi_awaddr
.m_axi_awlen(m_axi_awlen), // input [7 : 0] m_axi_awlen
.m_axi_awsize(m_axi_awsize), // input [2 : 0] m_axi_awsize
.m_axi_awburst(m_axi_awburst), // input [1 : 0] m_axi_awburst
.m_axi_awvalid(m_axi_awvalid), // input m_axi_awvalid
.m_axi_awready(m_axi_awready), // output m_axi_awready
.m_axi_awlock(m_axi_awlock),
.m_axi_awcache(m_axi_awcache),
.m_axi_awprot(m_axi_awprot),
.m_axi_awqos(m_axi_awqos),
.m_axi_awregion(m_axi_awregion),
.m_axi_awuser(m_axi_awuser),
// Write Data
.m_axi_wdata(m_axi_wdata), // input [63 : 0] m_axi_wdata
.m_axi_wstrb(m_axi_wstrb), // input [7 : 0] m_axi_wstrb
.m_axi_wlast(m_axi_wlast), // input m_axi_wlast
.m_axi_wvalid(m_axi_wvalid), // input m_axi_wvalid
.m_axi_wready(m_axi_wready), // output m_axi_wready
.m_axi_wuser(m_axi_wuser),
// Write Response
.m_axi_bid(m_axi_bid), // output [0 : 0] m_axi_bid
.m_axi_bresp(m_axi_bresp), // output [1 : 0] m_axi_bresp
.m_axi_bvalid(m_axi_bvalid), // output m_axi_bvalid
.m_axi_bready(m_axi_bready), // input m_axi_bready
.m_axi_buser(m_axi_buser),
// Read Control
.m_axi_arid(m_axi_arid), // input [0 : 0] m_axi_arid
.m_axi_araddr(m_axi_araddr), // input [31 : 0] m_axi_araddr
.m_axi_arlen(m_axi_arlen), // input [7 : 0] m_axi_arlen
.m_axi_arsize(m_axi_arsize), // input [2 : 0] m_axi_arsize
.m_axi_arburst(m_axi_arburst), // input [1 : 0] m_axi_arburst
.m_axi_arvalid(m_axi_arvalid), // input m_axi_arvalid
.m_axi_arready(m_axi_arready), // output m_axi_arready
.m_axi_arlock(m_axi_arlock),
.m_axi_arcache(m_axi_arcache),
.m_axi_arprot(m_axi_arprot),
.m_axi_arqos(m_axi_arqos),
.m_axi_arregion(m_axi_arregion),
.m_axi_aruser(m_axi_aruser),
// Read Data
.m_axi_rid(m_axi_rid), // output [0 : 0] m_axi_rid
.m_axi_rdata(m_axi_rdata), // output [63 : 0] m_axi_rdata
.m_axi_rresp(m_axi_rresp), // output [1 : 0] m_axi_rresp
.m_axi_rlast(m_axi_rlast), // output m_axi_rlast
.m_axi_rvalid(m_axi_rvalid), // output m_axi_rvalid
.m_axi_rready(m_axi_rready), // input m_axi_rready
.m_axi_ruser(m_axi_ruser),
//
// DMA interface for Write transaction
//
.write_addr({{(32-AWIDTH){1'b0}}, write_addr}), // Byte address for start of write transaction (should be 64bit alligned)
.write_count(write_count), // Count of 64bit words to write.
.write_ctrl_valid(write_ctrl_valid),
.write_ctrl_ready(write_ctrl_ready),
.write_data(i_tdata_input),
.write_data_valid(i_tvalid_input),
.write_data_ready(i_tready_input),
//
// DMA interface for Read
//
.read_addr({{(32-AWIDTH){1'b0}}, read_addr}), // Byte address for start of read transaction (should be 64bit alligned)
.read_count(read_count), // Count of 64bit words to read.
.read_ctrl_valid(read_ctrl_valid),
.read_ctrl_ready(read_ctrl_ready),
.read_data(o_tdata_output),
.read_data_valid(o_tvalid_output),
.read_data_ready(o_tready_output),
//
// Debug
//
.debug()
);
//ila_axi_dma_fifo inst_ila (
// .clk(ce_clk), // input wire clk
// .probe0(rb_bist_status), // input wire [3:0] probe0 channel 0
// .probe1(), // input wire [3:0] probe0 channel 0
//);
endmodule // axi_dma_fifo
|