1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module hb_dec_tb( ) ;
// Parameters for instantiation
parameter clocks = 9'd2 ; // Number of clocks per input
parameter decim = 1 ; // Sets the filter to decimate
parameter rate = 2 ; // Sets the decimation rate
reg clock ;
reg reset ;
reg enable ;
reg strobe_in ;
reg signed [17:0] data_in ;
wire strobe_out ;
wire signed [17:0] data_out ;
initial
begin
$dumpfile("hb_dec_tb.vcd");
$dumpvars(0,hb_dec_tb);
end
// Setup the clock
initial clock = 1'b0 ;
always #5 clock <= ~clock ;
// Come out of reset after a while
initial reset = 1'b1 ;
initial #1000 reset = 1'b0 ;
// Enable the entire system
initial enable = 1'b1 ;
// Instantiate UUT
/*
halfband_ideal
#(
.decim ( decim ),
.rate ( rate )
) uut(
.clock ( clock ),
.reset ( reset ),
.enable ( enable ),
.strobe_in ( strobe_in ),
.data_in ( data_in ),
.strobe_out ( strobe_out ),
.data_out ( data_out )
) ;
*/
hb_dec #(.IWIDTH(18),.OWIDTH(18),.CWIDTH(18),.ACCWIDTH(24)) uut
(.clk(clock),.rst(reset),.bypass(0),.cpi(clocks),.stb_in(strobe_in),.data_in(data_in),
.stb_out(strobe_out),.data_out(data_out) );
integer i, ri, ro, infile, outfile ;
always @(posedge clock)
begin
if(strobe_out)
$display(data_out);
end
// Setup file IO
initial begin
infile = $fopen("input.dat","r") ;
outfile = $fopen("output.dat","r") ;
$timeformat(-9, 2, " ns", 10) ;
end
reg endofsim ;
reg signed [17:0] compare ;
integer noe ;
initial noe = 0 ;
initial begin
// Initialize inputs
strobe_in <= 1'd0 ;
data_in <= 18'd0 ;
// Wait for reset to go away
@(negedge reset) #0 ;
// While we're still simulating ...
while( !endofsim ) begin
// Write the input from the file or 0 if EOF...
@( posedge clock ) begin
//#1 ;
strobe_in <= 1'b1 ;
if( !$feof(infile) )
ri = $fscanf( infile, "%d", data_in ) ;
else
data_in <= 18'd0 ;
end
// Clocked in - set the strobe to 0 if the number of
// clocks per sample is greater than 1
if( clocks > 1 ) begin
@(posedge clock) begin
strobe_in <= 1'b0 ;
end
// Wait for the specified number of cycles
for( i = 0 ; i < (clocks-2) ; i = i + 1 ) begin
@(posedge clock) #1 ;
end
end
end
// Print out the number of errors that occured
if( noe )
$display( "FAILED: %d errors during simulation", noe ) ;
else
$display( "PASSED: Simulation successful" ) ;
$finish ;
end
// Output comparison of simulated values versus known good values
always @ (posedge clock) begin
if( reset )
endofsim <= 1'b0 ;
else begin
if( !$feof(outfile) ) begin
if( strobe_out ) begin
ro = $fscanf( outfile, "%d\n", compare ) ;
if( compare != data_out ) begin
//$display( "%t: %d != %d", $realtime, data_out, compare ) ;
noe = noe + 1 ;
end
end
end else begin
// Signal end of simulation when no more outputs
endofsim <= 1'b1 ;
end
end
end
endmodule // hb_dec_tb
|