diff options
Diffstat (limited to 'host')
| -rw-r--r-- | host/examples/wavetable.hpp | 43 | 
1 files changed, 24 insertions, 19 deletions
| diff --git a/host/examples/wavetable.hpp b/host/examples/wavetable.hpp index 216fe5012..dc2a93c36 100644 --- a/host/examples/wavetable.hpp +++ b/host/examples/wavetable.hpp @@ -1,7 +1,7 @@  //  // Copyright 2010-2012,2014 Ettus Research LLC  // Copyright 2018 Ettus Research, a National Instruments Company -// Copyright 2019 Ettus Research, A National Instruments Brand +// Copyright 2019-2020 Ettus Research, A National Instruments Brand  //  // SPDX-License-Identifier: GPL-3.0-or-later  // @@ -11,6 +11,7 @@  #include <stdexcept>  #include <string>  #include <vector> +#include <algorithm>  static const size_t wave_table_len = 8192; @@ -18,35 +19,39 @@ class wave_table_class  {  public:      wave_table_class(const std::string& wave_type, const float ampl) -        : _wave_table(wave_table_len) +        : _wave_table(wave_table_len, {0.0, 0.0})      { -        // compute real wave table with 1.0 amplitude -        std::vector<float> real_wave_table(wave_table_len); +        // Note: CONST, SQUARE, and RAMP only fill the I portion, since they are +        // amplitude-modulating signals, not phase-modulating.          if (wave_type == "CONST") { -            for (size_t i = 0; i < wave_table_len; i++) -                real_wave_table[i] = 1.0f; +            // Fill with I == ampl, Q == 0 +            std::fill( +                _wave_table.begin(), _wave_table.end(), std::complex<float>{ampl, 0.0});          } else if (wave_type == "SQUARE") { -            for (size_t i = 0; i < wave_table_len; i++) -                real_wave_table[i] = (i < wave_table_len / 2) ? 0.0f : 1.0f; +            // Fill the second half of the table with ampl, first half with +            // zeros +            std::fill(_wave_table.begin() + wave_table_len / 2, +                _wave_table.end(), +                std::complex<float>{ampl, 0.0});          } else if (wave_type == "RAMP") { -            for (size_t i = 0; i < wave_table_len; i++) -                real_wave_table[i] = 2.0f * i / (wave_table_len - 1) - 1.0f; +            // Fill I values with ramp from -1 to 1, Q with zero +            for (size_t i = 0; i < wave_table_len; i++) { +                _wave_table[i] = {(2.0f * i / (wave_table_len - 1) - 1.0f) * ampl, 0.0}; +            }          } else if (wave_type == "SINE") {              static const double tau = 2 * std::acos(-1.0); +            static const std::complex<float> J(0, 1); +            // Careful: i is the loop counter, not the imaginary unit              for (size_t i = 0; i < wave_table_len; i++) { -                real_wave_table[i] = -                    static_cast<float>(std::sin((tau * i) / wave_table_len)); +                // Directly generate complex sinusoid (a*e^{j 2\pi i/N}). We +                // create a single rotation. The call site will sub-sample +                // appropriately to create a sine wave of it's desired frequency +                _wave_table[i] = +                    ampl * std::exp(J * static_cast<float>(tau * i / wave_table_len));              }          } else {              throw std::runtime_error("unknown waveform type: " + wave_type);          } - -        // compute i and q pairs with 90% offset and scale to amplitude -        for (size_t i = 0; i < wave_table_len; i++) { -            const size_t q = (i + (3 * wave_table_len) / 4) % wave_table_len; -            _wave_table[i] = -                std::complex<float>(ampl * real_wave_table[i], ampl * real_wave_table[q]); -        }      }      inline std::complex<float> operator()(const size_t index) const | 
