aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/docs/usrp3/sim/writing_testbenches.md
blob: cfbbcdbce039267df27fafb3bd11919774709b06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Writing a Testbench

Writing a unit test or system level test is easy with the Vivado makefile infrastructure! 
Most of the overhead of building and running a testbench is handled by the build tools. 
Even recurring tasks like reporting and monitoring are implemented by framework libraries.

Each executable FPGA unit test must have the following components:

1. A Makefile
2. A Testbench top-level module

## Testbench Makefile

The Testbench Makefile tell the build tools what to build, where to build it, dependency information and runtime information.
The build infrastructure will handle the how-to part for each supported simulation tool.

Here is a sample Makefile (you are encouraged to use this as a starting point)

    #
    # Copyright 2015 Ettus Research LLC
    #
    
    #-------------------------------------------------
    # Top-of-Makefile
    #-------------------------------------------------
    # Define BASE_DIR to point to the "top" dir
    BASE_DIR = $(abspath ../../..)
    # Include viv_sim_preample after defining BASE_DIR
    include $(BASE_DIR)/../tools/make/viv_sim_preamble.mak
    
    #-------------------------------------------------
    # Design Specific
    #-------------------------------------------------
    # Define part using PART_ID (<device>/<package>/<speedgrade>)
    ARCH = kintex7
    PART_ID = xc7k410t/ffg900/-2
    
    # Include makefiles and sources for the DUT and its dependencies
    include $(BASE_DIR)/../lib/fifo/Makefile.srcs
    include $(BASE_DIR)/../lib/axi/Makefile.srcs
    include $(BASE_DIR)/../lib/control/Makefile.srcs
    
    DESIGN_SRCS = $(abspath \
    $(FIFO_SRCS) \
    $(AXI_SRCS) \
    $(CONTROL_LIB_SRCS) \
    )
    
    #-------------------------------------------------
    # IP Specific
    #-------------------------------------------------
    # If simulation contains IP, define the IP_DIR and point
    # it to the base level IP directory
    IP_DIR = ../../ip
    
    # Include makefiles and sources for all IP components
    # *after* defining the IP_DIR
    include $(IP_DIR)/ddr3_32bit/Makefile.inc
    include $(IP_DIR)/axi_intercon_2x64_128/Makefile.inc
    include $(IP_DIR)/fifo_short_2clk/Makefile.inc
    include $(IP_DIR)/fifo_4k_2clk/Makefile.inc
    include $(IP_DIR)/axi4_bram_1kx64/Makefile.inc
    
    DESIGN_SRCS += $(abspath \
    $(IP_DDR3_32BIT_SRCS) \
    $(IP_AXI_INTERCON_2X64_128_SRCS) \
    $(IP_FIFO_4K_2CLK_SRCS) \
    $(IP_FIFO_SHORT_2CLK_SRCS) \
    $(IP_AXI4_BRAM_1KX64_SRCS) \
    )
    
    #-------------------------------------------------
    # Testbench Specific
    #-------------------------------------------------
    include $(BASE_DIR)/../sim/general/Makefile.srcs
    include $(BASE_DIR)/../sim/axi/Makefile.srcs
    
    # Define only one toplevel module
    SIM_TOP = dram_fifo_tb
    # Simulation runtime in microseconds
    SIM_RUNTIME_US = 80
    
    SIM_SRCS = \
    $(abspath dram_fifo_tb.sv) \
    $(abspath axis_dram_fifo_single.sv) \
    $(IP_DDR3_32BIT_SIM_OUTS) \
    $(SIM_GENERAL_SRCS) \
    $(SIM_AXI_SRCS)
    
    #-------------------------------------------------
    # Bottom-of-Makefile
    #-------------------------------------------------
    # Include all simulator specific makefiles here
    # Each should define a unique target to simulate
    # e.g. xsim, vsim, etc and a common "clean" target
    include $(BASE_DIR)/../tools/make/viv_simulator.mak

You will notice that the Makefile has 5 distinct sections.

### Section 1: Boilerplate

    #-------------------------------------------------
    # Top-of-Makefile
    #-------------------------------------------------
    # Define BASE_DIR to point to the "top" dir
    BASE_DIR = $(abspath ../../..)
    # Include viv_sim_preample after defining BASE_DIR
    include $(BASE_DIR)/../tools/make/viv_sim_preamble.mak

Before declaring any variables or using any recipes, the following must be done (in order):

- Define `BASE_DIR` to tell the build system where the `<repo>/usrp3/top` directory is relative to the
  current testbench directory.
- Include `viv_sim_preamble.mak` to initialize boilerplate variables and functions

### Section 2: Design Specific

    #-------------------------------------------------
    # Design Specific
    #-------------------------------------------------
    # Define part using PART_ID (<device>/<package>/<speedgrade>)
    ARCH = kintex7
    PART_ID = xc7k410t/ffg900/-2
    
    # Include makefiles and sources for the DUT and its dependencies
    include $(BASE_DIR)/../lib/fifo/Makefile.srcs
    include $(BASE_DIR)/../lib/axi/Makefile.srcs
    include $(BASE_DIR)/../lib/control/Makefile.srcs
    
    DESIGN_SRCS = $(abspath \
    $(FIFO_SRCS) \
    $(AXI_SRCS) \
    $(CONTROL_LIB_SRCS) \
    )

This section contains pointers to sources and other variables for the DUT to function. In the 
example above, we are including all sources from the lib/fifo, lib/axi, lib/control directories.

The following makefile variables are special and must be defined:

- `ARCH`: The architecture targeted for the simulation.
- `PART_ID`: The exact part targeted for the simulation. Format: `<device>/<package>/<speedgrade>` 
- `DESIGN_SRCS`: Space-separated paths to the DUT and all of its dependencies.

### Section 3: IP Specific

    #-------------------------------------------------
    # IP Specific
    #-------------------------------------------------
    # If simulation contains IP, define the IP_DIR and point
    # it to the base level IP directory
    IP_DIR = ../../ip
    
    # Include makefiles and sources for all IP components
    # *after* defining the IP_DIR
    include $(IP_DIR)/ddr3_32bit/Makefile.inc
    include $(IP_DIR)/axi_intercon_2x64_128/Makefile.inc
    include $(IP_DIR)/fifo_short_2clk/Makefile.inc
    include $(IP_DIR)/fifo_4k_2clk/Makefile.inc
    include $(IP_DIR)/axi4_bram_1kx64/Makefile.inc
    
    DESIGN_SRCS += $(abspath \
    $(IP_DDR3_32BIT_SRCS) \
    $(IP_AXI_INTERCON_2X64_128_SRCS) \
    $(IP_FIFO_4K_2CLK_SRCS) \
    $(IP_FIFO_SHORT_2CLK_SRCS) \
    $(IP_AXI4_BRAM_1KX64_SRCS) \
    )

If the DUT depends on any Xilinx IP then this section is required. It tell the tools
which IP cores need to be built in order to run the simulation. The IP specific Makefile
includes handle the "how" part of building IP. As long as the correct Mafefile is included
and the IP XCI sources are added to `DESIGN_SRCS`, the IP intermediates will be built correctly.

The `IP_DIR` variable must be defined to point to the base ip directory that contains XCI sources. 

### Section 4: Testbench Specific

    #-------------------------------------------------
    # Testbench Specific
    #-------------------------------------------------
    include $(BASE_DIR)/../sim/general/Makefile.srcs
    include $(BASE_DIR)/../sim/axi/Makefile.srcs
    
    # Define only one toplevel module
    SIM_TOP = dram_fifo_tb
    # Simulation runtime in microseconds
    SIM_RUNTIME_US = 80
    
    SIM_SRCS = \
    $(abspath dram_fifo_tb.sv) \
    $(abspath axis_dram_fifo_single.sv) \
    $(IP_DDR3_32BIT_SIM_OUTS) \
    $(SIM_GENERAL_SRCS) \
    $(SIM_AXI_SRCS)

This section contains all sources and parameters for the actual testbench. Any simulation
dependency makefiles can be included here.

The following variables must be defined:

- `SIM_TOP`: The toplevel module name for the simulation project
- `SIM_RUNTIME_US`: The maximum runtime of the simulation in microseconds. At this time $finish will be called to terminate the testbench.
- `SIM_SRCS`: This is similar to DESIGN_SRCS except that that should contain a path to `SIM_TOP` and all of its dependencies.

### Section 5: Tool Support

    #-------------------------------------------------
    # Bottom-of-Makefile
    #-------------------------------------------------
    # Include all simulator specific makefiles here
    # Each should define a unique target to simulate
    # e.g. xsim, vsim, etc and a common "clean" target
    include $(BASE_DIR)/../tools/make/viv_simulator.mak

Now that the Makefile knows all the basic information about the testbench, include tool-specific
makefiles to implement simulation targets. Currently the following simulator makefiles exits:

- ``<repo>/tools/make/viv_simulator.mak``

Please refer to the next section for more information about targets


## Testbench Top Level

The top-level module will instantiate the DUT and implement self-checking behavior. 
Test benches could be written in any language (SystemVerilog, Verilog, VHDL) but 
to take advantage of our repository of simulation libraries, it is recommended that SystemVerilog be used.

Here is a sample SystemVerilog top module (you are encouraged to use this as a starting point)

    //
    // Copyright 2015 Ettus Research LLC
    //
    
    `timescale 1ns/1ps
    `define NS_PER_TICK     1
    `define NUM_TEST_CASES  3
    
    `include "sim_clks_rsts.vh"
    `include "sim_exec_report.vh"
    `include "sim_cvita_lib.sv"
    
    module example_fifo_tb();
      `TEST_BENCH_INIT("example_fifo_tb",`NUM_TEST_CASES,`NS_PER_TICK)
    
      // Define all clocks and resets
      `DEFINE_CLK(bus_clk, 1000/166.6667, 50) //166MHz bus_clk
      `DEFINE_RESET(bus_rst, 0, 100)          //100ns for GSR to deassert
    
      cvita_stream_t chdr_i (.clk(bus_clk));
      cvita_stream_t chdr_o (.clk(bus_clk));
    
      // Initialize DUT
      axi_fifo #(.WIDTH(65), .SIZE(24)) dut_single (
        .clk(bus_clk),
        .reset(bus_rst),
        .clear(1'b0),
        
        .i_tdata({chdr_i.axis.tlast, chdr_i.axis.tdata}),
        .i_tvalid(chdr_i.axis.tvalid),
        .i_tready(chdr_i.axis.tready),
      
        .o_tdata({chdr_o.axis.tlast, chdr_o.axis.tdata}),
        .o_tvalid(chdr_o.axis.tvalid),
        .o_tready(chdr_o.axis.tready),
        
        .space(),
        .occupied()
      );
    
      //Testbench variables
      cvita_hdr_t   header, header_out;
      cvita_stats_t stats;

      //------------------------------------------
      //Main thread for testbench execution
      //------------------------------------------
      initial begin : tb_main
    
        `TEST_CASE_START("Wait for reset");
        while (bus_rst) @(posedge bus_clk);
        `TEST_CASE_DONE((~bus_rst));
        
        repeat (200) @(posedge bus_clk);
    
        header = '{
          pkt_type:DATA, has_time:0, eob:0, seqno:12'h666,
          length:0, sid:$random, timestamp:64'h0};
    
        `TEST_CASE_START("Fill up empty FIFO then drain (short packet)");
          chdr_o.axis.tready = 0;
          chdr_i.push_ramp_pkt(16, 64'd0, 64'h100, header);
          chdr_o.axis.tready = 1;
          chdr_o.wait_for_pkt_get_info(header_out, stats);
          `ASSERT_ERROR(stats.count==16,            "Bad packet: Length mismatch");
          `ASSERT_ERROR(header.sid==header_out.sid, "Bad packet: Wrong SID");
          `ASSERT_ERROR(chdr_i.axis.tready,         "Bus not ready");
        `TEST_CASE_DONE(1);

        header = '{
          pkt_type:DATA, has_time:1, eob:0, seqno:12'h666, 
          length:0, sid:$random, timestamp:64'h0};
    
        `TEST_CASE_START("Concurrent read and write (single packet)");
          chdr_o.axis.tready = 1;
          fork
              begin
                chdr_i.push_ramp_pkt(20, 64'd0, 64'h100, header);
              end
              begin
                chdr_o.wait_for_pkt_get_info(header_out, stats);
              end
          join
        `ASSERT_ERROR(stats.count==20,      "Bad packet: Length mismatch");
        `TEST_CASE_DONE(1);
      end
    endmodule


Each testbench should have the following basic components:

### Timescale Defines and Includes

    `timescale 1ns/1ps
    `define NS_PER_TICK     1
    `define NUM_TEST_CASES  3
    
    `include "sim_clks_rsts.vh"
    `include "sim_exec_report.vh"
    `include "sim_cvita_lib.sv"

In addition to the timescale, the infrastructure needs to know the number of 
nanoseconds per simulator tick. This can be a floating point number.


In addition to the timescale, you may include any Verilog/SystemVerilog headers here.

### Main Module Definition

    `include "sim_exec_report.vh"

    module example_fifo_tb();
      `TEST_BENCH_INIT("example_fifo_tb",`NUM_TEST_CASES,`NS_PER_TICK)

      ...

      //------------------------------------------
      //Main thread for testbench execution
      //------------------------------------------
      initial begin : tb_main

        ...

      end
    endmodule

The name of the main module must match the ``SIM_TOP`` variable value in the Makefile.
To register this module with the framework, the ``TEST_BENCH_INIT`` macro must be called.
This macro is defined in ``<repo>/usrp3/sim/general/sim_exec_report.vh``.

``TEST_BENCH_INIT``:

    // Initializes state for a test bench.
    // This macro *must be* called within the testbench module but 
    // outside the primary initial block
    // Its sets up boilerplate code for:
    // - Logging to console
    // - Test execution tracking
    // - Gathering test results
    // - Bounding execution time based on the SIM_RUNTIME_US vdef
    //
    // Usage: `TEST_BENCH_INIT(test_name,min_tc_run_count,ns_per_tick)
    // where
    //  - tb_name:          Name of the testbench. (Only used during reporting)
    //  - min_tc_run_count: Number of test cases in testbench. (Used to detect stalls and inf-loops)
    //  - ns_per_tick:      The time_unit_base from the timescale declaration

The testbench must also have at least one initial block that consists tests cases (covered later). 
For the sake of convention it should be called ``tb_main``. *All test cases must live in ``tb_main``*. You may
have other initial block but they must not call macros from ``sim_exec_report.vh`` because the code
there is not thread-safe.

### Test Cases

A test case in this context is defined as an independent entity that validates an aspect of the DUT behavior
and which is independent from other test cases i.e. the result of one test case should ideally not affect others.


Test cases are wrapped in the ``TEST_CASE_START`` and ``TEST_CASE_DONE`` macros:

    `TEST_CASE_START("Fill up empty FIFO then drain (short packet)");
      chdr_o.axis.tready = 0;
      chdr_i.push_ramp_pkt(16, 64'd0, 64'h100, header);
      chdr_o.axis.tready = 1;
      chdr_o.wait_for_pkt_get_info(header_out, stats);
      `ASSERT_ERROR(stats.count==16,            "Bad packet: Length mismatch");
      `ASSERT_ERROR(header.sid==header_out.sid, "Bad packet: Wrong SID");
      `ASSERT_ERROR(chdr_i.axis.tready,         "Bus not ready");
    `TEST_CASE_DONE(1);

Here are the signatures of the two macros:

``TEST_CASE_START``:

    // Indicates the start of a test case
    // This macro *must be* called inside the primary initial block
    //
    // Usage: `TEST_CASE_START(test_name)
    // where
    //  - test_name:        The name of the test.
    //

``TEST_CASE_DONE``:

    // Indicates the end of a test case
    // This macro *must be* called inside the primary initial block
    // The pass/fail status of test case is determined based on the
    // the user specified outcome and the number of fatal or error
    // ASSERTs triggered in the test case.
    //
    // Usage: `TEST_CASE_DONE(test_result)
    // where
    //  - test_result:  User specified outcome
    //

In addition to the test case status, it is also possible to have asserts within
a test case. We have wrappers for the different kinds of SystemVerilog asserts
that additionally fail the test case in case the assert fails. An assert triggered
in a test case will not affect the outcome of another (except for a fatal assert which
halts the simulator). Supported assert macros:

    // Wrapper around a an assert.
    // ASSERT_FATAL throws an error assertion and halts the simulator
    // if cond is not satisfied
    //
    // Usage: `ASSERT_FATAL(cond,msg)
    // where
    //  - cond: Condition for the assert
    //  - msg:  Message for the assert
    //
    
    
    // Wrapper around a an assert.
    // ASSERT_ERROR throws an error assertion and fails the test case
    // if cond is not satisfied. The simulator will *not* halt
    //
    // Usage: `ASSERT_ERROR(cond,msg)
    // where
    //  - cond: Condition for the assert
    //  - msg:  Message for the assert
    //
    
    
    // Wrapper around a an assert.
    // ASSERT_WARNING throws an warning assertion but does not fail the
    // test case if cond is not satisfied. The simulator will *not* halt
    //
    // Usage: `ASSERT_WARNING(cond,msg)
    // where
    //  - cond: Condition for the assert
    //  - msg:  Message for the assert
    //

### Optional Libraries

It is encouraged to use (and create) reusable libraries in product specific 
test benches. Libraries can provide macros, modules, tasks and functions for
ease-of-use with particular protocols and subsystems.

The \ref md_usrp3_sim_writing_testbenches page has more information.