aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/axi/axi_chdr_test_pattern.v
blob: 7d25f3008feb36047e9e9ff9675bb2eabd457538 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
//
// Synthesizable test pattern generators and checkers
// for CHDR that can be used to test transparent blocks
// (FIFOs, switches, etc)
//

//`define MTU 8192
`define MTU 1536

module axi_chdr_test_pattern
  (
   input clk,
   input reset,
  
   //
   // CHDR friendly AXI stream input
   //
   output reg [63:0] i_tdata,
   output reg i_tlast,
   output reg i_tvalid,
   input  wire i_tready,
   //
   // CHDR friendly AXI Stream output
   //
   input wire [63:0] o_tdata,
   input wire o_tlast,
   input wire o_tvalid,
   output reg o_tready,
   //
   // Test flags
   //
   input start,
   input [15:0] control,
   output reg fail,
   output reg done
   );

   wire [7:0]      bist_rx_delay = control[7:0];
   wire [7:0]      bist_tx_delay = control[15:8];
   

   reg [15:0] tx_count, rx_count;
   reg [15:0] tx_data, rx_data;
   reg [7:0]  tx_delay, rx_delay;
   

   localparam TX_IDLE = 0;
   localparam TX_START = 1;
   localparam TX_ACTIVE = 2;
   localparam TX_GAP = 3;
   localparam TX_DONE = 4;
   localparam TX_WAIT = 5;

   localparam RX_IDLE = 0;
   localparam RX_ACTIVE = 1;
   localparam RX_FAIL = 2;
   localparam RX_DONE = 3;
   localparam RX_WAIT = 4;
      
   reg [2:0]  tx_state, rx_state;
 
   //
   // Transmitter
   //
   always @(posedge clk)
     if (reset)
       begin
	  tx_delay <= 0; 
	  tx_count <= 8;
	  tx_data <= 0;
	  i_tdata <= 64'h0;
	  i_tlast <= 1'b0;
	  i_tvalid <= 1'b0;
	  tx_state <= TX_IDLE;
       end
     else
       begin
	  case(tx_state)
	    TX_IDLE: begin
	       tx_delay <= 0; 
	       i_tdata <= 64'h0;
	       i_tlast <= 1'b0;
	       i_tvalid <= 1'b0;
	       tx_data <= 0;
	       tx_count <= 4;
	       // Run whilst start asserted.
	       if (start) begin
		  tx_state <= TX_START;		  
		  // ....Go back to initialized state if start deasserted.
	       end else begin		 		  
		  tx_state <= TX_IDLE;
	       end		  
	    end // case: TX_IDLE

	    //
	    // START signal is asserted.
	    // Now need to start transmiting a packet.
	    //
	    TX_START: begin
	       // At the next clock edge drive first beat of new packet onto HDR bus.
	       i_tlast <= 1'b0;
	       i_tvalid <= 1'b1;
	       tx_data <= tx_data + 4;
	       // i_tdata <= {tx_data,tx_data+16'd1,tx_data+16'd2,tx_data+16'd3};
	       i_tdata <= {4{(tx_data[2]?16'hffff:16'h0000)^tx_data[15:0]}};
	       tx_state <= TX_ACTIVE;
	       
	    end
	    
	    //
	    // Valid data is (already) being driven onto the CHDR bus.
	    // i_tlast may also be driven asserted if current data count has reached EOP.
	    // Watch i_tready to see when it's consumed.
	    // When packets are consumed increment data counter or transition state if
	    // EOP has sucsesfully concluded.
	    //
	    TX_ACTIVE: begin
	       i_tvalid <= 1'b1; // Always assert tvalid
	       if (i_tready) begin
		  
//		  i_tdata <= {tx_data,tx_data+16'd1,tx_data+16'd2,tx_data+16'd3};
		  i_tdata <= {4{(tx_data[2]?16'hffff:16'h0000)^tx_data[15:0]}};
		  // Will this next beat be the last in a packet?
		  if (tx_data == tx_count) begin
		     tx_data <= 0;
		     i_tlast <= 1'b1;
		     tx_state <= TX_GAP;
		  end else begin
		     tx_data <= tx_data + 4;
		     i_tlast <= 1'b0;
		     tx_state <= TX_ACTIVE;
		  end		  
	       end else begin
		  // Keep driving all CHDR bus signals as-is until i_tready is asserted.
		  tx_state <= TX_ACTIVE;
	       end
	    end // case: TX_ACTIVE
	    //
	    // Force an inter-packet gap between packets in a BIST sequence where tvalid is driven low.
	    // As we leave this state check if all packets in BIST sequence have been generated yet,
	    // and if so go to done state.
	    //
	    TX_GAP: begin
	       if (i_tready) begin
		  i_tvalid <= 1'b0;
		  i_tdata <= 64'h0;
		  i_tlast <= 1'b0;
		  tx_count <= tx_count + 4;
		  
		  if (tx_count < `MTU) begin
		     tx_state <= TX_WAIT;
		     tx_delay <= bist_tx_delay;		  
		  end else
		    tx_state <= TX_DONE;
	       end else begin // if (i_tready)
		  tx_state <= TX_GAP;
	       end
	    end // case: TX_GAP
	    //
	    // Simulate inter packet gap in real UHD system
	    TX_WAIT: begin
	       if (tx_delay == 0)
		 tx_state <= TX_START;
	       else begin
		  tx_delay <= tx_delay - 1;
		  tx_state <= TX_WAIT;
	       end
	    end
	    
	    //
	    // Complete test pattern BIST sequence has been transmitted. Sit in this
	    // state indefinately if START is taken low, which re-inits the whole BIST solution.
	    // 
	    TX_DONE: begin
	       if (!start) begin
		  tx_state <= TX_DONE;
	       end else begin
		  tx_state <= TX_IDLE;
	       end
	       i_tvalid <= 1'b0;
	       i_tdata <= 64'd0;
	       i_tlast <= 1'b0;
	       
	    end
	  endcase // case (tx_state)
       end

   //
   // Receiver
   //
   always @(posedge clk)
     if (reset)
       begin
	  rx_delay <= 0;
	  rx_count <= 0;
	  rx_data <= 0;
	  o_tready <= 1'b0;
	  rx_state <= RX_IDLE;
	  fail <= 1'b0;
	  done <= 1'b0;
	  
       end
     else begin
	case (rx_state)
	  RX_IDLE: begin
	     rx_delay <= 0;
	     o_tready <= 1'b0;
	     rx_data <= 0;
	     rx_count <= 4;
             fail <= 1'b0;
	     done <= 1'b0;
	     // Not accepting data whilst Idle,
	     // switch to active when packet arrives
	     if (o_tvalid) begin		
	        o_tready <= 1'b1;
		rx_state <= RX_ACTIVE;
	     end else
	       rx_state <= RX_IDLE;	       	    
	  end
	  
	  RX_ACTIVE: begin
	     o_tready <= 1'b1;
	     if (o_tvalid)
//	       if (o_tdata != {rx_data,rx_data+16'd1,rx_data+16'd2,rx_data+16'd3})
	       if (o_tdata != {4{(rx_data[2]?16'hffff:16'h0000)^rx_data[15:0]}})
		 begin
		    $display("o_tdata: %x  !=  expected:  %x @ time: %d",o_tdata,
//			     {rx_data,rx_data+16'd1,rx_data+16'd2,rx_data+16'd3},
			     {4{(rx_data[2]?16'hffff:16'h0000)^rx_data[15:0]}},
			     $time);		    
		    rx_state <= RX_FAIL;
		 end
	       else
		 // Should last be asserted?
		 if (rx_data == rx_count)
		   // ...last not asserted when it should be!
		   if (~(o_tlast===1)) begin
		      $display("o_tlast not asserted when it should be @ time: %d",$time);		     
		      rx_state <= RX_FAIL;
		   end else begin
		      // End of packet, set up to RX next 
		      rx_data <= 0;
		      rx_count <= rx_count + 4;
		      rx_delay <= bist_rx_delay;
		      if (rx_count == `MTU) begin
			 rx_state <= RX_DONE;
		      end else begin
			 rx_state <= RX_WAIT;
		      end
		      o_tready <= 1'b0;
		   end	       
		 else
		   // ...last asserted when it should not be!
		   if (~(o_tlast===0)) begin
		      $display("o_tlast asserted when it should not be @ time: %d",$time);		     
		      rx_state <= RX_FAIL;
		   end else begin
		      // Still in packet body
		      rx_data <= rx_data + 4;
		      rx_delay <= bist_rx_delay;
		      rx_state <= RX_WAIT;
		      o_tready <= 1'b0;
		   end
	     else
	       // Nothing to do this cycle
	       rx_state <= RX_ACTIVE;	       
	  end // case: RX_ACTIVE

	  // To simulate the radio consuming samples at a steady rate set by the decimation
	  // have a programable delay here
	  RX_WAIT: begin
	     if (rx_delay == 0) begin
		rx_state <= RX_ACTIVE;
		o_tready <= 1'b1;
	     end else begin
		rx_delay <= rx_delay - 1;
		rx_state <= RX_WAIT;
	     end	     
	  end
	  
	  
	  RX_FAIL: begin
	     o_tready <= 1'b0;
	     done <= 1'b1;
	     fail <= 1'b1;
	     // If start is deasserted allow BIST logic to reset and rearm
	     if (start)
	       rx_state <= RX_FAIL;
	     else
	       rx_state <= RX_IDLE;
	     
	  end
	  
	  RX_DONE: begin
	     o_tready <= 1'b0;
	     done <= 1'b1;
	     fail <= 1'b0;
	     // If start is asserted allow BIST logic to reset, rearm & restart
	     if (!start)
	       rx_state <= RX_DONE;
	     else
	       rx_state <= RX_IDLE;
	     
	  end
	  
	endcase // case (rx_state)
     end
 
   

endmodule