aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/common/adf535x.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'host/lib/usrp/common/adf535x.hpp')
-rw-r--r--host/lib/usrp/common/adf535x.hpp477
1 files changed, 477 insertions, 0 deletions
diff --git a/host/lib/usrp/common/adf535x.hpp b/host/lib/usrp/common/adf535x.hpp
new file mode 100644
index 000000000..8ef8a7f9e
--- /dev/null
+++ b/host/lib/usrp/common/adf535x.hpp
@@ -0,0 +1,477 @@
+//
+// Copyright 2015, 2017 Ettus Research, A National Instruments Company
+//
+// SPDX-License-Identifier: GPL-3.0
+//
+
+#ifndef INCLUDED_ADF535X_HPP
+#define INCLUDED_ADF535X_HPP
+
+#include "adf5355_regs.hpp"
+#include "adf5356_regs.hpp"
+#include <uhd/utils/math.hpp>
+#include <uhd/utils/log.hpp>
+#include <boost/function.hpp>
+#include <boost/math/common_factor_rt.hpp> //gcd
+#include <utility>
+#include <vector>
+#include <algorithm>
+#include <stdint.h>
+#include <boost/format.hpp>
+#include <uhd/utils/safe_call.hpp>
+
+class adf535x_iface
+{
+public:
+ typedef boost::shared_ptr<adf535x_iface> sptr;
+ typedef boost::function<void(std::vector<uint32_t>)> write_fn_t;
+
+ static sptr make_adf5355(write_fn_t write);
+ static sptr make_adf5356(write_fn_t write);
+
+ virtual ~adf535x_iface() {};
+
+ enum output_t { RF_OUTPUT_A, RF_OUTPUT_B };
+
+ enum feedback_sel_t { FB_SEL_FUNDAMENTAL, FB_SEL_DIVIDED };
+
+ enum output_power_t { OUTPUT_POWER_M4DBM, OUTPUT_POWER_M1DBM, OUTPUT_POWER_2DBM, OUTPUT_POWER_5DBM };
+
+ enum muxout_t { MUXOUT_3STATE, MUXOUT_DVDD, MUXOUT_DGND, MUXOUT_RDIV, MUXOUT_NDIV, MUXOUT_ALD, MUXOUT_DLD };
+
+ virtual void set_reference_freq(double fref, bool force = false) = 0;
+
+ virtual void set_pfd_freq(double pfd_freq) = 0;
+
+ virtual void set_feedback_select(feedback_sel_t fb_sel) = 0;
+
+ virtual void set_output_power(output_power_t power) = 0;
+
+ virtual void set_output_enable(output_t output, bool enable) = 0;
+
+ virtual void set_muxout_mode(muxout_t mode) = 0;
+
+ virtual double set_frequency(double target_freq, double freq_resolution, bool flush = false) = 0;
+
+ virtual void commit() = 0;
+};
+
+using namespace uhd;
+
+namespace {
+ const double ADF535X_DOUBLER_MAX_REF_FREQ = 60e6;
+ const double ADF535X_MAX_FREQ_PFD = 125e6;
+//const double ADF535X_PRESCALER_THRESH = 7e9;
+
+ const double ADF535X_MIN_VCO_FREQ = 3.4e9;
+//const double ADF535X_MAX_VCO_FREQ = 6.8e9;
+ const double ADF535X_MAX_OUT_FREQ = 6.8e9;
+ const double ADF535X_MIN_OUT_FREQ = (3.4e9 / 64);
+//const double ADF535X_MAX_OUTB_FREQ = (6.8e9 * 2);
+//const double ADF535X_MIN_OUTB_FREQ = (3.4e9 * 2);
+
+ const double ADF535X_PHASE_RESYNC_TIME = 400e-6;
+
+ const uint32_t ADF535X_MOD1 = 16777216;
+ const uint32_t ADF535X_MAX_MOD2 = 16383;
+ const uint32_t ADF535X_MAX_FRAC2 = 16383;
+//const uint16_t ADF535X_MIN_INT_PRESCALER_89 = 75;
+}
+
+template <typename adf535x_regs_t>
+class adf535x_impl : public adf535x_iface
+{
+public:
+ explicit adf535x_impl(write_fn_t write_fn) :
+ _write_fn(write_fn),
+ _regs(),
+ _rewrite_regs(true),
+ _wait_time_us(0),
+ _ref_freq(0.0),
+ _pfd_freq(0.0),
+ _fb_after_divider(false)
+ {
+
+ _regs.vco_band_div = 3;
+ _regs.timeout = 11;
+ _regs.auto_level_timeout = 30;
+ _regs.synth_lock_timeout = 12;
+
+ _regs.adc_clock_divider = 16;
+ _regs.adc_conversion = adf535x_regs_t::ADC_CONVERSION_ENABLED;
+ _regs.adc_enable = adf535x_regs_t::ADC_ENABLE_ENABLED;
+
+ // TODO Needs to be enabled for phase resync
+ _regs.phase_resync = adf535x_regs_t::PHASE_RESYNC_DISABLED;
+
+ // TODO Default should be divided, but there seems to be a bug preventing that. Needs rechecking
+ _regs.feedback_select = adf535x_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
+
+ // TODO 0 is an invalid value for this field. Setting to 1 seemed to break phase sync, needs retesting.
+ _regs.phase_resync_clk_div = 0;
+ }
+
+ ~adf535x_impl()
+ {
+ UHD_SAFE_CALL(
+ _regs.power_down = adf535x_regs_t::POWER_DOWN_ENABLED;
+ commit();
+ )
+ }
+
+ void set_feedback_select(const feedback_sel_t fb_sel)
+ {
+ _fb_after_divider = (fb_sel == FB_SEL_DIVIDED);
+
+ if (_fb_after_divider) {
+ _regs.feedback_select = adf535x_regs_t::FEEDBACK_SELECT_DIVIDED;
+ } else {
+ _regs.feedback_select = adf535x_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
+ }
+ }
+
+ void set_pfd_freq(const double pfd_freq)
+ {
+ if (pfd_freq > ADF535X_MAX_FREQ_PFD) {
+ UHD_MSG(error) << boost::format("ADF535x: %f MHz is above the maximum PFD frequency of %f MHz\n")
+ % (pfd_freq/1e6) % (ADF535X_MAX_FREQ_PFD/1e6);
+ return;
+ }
+ _pfd_freq = pfd_freq;
+
+ set_reference_freq(_ref_freq);
+ }
+
+ void set_reference_freq(const double fref, const bool force = false)
+ {
+ //Skip the body if the reference frequency does not change
+ if (uhd::math::frequencies_are_equal(fref, _ref_freq) and (not force))
+ return;
+
+ _ref_freq = fref;
+
+ //-----------------------------------------------------------
+ //Set reference settings
+ int ref_div_factor = static_cast<int>(std::floor(_ref_freq / _pfd_freq));
+
+ //Reference doubler for 50% duty cycle
+ const bool doubler_en = (_ref_freq <= ADF535X_DOUBLER_MAX_REF_FREQ);
+ if (doubler_en) {
+ ref_div_factor *= 2;
+ }
+
+ //Reference divide-by-2 for 50% duty cycle
+ // if R even, move one divide by 2 to to regs.reference_divide_by_2
+ const bool div2_en = (ref_div_factor % 2 == 0);
+ if (div2_en) {
+ ref_div_factor /= 2;
+ }
+
+ _regs.reference_divide_by_2 = div2_en ?
+ adf535x_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED :
+ adf535x_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
+ _regs.reference_doubler = doubler_en ?
+ adf535x_regs_t::REFERENCE_DOUBLER_ENABLED :
+ adf535x_regs_t::REFERENCE_DOUBLER_DISABLED;
+ _regs.r_counter_10_bit = ref_div_factor;
+ UHD_ASSERT_THROW((_regs.r_counter_10_bit & ((uint16_t)~0x3FF)) == 0);
+
+ //-----------------------------------------------------------
+ //Set timeouts (code from ADI driver)
+ _regs.timeout = std::max(1, std::min(int(ceil(_pfd_freq / (20e3 * 30))), 1023));
+
+ UHD_ASSERT_THROW((_regs.timeout & ((uint16_t)~0x3FF)) == 0);
+ _regs.synth_lock_timeout =
+ static_cast<uint8_t>(ceil((_pfd_freq * 2) / (100e3 * _regs.timeout)));
+ UHD_ASSERT_THROW((_regs.synth_lock_timeout & ((uint16_t)~0x1F)) == 0);
+ _regs.auto_level_timeout =
+ static_cast<uint8_t>(ceil((_pfd_freq * 5) / (100e3 * _regs.timeout)));
+
+ //-----------------------------------------------------------
+ //Set VCO band divider
+ _regs.vco_band_div =
+ static_cast<uint8_t>(ceil(_pfd_freq / 2.4e6));
+
+ //-----------------------------------------------------------
+ //Set ADC delay (code from ADI driver)
+ _regs.adc_enable = adf535x_regs_t::ADC_ENABLE_ENABLED;
+ _regs.adc_conversion = adf535x_regs_t::ADC_CONVERSION_ENABLED;
+ _regs.adc_clock_divider = std::max(1, std::min(int(ceil(((_pfd_freq / 100e3) - 2) / 4)),255));
+
+ _wait_time_us = static_cast<uint32_t>(
+ ceil(16e6 / (_pfd_freq / ((4 * _regs.adc_clock_divider) + 2))));
+
+ //-----------------------------------------------------------
+ //Phase resync
+ // TODO Renable here, in initialization, or through separate set_phase_resync(bool enable) function
+ _regs.phase_resync = adf535x_regs_t::PHASE_RESYNC_DISABLED;
+
+ _regs.phase_adjust = adf535x_regs_t::PHASE_ADJUST_DISABLED;
+ _regs.sd_load_reset = adf535x_regs_t::SD_LOAD_RESET_ON_REG0_UPDATE;
+ _regs.phase_resync_clk_div = static_cast<uint16_t>(
+ floor(ADF535X_PHASE_RESYNC_TIME * _pfd_freq));
+
+ _rewrite_regs = true;
+ }
+
+ double set_frequency(const double target_freq, const double freq_resolution, const bool flush = false)
+ {
+ return _set_frequency(target_freq, freq_resolution, flush);
+ }
+
+ void set_output_power(const output_power_t power)
+ {
+ typename adf535x_regs_t::output_power_t setting;
+ switch (power) {
+ case OUTPUT_POWER_M4DBM: setting = adf535x_regs_t::OUTPUT_POWER_M4DBM; break;
+ case OUTPUT_POWER_M1DBM: setting = adf535x_regs_t::OUTPUT_POWER_M1DBM; break;
+ case OUTPUT_POWER_2DBM: setting = adf535x_regs_t::OUTPUT_POWER_2DBM; break;
+ case OUTPUT_POWER_5DBM: setting = adf535x_regs_t::OUTPUT_POWER_5DBM; break;
+ default: UHD_THROW_INVALID_CODE_PATH();
+ }
+ if (_regs.output_power != setting) _rewrite_regs = true;
+ _regs.output_power = setting;
+ }
+
+ void set_output_enable(const output_t output, const bool enable)
+ {
+ switch (output) {
+ case RF_OUTPUT_A: _regs.rf_out_a_enabled = enable ? adf535x_regs_t::RF_OUT_A_ENABLED_ENABLED :
+ adf535x_regs_t::RF_OUT_A_ENABLED_DISABLED;
+ break;
+ case RF_OUTPUT_B: _regs.rf_out_b_enabled = enable ? adf535x_regs_t::RF_OUT_B_ENABLED_ENABLED :
+ adf535x_regs_t::RF_OUT_B_ENABLED_DISABLED;
+ break;
+ }
+ }
+
+ void set_muxout_mode(const muxout_t mode)
+ {
+ switch (mode) {
+ case MUXOUT_3STATE: _regs.muxout = adf535x_regs_t::MUXOUT_3STATE; break;
+ case MUXOUT_DVDD: _regs.muxout = adf535x_regs_t::MUXOUT_DVDD; break;
+ case MUXOUT_DGND: _regs.muxout = adf535x_regs_t::MUXOUT_DGND; break;
+ case MUXOUT_RDIV: _regs.muxout = adf535x_regs_t::MUXOUT_RDIV; break;
+ case MUXOUT_NDIV: _regs.muxout = adf535x_regs_t::MUXOUT_NDIV; break;
+ case MUXOUT_ALD: _regs.muxout = adf535x_regs_t::MUXOUT_ANALOG_LD; break;
+ case MUXOUT_DLD: _regs.muxout = adf535x_regs_t::MUXOUT_DLD; break;
+ default: UHD_THROW_INVALID_CODE_PATH();
+ }
+ }
+
+ void commit()
+ {
+ _commit();
+ }
+
+protected:
+ double _set_frequency(double, double, bool);
+ void _commit();
+
+private: //Members
+ typedef std::vector<uint32_t> addr_vtr_t;
+
+ write_fn_t _write_fn;
+ adf535x_regs_t _regs;
+ bool _rewrite_regs;
+ uint32_t _wait_time_us;
+ double _ref_freq;
+ double _pfd_freq;
+ double _fb_after_divider;
+};
+
+// ADF5355 Functions
+template <>
+inline double adf535x_impl<adf5355_regs_t>::_set_frequency(double target_freq, double freq_resolution, bool flush)
+{
+ if (target_freq > ADF535X_MAX_OUT_FREQ or target_freq < ADF535X_MIN_OUT_FREQ) {
+ throw uhd::runtime_error("requested frequency out of range.");
+ }
+ if ((uint32_t) freq_resolution == 0) {
+ throw uhd::runtime_error("requested resolution cannot be less than 1.");
+ }
+
+ /* Calculate target VCOout frequency */
+ //Increase RF divider until acceptable VCO frequency
+ double target_vco_freq = target_freq;
+ uint32_t rf_divider = 1;
+ while (target_vco_freq < ADF535X_MIN_VCO_FREQ && rf_divider < 64) {
+ target_vco_freq *= 2;
+ rf_divider *= 2;
+ }
+
+ switch (rf_divider) {
+ case 1: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV1; break;
+ case 2: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV2; break;
+ case 4: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV4; break;
+ case 8: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV8; break;
+ case 16: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV16; break;
+ case 32: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV32; break;
+ case 64: _regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV64; break;
+ default: UHD_THROW_INVALID_CODE_PATH();
+ }
+
+ //Compute fractional PLL params
+ double prescaler_input_freq = target_vco_freq;
+ if (_fb_after_divider) {
+ prescaler_input_freq /= rf_divider;
+ }
+
+ const double N = prescaler_input_freq / _pfd_freq;
+ const uint16_t INT = static_cast<uint16_t>(floor(N));
+ const uint32_t FRAC1 = static_cast<uint32_t>(floor((N - INT) * ADF535X_MOD1));
+ const double residue = (N - INT) * ADF535X_MOD1 - FRAC1;
+
+ const double gcd = boost::math::gcd(static_cast<int>(_pfd_freq), static_cast<int>(freq_resolution));
+ const uint16_t MOD2 = static_cast<uint16_t>(std::min(floor(_pfd_freq / gcd), static_cast<double>(ADF535X_MAX_MOD2)));
+ const uint16_t FRAC2 = static_cast<uint16_t>(std::min(ceil(residue * MOD2), static_cast<double>(ADF535X_MAX_FRAC2)));
+
+ const double coerced_vco_freq = _pfd_freq * (
+ double(INT) + (
+ (double(FRAC1) +
+ (double(FRAC2) / double(MOD2)))
+ / double(ADF535X_MOD1)
+ )
+ );
+
+ const double coerced_out_freq = coerced_vco_freq / rf_divider;
+
+ /* Update registers */
+ _regs.int_16_bit = INT;
+ _regs.frac1_24_bit = FRAC1;
+ _regs.frac2_14_bit = FRAC2;
+ _regs.mod2_14_bit = MOD2;
+ _regs.phase_24_bit = 0;
+
+ if (flush) commit();
+ return coerced_out_freq;
+}
+
+template <>
+inline void adf535x_impl<adf5355_regs_t>::_commit()
+{
+ const size_t ONE_REG = 1;
+
+ if (_rewrite_regs) {
+ //For a full state sync write registers in reverse order 12 - 0
+ addr_vtr_t regs;
+ for (uint8_t addr = 12; addr > 0; addr--) {
+ regs.push_back(_regs.get_reg(addr));
+ }
+ _write_fn(regs);
+ // TODO Add FPGA based delay between these writes
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
+ _rewrite_regs = false;
+
+ } else {
+ //Frequency update sequence from data sheet
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(6)));
+ _regs.counter_reset = adf5355_regs_t::COUNTER_RESET_ENABLED;
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(2)));
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(1)));
+ _regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_DISABLED;
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
+ _regs.counter_reset = adf5355_regs_t::COUNTER_RESET_DISABLED;
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
+ // TODO Add FPGA based delay between these writes
+ _regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_ENABLED;
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
+ }
+}
+
+// ADF5356 Functions
+template <>
+inline double adf535x_impl<adf5356_regs_t>::_set_frequency(double target_freq, double freq_resolution, bool flush)
+{
+ if (target_freq > ADF535X_MAX_OUT_FREQ or target_freq < ADF535X_MIN_OUT_FREQ) {
+ throw uhd::runtime_error("requested frequency out of range.");
+ }
+ if ((uint32_t) freq_resolution == 0) {
+ throw uhd::runtime_error("requested resolution cannot be less than 1.");
+ }
+
+ /* Calculate target VCOout frequency */
+ //Increase RF divider until acceptable VCO frequency
+ double target_vco_freq = target_freq;
+ uint32_t rf_divider = 1;
+ while (target_vco_freq < ADF535X_MIN_VCO_FREQ && rf_divider < 64) {
+ target_vco_freq *= 2;
+ rf_divider *= 2;
+ }
+
+ switch (rf_divider) {
+ case 1: _regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV1; break;
+ case 2: _regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV2; break;
+ case 4: _regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV4; break;
+ case 8: _regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV8; break;
+ case 16: _regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV16; break;
+ case 32: _regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV32; break;
+ case 64: _regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV64; break;
+ default: UHD_THROW_INVALID_CODE_PATH();
+ }
+
+ //Compute fractional PLL params
+ double prescaler_input_freq = target_vco_freq;
+ if (_fb_after_divider) {
+ prescaler_input_freq /= rf_divider;
+ }
+
+ const double N = prescaler_input_freq / _pfd_freq;
+ const uint16_t INT = static_cast<uint16_t>(floor(N));
+ const uint32_t FRAC1 = static_cast<uint32_t>(floor((N - INT) * ADF535X_MOD1));
+ const double residue = (N - INT) * ADF535X_MOD1 - FRAC1;
+
+ const double gcd = boost::math::gcd(static_cast<int>(_pfd_freq), static_cast<int>(freq_resolution));
+ const uint16_t MOD2 = static_cast<uint16_t>(std::min(floor(_pfd_freq / gcd), static_cast<double>(ADF535X_MAX_MOD2)));
+ const uint16_t FRAC2 = static_cast<uint16_t>(std::min(ceil(residue * MOD2), static_cast<double>(ADF535X_MAX_FRAC2)));
+
+ const double coerced_vco_freq = _pfd_freq * (
+ double(INT) + (
+ (double(FRAC1) +
+ (double(FRAC2) / double(MOD2)))
+ / double(ADF535X_MOD1)
+ )
+ );
+
+ const double coerced_out_freq = coerced_vco_freq / rf_divider;
+
+ /* Update registers */
+ _regs.int_16_bit = INT;
+ _regs.frac1_24_bit = FRAC1;
+ _regs.frac2_msb = FRAC2;
+ _regs.mod2_msb = MOD2;
+ _regs.phase_24_bit = 0;
+
+ if (flush) commit();
+ return coerced_out_freq;
+}
+
+template <>
+inline void adf535x_impl<adf5356_regs_t>::_commit()
+{
+ const size_t ONE_REG = 1;
+ if (_rewrite_regs) {
+ //For a full state sync write registers in reverse order 12 - 0
+ addr_vtr_t regs;
+ for (uint8_t addr = 13; addr > 0; addr--) {
+ regs.push_back(_regs.get_reg(addr));
+ }
+ _write_fn(regs);
+ // TODO Add FPGA based delay between these writes
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
+ _rewrite_regs = false;
+
+ } else {
+ //Frequency update sequence from data sheet
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(13)));
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(10)));
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(6)));
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(2)));
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(1)));
+ // TODO Add FPGA based delay between these writes
+ _write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
+ }
+}
+
+#endif // INCLUDED_ADF535X_HPP