1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module fifo_to_wb
#(parameter PKT_LEN = 16)
(input clk, input reset, input clear,
input [18:0] data_i, input src_rdy_i, output dst_rdy_o,
output [18:0] data_o, output src_rdy_o, input dst_rdy_i,
output reg [15:0] wb_adr_o, output [15:0] wb_dat_mosi, input [15:0] wb_dat_miso,
output [1:0] wb_sel_o, output wb_cyc_o, output wb_stb_o, output wb_we_o, input wb_ack_i,
input [7:0] triggers,
output [31:0] debug0, output [31:0] debug1);
wire [18:0] ctrl_data;
reg [18:0] resp_data;
wire ctrl_src_rdy, ctrl_dst_rdy, resp_src_rdy, resp_dst_rdy;
fifo_short #(.WIDTH(19)) ctrl_sfifo
(.clk(clk), .reset(reset), .clear(clear),
.datain(data_i), .src_rdy_i(src_rdy_i), .dst_rdy_o(dst_rdy_o),
.dataout(ctrl_data), .src_rdy_o(ctrl_src_rdy), .dst_rdy_i(ctrl_dst_rdy));
fifo_short #(.WIDTH(19)) resp_sfifo
(.clk(clk), .reset(reset), .clear(clear),
.datain(resp_data), .src_rdy_i(resp_src_rdy), .dst_rdy_o(resp_dst_rdy),
.dataout(data_o), .src_rdy_o(src_rdy_o), .dst_rdy_i(dst_rdy_i));
// Need a programmable state machine here. The program is the fifo contents.
// All words are 16 bits wide
// Word 0 Command { Read, Write, Triggers[5:0], Seqno [7:0] }
// Word 1 Length
// Word 2 Address LSW
// Word 3 Address MSW (should all be 0)
localparam RESP_IDLE = 0;
localparam RESP_LEN = 1;
localparam RESP_ADDR_LSW = 2;
localparam RESP_ADDR_MSW = 3;
localparam RESP_WRITE = 4;
localparam RESP_DUMP = 5;
localparam RESP_WAIT_READ = 6;
localparam RESP_RCMD = 7;
localparam RESP_RLEN = 8;
localparam RESP_RADDR_LSW = 9;
localparam RESP_RADDR_MSW = 10;
localparam RESP_READ = 11;
reg [3:0] resp_state;
reg rd, wr;
reg [15:0] base_addr;
reg [15:0] length;
reg [15:0] count;
reg [7:0] seqnum;
reg [5:0] which_trig;
always @(posedge clk)
if(reset | clear)
resp_state <= RESP_IDLE;
else
case(resp_state)
RESP_IDLE :
if(ctrl_src_rdy)
begin
{ rd, wr, which_trig[5:0], seqnum[7:0] } <= ctrl_data[15:0];
if(ctrl_data[16]) // WAIT for start of packet, clean out otherwise
resp_state <= RESP_LEN;
end
RESP_LEN :
if(ctrl_src_rdy)
begin
length <= ctrl_data[15:0];
count <= ctrl_data[15:0];
resp_state <= RESP_ADDR_LSW;
end
RESP_ADDR_LSW :
if(ctrl_src_rdy)
begin
base_addr <= ctrl_data[15:0];
wb_adr_o <= ctrl_data[15:0];
resp_state <= RESP_ADDR_MSW;
end
RESP_ADDR_MSW :
if(ctrl_src_rdy)
if(wr)
resp_state <= RESP_WRITE;
else
resp_state <= RESP_DUMP;
RESP_WRITE :
if(ctrl_src_rdy & wb_ack_i)
if(count==1)
if(ctrl_data[17]) //eof
resp_state <= RESP_IDLE;
else // clean out padding
resp_state <= RESP_DUMP;
else
begin
wb_adr_o <= wb_adr_o + 2;
count <= count - 1;
end
RESP_DUMP :
if(ctrl_src_rdy & ctrl_data[17])
if(rd)
resp_state <= RESP_WAIT_READ;
else
resp_state <= RESP_IDLE;
RESP_WAIT_READ :
begin
wb_adr_o <= base_addr;
count <= length;
if( &(triggers | ~which_trig) )
resp_state <= RESP_RCMD;
end
RESP_RCMD :
if(resp_dst_rdy)
resp_state <= RESP_RLEN;
RESP_RLEN :
if(resp_dst_rdy)
resp_state <= RESP_RADDR_LSW;
RESP_RADDR_LSW :
if(resp_dst_rdy)
resp_state <= RESP_RADDR_MSW;
RESP_RADDR_MSW :
if(resp_dst_rdy)
resp_state <= RESP_READ;
RESP_READ :
if(resp_dst_rdy & wb_ack_i)
if(count==1)
resp_state <= RESP_IDLE;
else
begin
wb_adr_o <= wb_adr_o + 2;
count <= count - 1;
end
endcase // case (resp_state)
always @*
case(resp_state)
RESP_RCMD : resp_data <= { 3'b001, 8'hAA, seqnum };
RESP_RLEN : resp_data <= { 3'b000, length };
RESP_RADDR_LSW : resp_data <= { 3'b000, base_addr };
RESP_RADDR_MSW : resp_data <= { 3'b000, 16'd0 };
default : resp_data <= { 1'b0, (count==1), 1'b0, wb_dat_miso };
endcase // case (resp_state)
assign ctrl_dst_rdy = (resp_state == RESP_IDLE) |
(resp_state == RESP_LEN) |
(resp_state == RESP_ADDR_LSW) |
(resp_state == RESP_ADDR_MSW) |
((resp_state == RESP_WRITE) & wb_ack_i) |
(resp_state == RESP_DUMP);
assign resp_src_rdy = (resp_state == RESP_RCMD) |
(resp_state == RESP_RLEN) |
(resp_state == RESP_RADDR_LSW) |
(resp_state == RESP_RADDR_MSW) |
((resp_state == RESP_READ) & wb_ack_i);
assign wb_dat_mosi = ctrl_data[15:0];
assign wb_we_o = (resp_state == RESP_WRITE);
assign wb_cyc_o = wb_stb_o;
assign wb_sel_o = 2'b11;
assign wb_stb_o = (ctrl_src_rdy & (resp_state == RESP_WRITE)) | (resp_dst_rdy & (resp_state == RESP_READ));
assign debug0 = { 14'd0, ctrl_data[17:0] };
assign debug1 = { ctrl_src_rdy, ctrl_dst_rdy, resp_src_rdy, resp_dst_rdy, 2'b00, ctrl_data[17:16] };
endmodule // fifo_to_wb
|