1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
// FIFO to GPMC
//
// Reads frames from FIFO interface and writes them into BRAM pages.
// The GPMC is asynchronously alerted when a BRAM page has been filled.
//
// EM_CLK:
// A GPMC read transaction consists of two EM_CLK cycles (idle low).
//
// EM_OE:
// Output enable is actually the combination of ~NOE & ~NCS.
// The output enable is only active for the second rising edge,
// to ensure one edge per transaction to transition on.
//
// EM_D:
// The BRAM performs a read on the first rising edge into EM_D.
// Then, data will then be read on the next rising edge by GPMC.
//
// EM_A:
// On the first rising edge of EM_CLK, the address is held.
// On the second rising edge, the address is set for the next transaction.
////////////////////////////////////////////////////////////////////////
module fifo_to_gpmc
#(parameter PTR_WIDTH = 2, parameter ADDR_WIDTH = 10, parameter LAST_ADDR = 10'h3ff)
(input clk, input reset, input clear, input arst,
input [17:0] data_i, input src_rdy_i, output dst_rdy_o,
output [15:0] EM_D, input [ADDR_WIDTH:1] EM_A, input EM_CLK, input EM_OE,
output reg data_available);
//states for the GPMC side of things
wire [17:0] data_o;
reg gpmc_state;
reg [ADDR_WIDTH:1] addr;
reg [PTR_WIDTH:0] gpmc_ptr, next_gpmc_ptr;
localparam GPMC_STATE_START = 0;
localparam GPMC_STATE_EMPTY = 1;
//states for the FIFO side of things
reg fifo_state;
reg [ADDR_WIDTH-1:0] counter;
reg [PTR_WIDTH:0] fifo_ptr;
localparam FIFO_STATE_CLAIM = 0;
localparam FIFO_STATE_FILL = 1;
//------------------------------------------------------------------
// State machine to control the data from GPMC to BRAM
//------------------------------------------------------------------
always @(posedge EM_CLK or posedge arst) begin
if (arst) begin
gpmc_state <= GPMC_STATE_START;
gpmc_ptr <= 0;
next_gpmc_ptr <= 0;
addr <= 0;
end
else if (EM_OE) begin
addr <= EM_A + 1;
case(gpmc_state)
GPMC_STATE_START: begin
if (EM_A == 0) begin
gpmc_state <= GPMC_STATE_EMPTY;
next_gpmc_ptr <= gpmc_ptr + 1;
end
end
GPMC_STATE_EMPTY: begin
if (EM_A == LAST_ADDR) begin
gpmc_state <= GPMC_STATE_START;
gpmc_ptr <= next_gpmc_ptr;
addr <= 0;
end
end
endcase //gpmc_state
end //EM_OE
end //always
//------------------------------------------------------------------
// High when the gpmc pointer has not caught up to the fifo pointer.
//------------------------------------------------------------------
wire [PTR_WIDTH:0] safe_gpmc_ptr;
cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_gpmc_ptr
(.clk(clk), .rst(reset | clear), .in(gpmc_ptr), .out(safe_gpmc_ptr));
wire bram_available_to_fill = (fifo_ptr ^ (1 << PTR_WIDTH)) != safe_gpmc_ptr;
//------------------------------------------------------------------
// Glich free generation of data available signal:
// Data is available when the pointers dont match.
//------------------------------------------------------------------
wire [PTR_WIDTH:0] safe_next_gpmc_ptr;
cross_clock_reader #(.WIDTH(PTR_WIDTH+1)) read_next_gpmc_ptr
(.clk(clk), .rst(reset | clear), .in(next_gpmc_ptr), .out(safe_next_gpmc_ptr));
always @(posedge clk)
if (reset | clear) data_available <= 0;
else data_available <= safe_next_gpmc_ptr != fifo_ptr;
//------------------------------------------------------------------
// State machine to control the data from BRAM to FIFO
//------------------------------------------------------------------
always @(posedge clk) begin
if (reset | clear) begin
fifo_state <= FIFO_STATE_CLAIM;
fifo_ptr <= 0;
counter <= 0;
end
else begin
case(fifo_state)
FIFO_STATE_CLAIM: begin
if (bram_available_to_fill) fifo_state <= FIFO_STATE_FILL;
counter <= 0;
end
FIFO_STATE_FILL: begin
if (src_rdy_i && dst_rdy_o && data_i[17]) begin
fifo_state <= FIFO_STATE_CLAIM;
fifo_ptr <= fifo_ptr + 1;
end
if (src_rdy_i && dst_rdy_o) begin
counter <= counter + 1;
end
end
endcase //fifo_state
end
end //always
assign dst_rdy_o = fifo_state == FIFO_STATE_FILL;
//assign data from bram output
assign EM_D = data_o[15:0];
//instantiate dual ported bram for async read + write
ram_2port #(.DWIDTH(18),.AWIDTH(PTR_WIDTH + ADDR_WIDTH)) async_fifo_bram
(.clka(clk),.ena(1'b1),.wea(src_rdy_i && dst_rdy_o),
.addra({fifo_ptr[PTR_WIDTH-1:0], counter}),.dia(data_i),.doa(),
.clkb(EM_CLK),.enb(1'b1),.web(1'b0),
.addrb({gpmc_ptr[PTR_WIDTH-1:0], addr}),.dib(18'h3ffff),.dob(data_o));
endmodule // fifo_to_gpmc
|