1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
module ram_loader
#(parameter AWIDTH=16, RAM_SIZE=16384)
(
// Wishbone I/F and clock domain
input wb_clk,
input dsp_clk,
input ram_loader_rst,
output wire [31:0] wb_dat,
output wire [AWIDTH-1:0] wb_adr,
output wb_stb,
output reg [3:0] wb_sel,
output wb_we,
output reg ram_loader_done,
// CPLD signals and clock domain
input cpld_clk,
input cpld_din,
output reg cpld_start,
output reg cpld_mode,
output reg cpld_done,
input cpld_detached
);
localparam S0 = 0;
localparam S1 = 1;
localparam S2 = 2;
localparam S3 = 3;
localparam S4 = 4;
localparam S5 = 5;
localparam S6 = 6;
localparam RESET = 7;
localparam WB_IDLE = 0;
localparam WB_WRITE = 1;
reg [AWIDTH+2:0] count; // 3 LSB's count bits in, the MSB's generate the Wishbone address
reg [6:0] shift_reg;
reg [7:0] data_reg;
reg sampled_clk;
reg sampled_clk_meta;
reg sampled_din;
reg inc_count;
reg load_data_reg;
reg shift;
reg wb_state, wb_next_state;
reg [2:0] state, next_state;
//
// CPLD clock doesn't free run and is approximately 12.5MHz.
// Use 50MHz Wishbone clock to sample it as a signal and avoid having
// an extra clock domain for no reason.
//
always @(posedge dsp_clk or posedge ram_loader_rst)
if (ram_loader_rst)
begin
sampled_clk_meta <= 1'b0;
sampled_clk <= 1'b0;
sampled_din <= 1'b0;
count <= 'h7FFF8; // Initialize so that address will be 0 when first byte fully received.
data_reg <= 0;
shift_reg <= 0;
end
else
begin
sampled_clk_meta <= cpld_clk;
sampled_clk <= sampled_clk_meta;
sampled_din <= cpld_din;
if (inc_count)
count <= count + 1'b1;
if (load_data_reg)
data_reg <= {shift_reg,sampled_din};
if (shift)
shift_reg <= {shift_reg[5:0],sampled_din};
end // else: !if(ram_loader_rst)
always @(posedge dsp_clk or posedge ram_loader_rst)
if (ram_loader_rst)
state <= RESET;
else
state <= next_state;
always @*
begin
// Defaults
next_state = state;
cpld_start = 1'b0;
shift = 1'b0;
inc_count = 0;
load_data_reg = 1'b0;
ram_loader_done = 1'b0;
cpld_mode = 1'b0;
cpld_done = 1'b1;
case (state) //synthesis parallel_case full_case
// After reset wait until CPLD indicates its detached.
RESET: begin
if (cpld_detached)
next_state = S0;
else
next_state = RESET;
end
// Assert cpld_start to signal the CPLD its to start sending serial clock and data.
// Assume cpld_clk is low as we transition into search for first rising edge
S0: begin
cpld_start = 1'b1;
cpld_done = 1'b0;
if (~cpld_detached)
next_state = S2;
else
next_state = S0;
end
//
S1: begin
cpld_start = 1'b1;
cpld_done = 1'b0;
if (sampled_clk)
begin
// Found rising edge on cpld_clk.
if (count[2:0] == 3'b111)
// Its the last bit of a byte, send it out to the Wishbone bus.
begin
load_data_reg = 1'b1;
inc_count = 1'b1;
end
else
// Shift databit into LSB of shift register and increment count
begin
shift = 1'b1;
inc_count = 1'b1;
end // else: !if(count[2:0] == 3'b111)
next_state = S2;
end // if (sampled_clk)
else
next_state = S1;
end // case: S1
//
S2: begin
cpld_start = 1'b1;
cpld_done = 1'b0;
if (~sampled_clk)
// Found negative edge of clock
if (count[AWIDTH+2:3] == RAM_SIZE-1) // NOTE need to change this constant
// All firmware now downloaded
next_state = S3;
else
next_state = S1;
else
next_state = S2;
end // case: S2
// Now that terminal count is reached and all firmware is downloaded signal CPLD that download is done
// and that mode is now SPI mode.
S3: begin
if (sampled_clk)
begin
cpld_mode = 1'b1;
cpld_done = 1'b1;
next_state = S4;
end
else
next_state = S3;
end
// Search for negedge of cpld_clk whilst keeping done sequence asserted.
// Keep done assserted
S4: begin
cpld_mode = 1'b1;
cpld_done = 1'b1;
if (~sampled_clk)
next_state = S5;
else
next_state = S4;
end
// Search for posedge of cpld_clk whilst keeping done sequence asserted.
S5: begin
cpld_mode = 1'b1;
cpld_done = 1'b1;
if (sampled_clk)
next_state = S6;
else
next_state = S5;
end
// Stay in this state until reset/power down
S6: begin
ram_loader_done = 1'b1;
cpld_done = 1'b1;
cpld_mode = 1'b1;
next_state = S6;
end
endcase // case(state)
end
always @(posedge dsp_clk or posedge ram_loader_rst)
if (ram_loader_rst)
wb_state <= WB_IDLE;
else
wb_state <= wb_next_state;
reg do_write;
wire empty, full;
always @*
begin
wb_next_state = wb_state;
do_write = 1'b0;
case (wb_state) //synthesis full_case parallel_case
//
WB_IDLE: begin
if (load_data_reg)
// Data reg will load ready to write wishbone @ next clock edge
wb_next_state = WB_WRITE;
else
wb_next_state = WB_IDLE;
end
// Drive address and data onto wishbone.
WB_WRITE: begin
do_write = 1'b1;
if (~full)
wb_next_state = WB_IDLE;
else
wb_next_state = WB_WRITE;
end
endcase // case(wb_state)
end // always @ *
wire [1:0] count_out;
wire [7:0] data_out;
fifo_xlnx_16x40_2clk crossclk
(.rst(ram_loader_rst),
.wr_clk(dsp_clk), .din({count[4:3],count[AWIDTH+2:3],data_reg}), .wr_en(do_write), .full(full),
.rd_clk(wb_clk), .dout({count_out,wb_adr,data_out}), .rd_en(~empty), .empty(empty));
assign wb_dat = {4{data_out}};
always @*
case(count_out[1:0]) //synthesis parallel_case full_case
2'b00 : wb_sel = 4'b1000;
2'b01 : wb_sel = 4'b0100;
2'b10 : wb_sel = 4'b0010;
2'b11 : wb_sel = 4'b0001;
endcase
assign wb_we = ~empty;
assign wb_stb = ~empty;
endmodule // ram_loader
|