diff options
Diffstat (limited to 'host/lib/usrp/common/ad9361_driver/ad9361_device.cpp')
-rw-r--r-- | host/lib/usrp/common/ad9361_driver/ad9361_device.cpp | 1921 |
1 files changed, 1921 insertions, 0 deletions
diff --git a/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp new file mode 100644 index 000000000..1e1e51412 --- /dev/null +++ b/host/lib/usrp/common/ad9361_driver/ad9361_device.cpp @@ -0,0 +1,1921 @@ +// +// Copyright 2014 Ettus Research LLC +// + +#include <stdarg.h> +#include <stdint.h> +#include <stdio.h> +#include <cstring> +#include <cmath> +#include <iostream> +#include "ad9361_filter_taps.h" +#include "ad9361_gain_tables.h" +#include "ad9361_synth_lut.h" +#include "ad9361_client.h" //Client (product) specific settings +#include "ad9361_device.h" +#include <boost/date_time/posix_time/posix_time.hpp> +#include <boost/thread/thread.hpp> +#include <boost/scoped_array.hpp> + +#define AD9361_MIN(a, b) (((a) < (b)) ? (a) : (b)) +#define AD9361_MAX(a, b) (((a) > (b)) ? (a) : (b)) + +#define msg +#define post_err_msg(x) + +inline int floor_to_int(double val) { + return static_cast<int>(std::floor(val)); +} + +inline int ceil_to_int(double val) { + return static_cast<int>(std::ceil(val)); +} + +//////////////////////////////////////////////////////////// +#define AD9361_MAX_GAIN 89.75 + +#define DOUBLE_PI 3.14159265359 +#define DOUBLE_LN_2 0.693147181 + +//////////////////////////////////////////////////////////// +// the following macros evaluate to a compile time constant +// macros By Tom Torfs - donated to the public domain + +/* turn a numeric literal into a hex constant +(avoids problems with leading zeroes) +8-bit constants max value 0x11111111, always fits in unsigned long +*/ +#define HEX__(n) 0x##n##LU + +/* 8-bit conversion function */ +#define B8__(x) ((x&0x0000000FLU)?1:0) \ ++((x&0x000000F0LU)?2:0) \ ++((x&0x00000F00LU)?4:0) \ ++((x&0x0000F000LU)?8:0) \ ++((x&0x000F0000LU)?16:0) \ ++((x&0x00F00000LU)?32:0) \ ++((x&0x0F000000LU)?64:0) \ ++((x&0xF0000000LU)?128:0) + +/* *** user macros *** */ + +namespace uhd { namespace usrp { + +/* for upto 8-bit binary constants */ +#define B8(d) ((unsigned char)B8__(HEX__(d))) + +void ad9361_device_t::output_test_tone() +{ + /* Output a 480 kHz tone at 800 MHz */ + _io_iface->poke8(0x3F4, 0x0B); + _io_iface->poke8(0x3FC, 0xFF); + _io_iface->poke8(0x3FD, 0xFF); + _io_iface->poke8(0x3FE, 0x3F); +} + +void ad9361_device_t::data_port_loopback(const bool loopback_enabled) +{ + msg("[data_port_loopback] Enabled: %d", loopback_enabled); + _io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00)); +} + +/* This is a simple comparison for very large double-precision floating + * point numbers. It is used to prevent re-tunes for frequencies that are + * the same but not 'exactly' because of data precision issues. */ +// TODO: see if we can avoid the need for this function +int freq_is_nearly_equal(double a, double b) { + return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1; +} + +/*********************************************************************** + * Filter functions + **********************************************************************/ + +/* This function takes in the calculated maximum number of FIR taps, and + * returns a number of taps that makes AD9361 happy. */ +int get_num_taps(int max_num_taps) { + + int num_taps = 0; + int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128}; + int i; + for(i = 1; i < 8; i++) { + if(max_num_taps >= num_taps_list[i]) { + continue; + } else { + num_taps = num_taps_list[i - 1]; + break; + } + } if(num_taps == 0) { num_taps = 128; } + + return num_taps; +} + +/* Program either the RX or TX FIR filter. + * + * The process is the same for both filters, but the function must be told + * how many taps are in the filter, and given a vector of the taps + * themselves. */ + +void ad9361_device_t::_program_fir_filter(direction_t direction, int num_taps, uint16_t *coeffs) +{ + uint16_t base; + + /* RX and TX filters use largely identical sets of programming registers. + Select the appropriate bank of registers here. */ + if (direction == RX) { + base = 0x0f0; + } else { + base = 0x060; + } + + /* Encode number of filter taps for programming register */ + uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5; + + /* Turn on the filter clock. */ + _io_iface->poke8(base + 5, reg_numtaps | 0x1a); + boost::this_thread::sleep(boost::posix_time::milliseconds(1)); + + /* Zero the unused taps just in case they have stale data */ + int addr; + for (addr = num_taps; addr < 128; addr++) { + _io_iface->poke8(base + 0, addr); + _io_iface->poke8(base + 1, 0x0); + _io_iface->poke8(base + 2, 0x0); + _io_iface->poke8(base + 5, reg_numtaps | 0x1e); + _io_iface->poke8(base + 4, 0x00); + _io_iface->poke8(base + 4, 0x00); + } + + /* Iterate through indirect programming of filter coeffs using ADI recomended procedure */ + for (addr = 0; addr < num_taps; addr++) { + _io_iface->poke8(base + 0, addr); + _io_iface->poke8(base + 1, (coeffs[addr]) & 0xff); + _io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff); + _io_iface->poke8(base + 5, reg_numtaps | 0x1e); + _io_iface->poke8(base + 4, 0x00); + _io_iface->poke8(base + 4, 0x00); + } + + /* UG-671 states (page 25) (paraphrased and clarified): + " After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high. + Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally + before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table" + */ + + _io_iface->poke8(base + 5, reg_numtaps | 0x1A); + if (direction == RX) { + _io_iface->poke8(base + 5, reg_numtaps | 0x18); + _io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/ + } else { + _io_iface->poke8(base + 5, reg_numtaps | 0x19); /* Also turn on -6dB Tx gain here, to stop filter overfow.*/ + } +} + + +/* Program the RX FIR Filter. */ +void ad9361_device_t::_setup_rx_fir(size_t num_taps) +{ + boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]); + for (size_t i = 0; i < num_taps; i++) { + switch (num_taps) { + case 128: + coeffs[i] = (uint16_t) hb127_coeffs[i]; + break; + case 96: + coeffs[i] = (uint16_t) hb95_coeffs[i]; + break; + case 64: + coeffs[i] = (uint16_t) hb63_coeffs[i]; + break; + case 48: + coeffs[i] = (uint16_t) hb47_coeffs[i]; + break; + default: + post_err_msg("Unsupported number of Rx FIR taps."); + } + } + + _program_fir_filter(RX, num_taps, coeffs.get()); +} + +/* Program the TX FIR Filter. */ +void ad9361_device_t::_setup_tx_fir(size_t num_taps) +{ + boost::scoped_array<boost::uint16_t> coeffs(new boost::uint16_t[num_taps]); + for (size_t i = 0; i < num_taps; i++) { + switch (num_taps) { + case 128: + coeffs[i] = (uint16_t) hb127_coeffs[i]; + break; + case 96: + coeffs[i] = (uint16_t) hb95_coeffs[i]; + break; + case 64: + coeffs[i] = (uint16_t) hb63_coeffs[i]; + break; + case 48: + coeffs[i] = (uint16_t) hb47_coeffs[i]; + break; + default: + post_err_msg("Unsupported number of Tx FIR taps."); + } + } + + _program_fir_filter(TX, num_taps, coeffs.get()); +} + +/*********************************************************************** + * Calibration functions + ***********************************************************************/ + +/* Calibrate and lock the BBPLL. + * + * This function should be called anytime the BBPLL is tuned. */ +void ad9361_device_t::_calibrate_lock_bbpll() +{ + _io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration + _io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit + + /* Increase BBPLL KV and phase margin. */ + _io_iface->poke8(0x04c, 0x86); + _io_iface->poke8(0x04d, 0x01); + _io_iface->poke8(0x04d, 0x05); + + /* Wait for BBPLL lock. */ + size_t count = 0; + while (!(_io_iface->peek8(0x05e) & 0x80)) { + if (count > 1000) { + post_err_msg("BBPLL not locked"); + break; + } + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(2)); + } +} + +/* Calibrate the synthesizer charge pumps. + * + * Technically, this calibration only needs to be done once, at device + * initialization. */ +void ad9361_device_t::_calibrate_synth_charge_pumps() +{ + /* If this function ever gets called, and the ENSM isn't already in the + * ALERT state, then something has gone horribly wrong. */ + if ((_io_iface->peek8(0x017) & 0x0F) != 5) { + post_err_msg("AD9361 not in ALERT during cal"); + } + + /* Calibrate the RX synthesizer charge pump. */ + size_t count = 0; + _io_iface->poke8(0x23d, 0x04); + while (!(_io_iface->peek8(0x244) & 0x80)) { + if (count > 5) { + post_err_msg("RX charge pump cal failure"); + break; + } + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(1)); + } + _io_iface->poke8(0x23d, 0x00); + + /* Calibrate the TX synthesizer charge pump. */ + count = 0; + _io_iface->poke8(0x27d, 0x04); + while (!(_io_iface->peek8(0x284) & 0x80)) { + if (count > 5) { + post_err_msg("TX charge pump cal failure"); + break; + } + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(1)); + } + _io_iface->poke8(0x27d, 0x00); +} + +/* Calibrate the analog BB RX filter. + * + * Note that the filter calibration depends heavily on the baseband + * bandwidth, so this must be re-done after any change to the RX sample + * rate. */ +double ad9361_device_t::_calibrate_baseband_rx_analog_filter() +{ + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if (bbbw > 28e6) { + bbbw = 28e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + + double rxtune_clk = ((1.4 * bbbw * 2 * DOUBLE_PI) / DOUBLE_LN_2); + _rx_bbf_tunediv = AD9361_MIN(511, ceil_to_int(_bbpll_freq / rxtune_clk)); + _regs.bbftune_config = (_regs.bbftune_config & 0xFE) + | ((_rx_bbf_tunediv >> 8) & 0x0001); + + double bbbw_mhz = bbbw / 1e6; + double temp = ((bbbw_mhz - floor_to_int(bbbw_mhz)) * 1000) / 7.8125; + uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (floor_to_int(temp + 0.5))); + + /* Set corner frequencies and dividers. */ + _io_iface->poke8(0x1fb, (uint8_t) (bbbw_mhz)); + _io_iface->poke8(0x1fc, bbbw_khz); + _io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF)); + _io_iface->poke8(0x1f9, _regs.bbftune_config); + + /* RX Mix Voltage settings - only change with apps engineer help. */ + _io_iface->poke8(0x1d5, 0x3f); + _io_iface->poke8(0x1c0, 0x03); + + /* Enable RX1 & RX2 filter tuners. */ + _io_iface->poke8(0x1e2, 0x02); + _io_iface->poke8(0x1e3, 0x02); + + /* Run the calibration! */ + size_t count = 0; + _io_iface->poke8(0x016, 0x80); + while (_io_iface->peek8(0x016) & 0x80) { + if (count > 100) { + post_err_msg("RX baseband filter cal FAILURE"); + break; + } + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(1)); + } + + /* Disable RX1 & RX2 filter tuners. */ + _io_iface->poke8(0x1e2, 0x03); + _io_iface->poke8(0x1e3, 0x03); + + return bbbw; +} + +/* Calibrate the analog BB TX filter. + * + * Note that the filter calibration depends heavily on the baseband + * bandwidth, so this must be re-done after any change to the TX sample + * rate. */ +double ad9361_device_t::_calibrate_baseband_tx_analog_filter() +{ + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if (bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.625e6) { + bbbw = 0.625e6; + } + + double txtune_clk = ((1.6 * bbbw * 2 * DOUBLE_PI) / DOUBLE_LN_2); + uint16_t txbbfdiv = AD9361_MIN(511, (ceil_to_int(_bbpll_freq / txtune_clk))); + _regs.bbftune_mode = (_regs.bbftune_mode & 0xFE) + | ((txbbfdiv >> 8) & 0x0001); + + /* Program the divider values. */ + _io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF)); + _io_iface->poke8(0x0d7, _regs.bbftune_mode); + + /* Enable the filter tuner. */ + _io_iface->poke8(0x0ca, 0x22); + + /* Calibrate! */ + size_t count = 0; + _io_iface->poke8(0x016, 0x40); + while (_io_iface->peek8(0x016) & 0x40) { + if (count > 100) { + post_err_msg("TX baseband filter cal FAILURE"); + break; + } + + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(1)); + } + + /* Disable the filter tuner. */ + _io_iface->poke8(0x0ca, 0x26); + + return bbbw; +} + +/* Calibrate the secondary TX filter. + * + * This filter also depends on the TX sample rate, so if a rate change is + * made, the previous calibration will no longer be valid. */ +void ad9361_device_t::_calibrate_secondary_tx_filter() +{ + /* For filter tuning, baseband BW is half the complex BW, and must be + * between 20e6 and 0.53e6. */ + double bbbw = _baseband_bw / 2.0; + if (bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.53e6) { + bbbw = 0.53e6; + } + + double bbbw_mhz = bbbw / 1e6; + + /* Start with a resistor value of 100 Ohms. */ + int res = 100; + + /* Calculate target corner frequency. */ + double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI; + + /* Iterate through RC values to determine correct combination. */ + int cap = 0; + int i; + for (i = 0; i <= 3; i++) { + cap = (floor_to_int(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12))) + - 12; + + if (cap <= 63) { + break; + } + + res = res * 2; + } + if (cap > 63) { + cap = 63; + } + + uint8_t reg0d0, reg0d1, reg0d2; + + /* Translate baseband bandwidths to register settings. */ + if ((bbbw_mhz * 2) <= 9) { + reg0d0 = 0x59; + } else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) { + reg0d0 = 0x56; + } else if ((bbbw_mhz * 2) > 24) { + reg0d0 = 0x57; + } else { + post_err_msg("Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz"); + reg0d0 = 0x00; + } + + /* Translate resistor values to register settings. */ + if (res == 100) { + reg0d1 = 0x0c; + } else if (res == 200) { + reg0d1 = 0x04; + } else if (res == 400) { + reg0d1 = 0x03; + } else if (res == 800) { + reg0d1 = 0x01; + } else { + reg0d1 = 0x0c; + } + + reg0d2 = cap; + + /* Program the above-calculated values. Sweet. */ + _io_iface->poke8(0x0d2, reg0d2); + _io_iface->poke8(0x0d1, reg0d1); + _io_iface->poke8(0x0d0, reg0d0); +} + +/* Calibrate the RX TIAs. + * + * Note that the values in the TIA register, after calibration, vary with + * the RX gain settings. */ +void ad9361_device_t::_calibrate_rx_TIAs() +{ + uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F; + uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F; + uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07; + uint8_t reg1db = 0x00; + uint8_t reg1dc = 0x00; + uint8_t reg1dd = 0x00; + uint8_t reg1de = 0x00; + uint8_t reg1df = 0x00; + + /* For calibration, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + double bbbw = _baseband_bw / 2.0; + if (bbbw > 20e6) { + bbbw = 20e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + double ceil_bbbw_mhz = ceil_to_int(bbbw / 1e6); + + /* Do some crazy resistor and capacitor math. */ + int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140; + int R2346 = 18300 * (reg1e6 & 0x07); + double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500; + + /* Translate baseband BW to register settings. */ + if (ceil_bbbw_mhz <= 3) { + reg1db = 0xe0; + } else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) { + reg1db = 0x60; + } else if (ceil_bbbw_mhz > 10) { + reg1db = 0x20; + } else { + post_err_msg("CalRxTias: INVALID_CODE_PATH bad bbbw_mhz"); + } + + if (CTIA_fF > 2920) { + reg1dc = 0x40; + reg1de = 0x40; + uint8_t temp = (uint8_t) AD9361_MIN(127, + (floor_to_int(0.5 + ((CTIA_fF - 400.0) / 320.0)))); + reg1dd = temp; + reg1df = temp; + } else { + uint8_t temp = (uint8_t) floor_to_int(0.5 + ((CTIA_fF - 400.0) / 40.0)) + + 0x40; + reg1dc = temp; + reg1de = temp; + reg1dd = 0; + reg1df = 0; + } + + /* w00t. Settings calculated. Program them and roll out. */ + _io_iface->poke8(0x1db, reg1db); + _io_iface->poke8(0x1dd, reg1dd); + _io_iface->poke8(0x1df, reg1df); + _io_iface->poke8(0x1dc, reg1dc); + _io_iface->poke8(0x1de, reg1de); +} + +/* Setup the AD9361 ADC. + * + * There are 40 registers that control the ADC's operation, most of the + * values of which must be derived mathematically, dependent on the current + * setting of the BBPLL. Note that the order of calculation is critical, as + * some of the 40 registers depend on the values in others. */ +void ad9361_device_t::_setup_adc() +{ + double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \ + / (1.4 * 2 * DOUBLE_PI); + + /* For calibration, baseband BW is half the complex BW, and must be + * between 28e6 and 0.2e6. */ + if(bbbw_mhz > 28) { + bbbw_mhz = 28; + } else if (bbbw_mhz < 0.20) { + bbbw_mhz = 0.20; + } + + uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F; + uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F; + uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07; + + double fsadc = _adcclock_freq / 1e6; + + /* Sort out the RC time constant for our baseband bandwidth... */ + double rc_timeconst = 0.0; + if(bbbw_mhz < 18) { + rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ + * (18300 * rxbbf_r2346) + * ((160e-15 * rxbbf_c3_msb) + + (10e-15 * rxbbf_c3_lsb) + 140e-15) + * (bbbw_mhz * 1e6))); + } else { + rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ + * (18300 * rxbbf_r2346) + * ((160e-15 * rxbbf_c3_msb) + + (10e-15 * rxbbf_c3_lsb) + 140e-15) + * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18))))); + } + + double scale_res = sqrt(1 / rc_timeconst); + double scale_cap = sqrt(1 / rc_timeconst); + + double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192; + double maxsnr = 640 / 160; + + /* Calculate the values for all 40 settings registers. + * + * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/ + uint8_t data[40]; + data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24; + data[4] = 0x24; data[5] = 0; data[6] = 0; + data[7] = (uint8_t) AD9361_MIN(124, (floor_to_int(-0.5 + + (80.0 * scale_snr * scale_res + * AD9361_MIN(1.0, sqrt(maxsnr * fsadc / 640.0)))))); + double data007 = data[7]; + data[8] = (uint8_t) AD9361_MIN(255, (floor_to_int(0.5 + + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0)) + / (scale_res * scale_cap)))))); + data[10] = (uint8_t) AD9361_MIN(127, (floor_to_int(-0.5 + (77.0 * scale_res + * AD9361_MIN(1.0, sqrt(maxsnr * fsadc / 640.0)))))); + double data010 = data[10]; + data[9] = (uint8_t) AD9361_MIN(127, (floor_to_int(0.8 * data010))); + data[11] = (uint8_t) AD9361_MIN(255, (floor_to_int(0.5 + + (20.0 * (640.0 / fsadc) * ((data010 / 77.0) + / (scale_res * scale_cap)))))); + data[12] = (uint8_t) AD9361_MIN(127, (floor_to_int(-0.5 + + (80.0 * scale_res * AD9361_MIN(1.0, + sqrt(maxsnr * fsadc / 640.0)))))); + double data012 = data[12]; + data[13] = (uint8_t) AD9361_MIN(255, (floor_to_int(-1.5 + + (20.0 * (640.0 / fsadc) * ((data012 / 80.0) + / (scale_res * scale_cap)))))); + data[14] = 21 * (uint8_t)(floor_to_int(0.1 * 640.0 / fsadc)); + data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007)); + double data015 = data[15]; + data[16] = (uint8_t) AD9361_MIN(127, (floor_to_int((data015 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[17] = data[15]; + data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010))); + double data018 = data[18]; + data[19] = (uint8_t) AD9361_MIN(127, (floor_to_int((data018 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[20] = data[18]; + data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012)); + double data021 = data[21]; + data[22] = (uint8_t) AD9361_MIN(127, (floor_to_int((data021 + * (0.98 + (0.02 * AD9361_MAX(1.0, + (640.0 / fsadc) / maxsnr))))))); + data[23] = data[21]; + data[24] = 0x2e; + data[25] = (uint8_t)(floor_to_int(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[26] = (uint8_t)(floor_to_int(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) + * (0.92 + (0.08 * (640.0 / fsadc)))))); + data[27] = (uint8_t)(floor_to_int(AD9361_MIN(63.0, + 32.0 * sqrt(fsadc / 640.0)))); + data[28] = (uint8_t)(floor_to_int(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[29] = (uint8_t)(floor_to_int(AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0) + * (0.92 + (0.08 * (640.0 / fsadc)))))); + data[30] = (uint8_t)(floor_to_int(AD9361_MIN(63.0, + 32.0 * sqrt(fsadc / 640.0)))); + data[31] = (uint8_t)(floor_to_int(128.0 + AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0)))); + data[32] = (uint8_t)(floor_to_int(AD9361_MIN(63.0, + 63.0 * (fsadc / 640.0) * (0.92 + + (0.08 * (640.0 / fsadc)))))); + data[33] = (uint8_t)(floor_to_int(AD9361_MIN(63.0, + 63.0 * sqrt(fsadc / 640.0)))); + data[34] = (uint8_t) AD9361_MIN(127, (floor_to_int(64.0 + * sqrt(fsadc / 640.0)))); + data[35] = 0x40; + data[36] = 0x40; + data[37] = 0x2c; + data[38] = 0x00; + data[39] = 0x00; + + /* Program the registers! */ + for(size_t i = 0; i < 40; i++) { + _io_iface->poke8(0x200+i, data[i]); + } +} + +/* Calibrate the baseband DC offset. + * + * Note that this function is called from within the TX quadrature + * calibration function! */ +void ad9361_device_t::_calibrate_baseband_dc_offset() +{ + _io_iface->poke8(0x193, 0x3f); // Calibration settings + _io_iface->poke8(0x190, 0x0f); // Set tracking coefficient + //write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift + _io_iface->poke8(0x194, 0x01); // More calibration settings + + /* Start that calibration, baby. */ + size_t count = 0; + _io_iface->poke8(0x016, 0x01); + while (_io_iface->peek8(0x016) & 0x01) { + if (count > 100) { + post_err_msg("Baseband DC Offset Calibration Failure"); + break; + } + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(5)); + } +} + +/* Calibrate the RF DC offset. + * + * Note that this function is called from within the TX quadrature + * calibration function. */ +void ad9361_device_t::_calibrate_rf_dc_offset() +{ + /* Some settings are frequency-dependent. */ + if (_rx_freq < 4e9) { + _io_iface->poke8(0x186, 0x32); // RF DC Offset count + _io_iface->poke8(0x187, 0x24); + _io_iface->poke8(0x188, 0x05); + } else { + _io_iface->poke8(0x186, 0x28); // RF DC Offset count + _io_iface->poke8(0x187, 0x34); + _io_iface->poke8(0x188, 0x06); + } + + _io_iface->poke8(0x185, 0x20); // RF DC Offset wait count + _io_iface->poke8(0x18b, 0x83); + _io_iface->poke8(0x189, 0x30); + + /* Run the calibration! */ + size_t count = 0; + _io_iface->poke8(0x016, 0x02); + while (_io_iface->peek8(0x016) & 0x02) { + if (count > 100) { + post_err_msg("RF DC Offset Calibration Failure"); + break; + } + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(50)); + } +} + +/* Start the RX quadrature calibration. + * + * Note that we are using AD9361's 'tracking' feature for RX quadrature + * calibration, so once it starts it continues to free-run during operation. + * It should be re-run for large frequency changes. */ +void ad9361_device_t::_calibrate_rx_quadrature() +{ + /* Configure RX Quadrature calibration settings. */ + _io_iface->poke8(0x168, 0x03); // Set tone level for cal + _io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal + _io_iface->poke8(0x16a, 0x75); // Set Kexp phase + _io_iface->poke8(0x16b, 0x15); // Set Kexp amplitude + _io_iface->poke8(0x169, 0xcf); // Continuous tracking mode + _io_iface->poke8(0x18b, 0xad); +} + +/* TX quadtrature calibration routine. + * + * The TX quadrature needs to be done twice, once for each TX chain, with + * only one register change in between. Thus, this function enacts the + * calibrations, and it is called from calibrate_tx_quadrature. */ +void ad9361_device_t::_tx_quadrature_cal_routine() { + /* This is a weird process, but here is how it works: + * 1) Read the calibrated NCO frequency bits out of 0A3. + * 2) Write the two bits to the RX NCO freq part of 0A0. + * 3) Re-read 0A3 to get bits [5:0] because maybe they changed? + * 4) Update only the TX NCO freq bits in 0A3. + * 5) Profit (I hope). */ + uint8_t reg0a3 = _io_iface->peek8(0x0a3); + uint8_t nco_freq = (reg0a3 & 0xC0); + _io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1)); + reg0a3 = _io_iface->peek8(0x0a3); + _io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq); + + /* It is possible to reach a configuration that won't operate correctly, + * where the two test tones used for quadrature calibration are outside + * of the RX BBF, and therefore don't make it to the ADC. We will check + * for that scenario here. */ + double max_cal_freq = (((_baseband_bw * _tfir_factor) + * ((nco_freq >> 6) + 1)) / 32) * 2; + double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW + if (bbbw > 28e6) { + bbbw = 28e6; + } else if (bbbw < 0.20e6) { + bbbw = 0.20e6; + } + if (max_cal_freq > bbbw) + post_err_msg("max_cal_freq > bbbw"); + + _io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient + _io_iface->poke8(0x0a9, 0xff); // Cal count + _io_iface->poke8(0x0a2, 0x7f); // Cal Kexp + _io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV + _io_iface->poke8(0x0a6, 0x01); + + /* The gain table index used for calibration must be adjusted for the + * mid-table to get a TIA index = 1 and LPF index = 0. */ + if ((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) { + _io_iface->poke8(0x0aa, 0x22); // Cal gain table index + } else { + _io_iface->poke8(0x0aa, 0x25); // Cal gain table index + } + + _io_iface->poke8(0x0a4, 0xf0); // Cal setting conut + _io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode) + + /* First, calibrate the baseband DC offset. */ + _calibrate_baseband_dc_offset(); + + /* Second, calibrate the RF DC offset. */ + _calibrate_rf_dc_offset(); + + /* Now, calibrate the TX quadrature! */ + size_t count = 0; + _io_iface->poke8(0x016, 0x10); + while (_io_iface->peek8(0x016) & 0x10) { + if (count > 100) { + post_err_msg("TX Quadrature Calibration Failure"); + break; + } + count++; + boost::this_thread::sleep(boost::posix_time::milliseconds(10)); + } +} + +/* Run the TX quadrature calibration. + * + * Note that from within this function we are also triggering the baseband + * and RF DC calibrations. */ +void ad9361_device_t::_calibrate_tx_quadrature() +{ + /* Make sure we are, in fact, in the ALERT state. If not, something is + * terribly wrong in the driver execution flow. */ + if ((_io_iface->peek8(0x017) & 0x0F) != 5) { + post_err_msg("TX Quad Cal started, but not in ALERT"); + } + + /* Turn off free-running and continuous calibrations. Note that this + * will get turned back on at the end of the RX calibration routine. */ + _io_iface->poke8(0x169, 0xc0); + + /* This calibration must be done in a certain order, and for both TX_A + * and TX_B, separately. Store the original setting so that we can + * restore it later. */ + uint8_t orig_reg_inputsel = _regs.inputsel; + + /*********************************************************************** + * TX1/2-A Calibration + **********************************************************************/ + _regs.inputsel = _regs.inputsel & 0xBF; + _io_iface->poke8(0x004, _regs.inputsel); + + _tx_quadrature_cal_routine(); + + /*********************************************************************** + * TX1/2-B Calibration + **********************************************************************/ + _regs.inputsel = _regs.inputsel | 0x40; + _io_iface->poke8(0x004, _regs.inputsel); + + _tx_quadrature_cal_routine(); + + /*********************************************************************** + * fin + **********************************************************************/ + _regs.inputsel = orig_reg_inputsel; + _io_iface->poke8(0x004, orig_reg_inputsel); +} + + +/*********************************************************************** + * Other Misc Setup Functions + ***********************************************************************/ + +/* Program the mixer gain table. + * + * Note that this table is fixed for all frequency settings. */ +void ad9361_device_t::_program_mixer_gm_subtable() +{ + uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58, + 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 }; + uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31, + 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E }; + + /* Start the clock. */ + _io_iface->poke8(0x13f, 0x02); + + /* Program the GM Sub-table. */ + int i; + for (i = 15; i >= 0; i--) { + _io_iface->poke8(0x138, i); + _io_iface->poke8(0x139, gain[(15 - i)]); + _io_iface->poke8(0x13A, 0x00); + _io_iface->poke8(0x13B, gm[(15 - i)]); + _io_iface->poke8(0x13F, 0x06); + _io_iface->poke8(0x13C, 0x00); + _io_iface->poke8(0x13C, 0x00); + } + + /* Clear write bit and stop clock. */ + _io_iface->poke8(0x13f, 0x02); + _io_iface->poke8(0x13C, 0x00); + _io_iface->poke8(0x13C, 0x00); + _io_iface->poke8(0x13f, 0x00); +} + +/* Program the gain table. + * + * There are three different gain tables for different frequency ranges! */ +void ad9361_device_t::_program_gain_table() { + /* Figure out which gain table we should be using for our current + * frequency band. */ + uint8_t (*gain_table)[5] = NULL; + uint8_t new_gain_table; + if (_rx_freq < 1300e6) { + gain_table = gain_table_sub_1300mhz; + new_gain_table = 1; + } else if (_rx_freq < 4e9) { + gain_table = gain_table_1300mhz_to_4000mhz; + new_gain_table = 2; + } else if (_rx_freq <= 6e9) { + gain_table = gain_table_4000mhz_to_6000mhz; + new_gain_table = 3; + } else { + post_err_msg("Wrong _rx_freq value"); + new_gain_table = 1; + } + + /* Only re-program the gain table if there has been a band change. */ + if (_curr_gain_table == new_gain_table) { + return; + } else { + _curr_gain_table = new_gain_table; + } + + /* Okay, we have to program a new gain table. Sucks, brah. Start the + * gain table clock. */ + _io_iface->poke8(0x137, 0x1A); + + /* IT'S PROGRAMMING TIME. */ + uint8_t index = 0; + for (; index < 77; index++) { + _io_iface->poke8(0x130, index); + _io_iface->poke8(0x131, gain_table[index][1]); + _io_iface->poke8(0x132, gain_table[index][2]); + _io_iface->poke8(0x133, gain_table[index][3]); + _io_iface->poke8(0x137, 0x1E); + _io_iface->poke8(0x134, 0x00); + _io_iface->poke8(0x134, 0x00); + } + + /* Everything above the 77th index is zero. */ + for (; index < 91; index++) { + _io_iface->poke8(0x130, index); + _io_iface->poke8(0x131, 0x00); + _io_iface->poke8(0x132, 0x00); + _io_iface->poke8(0x133, 0x00); + _io_iface->poke8(0x137, 0x1E); + _io_iface->poke8(0x134, 0x00); + _io_iface->poke8(0x134, 0x00); + } + + /* Clear the write bit and stop the gain clock. */ + _io_iface->poke8(0x137, 0x1A); + _io_iface->poke8(0x134, 0x00); + _io_iface->poke8(0x134, 0x00); + _io_iface->poke8(0x137, 0x00); +} + +/* Setup gain control registers. + * + * This really only needs to be done once, at initialization. */ +void ad9361_device_t::_setup_gain_control() +{ + _io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select + _io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl + _io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size + _io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index + _io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time + _io_iface->poke8(0x100, 0x6F); // Max Digital Gain + _io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold + _io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold + _io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold + _io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold + _io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index + _io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index + _io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index + _io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index + _io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index + _io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index + _io_iface->poke8(0x114, 0x30); // Low Power Threshold + _io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit + _io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control +} + +/* Setup the RX or TX synthesizers. + * + * This setup depends on a fixed look-up table, which is stored in an + * included header file. The table is indexed based on the passed VCO rate. + */ +void ad9361_device_t::_setup_synth(direction_t direction, double vcorate) +{ + /* The vcorates in the vco_index array represent lower boundaries for + * rates. Once we find a match, we use that index to look-up the rest of + * the register values in the LUT. */ + int vcoindex = 0; + for (size_t i = 0; i < 53; i++) { + vcoindex = i; + if (vcorate > vco_index[i]) { + break; + } + } + if (vcoindex > 53) + post_err_msg("vcoindex > 53"); + + /* Parse the values out of the LUT based on our calculated index... */ + uint8_t vco_output_level = synth_cal_lut[vcoindex][0]; + uint8_t vco_varactor = synth_cal_lut[vcoindex][1]; + uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2]; + uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3]; + uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4]; + uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5]; + uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6]; + uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7]; + uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8]; + uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9]; + uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10]; + uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11]; + + /* ... annnd program! */ + if (direction == RX) { + _io_iface->poke8(0x23a, 0x40 | vco_output_level); + _io_iface->poke8(0x239, 0xC0 | vco_varactor); + _io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3)); + _io_iface->poke8(0x238, (vco_cal_offset << 3)); + _io_iface->poke8(0x245, 0x00); + _io_iface->poke8(0x251, vco_varactor_ref); + _io_iface->poke8(0x250, 0x70); + _io_iface->poke8(0x23b, 0x80 | charge_pump_curr); + _io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4)); + _io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4)); + _io_iface->poke8(0x240, loop_filter_r3); + } else if (direction == TX) { + _io_iface->poke8(0x27a, 0x40 | vco_output_level); + _io_iface->poke8(0x279, 0xC0 | vco_varactor); + _io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3)); + _io_iface->poke8(0x278, (vco_cal_offset << 3)); + _io_iface->poke8(0x285, 0x00); + _io_iface->poke8(0x291, vco_varactor_ref); + _io_iface->poke8(0x290, 0x70); + _io_iface->poke8(0x27b, 0x80 | charge_pump_curr); + _io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4)); + _io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4)); + _io_iface->poke8(0x280, loop_filter_r3); + } else { + post_err_msg("[_setup_synth] INVALID_CODE_PATH"); + } +} + + +/* Tune the baseband VCO. + * + * This clock signal is what gets fed to the ADCs and DACs. This function is + * not exported outside of this file, and is invoked based on the rate + * fed to the public set_clock_rate function. */ +double ad9361_device_t::_tune_bbvco(const double rate) +{ + msg("[_tune_bbvco] rate=%.10f", rate); + + /* Let's not re-tune to the same frequency over and over... */ + if (freq_is_nearly_equal(rate, _req_coreclk)) { + return _adcclock_freq; + } + + _req_coreclk = rate; + + const double fref = 40e6; + const int modulus = 2088960; + const double vcomax = 1430e6; + const double vcomin = 672e6; + double vcorate; + int vcodiv; + + /* Iterate over VCO dividers until appropriate divider is found. */ + int i = 1; + for (; i <= 6; i++) { + vcodiv = 1 << i; + vcorate = rate * vcodiv; + + if (vcorate >= vcomin && vcorate <= vcomax) + break; + } + if (i == 7) + post_err_msg("_tune_bbvco: wrong vcorate"); + + msg("[_tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate); + + /* Fo = Fref * (Nint + Nfrac / mod) */ + int nint = vcorate / fref; + msg("[_tune_bbvco] (nint)=%.10f", (vcorate / fref)); + int nfrac = lround(((vcorate / fref) - (double) nint) * (double) modulus); + msg("[_tune_bbvco] (nfrac)=%.10f", + (((vcorate / fref) - (double) nint) * (double) modulus)); + msg("[_tune_bbvco] nint=%d nfrac=%d", nint, nfrac); + double actual_vcorate = fref + * ((double) nint + ((double) nfrac / (double) modulus)); + + /* Scale CP current according to VCO rate */ + const double icp_baseline = 150e-6; + const double freq_baseline = 1280e6; + double icp = icp_baseline * (actual_vcorate / freq_baseline); + int icp_reg = (icp / 25e-6) - 1; + + _io_iface->poke8(0x045, 0x00); // REFCLK / 1 to BBPLL + _io_iface->poke8(0x046, icp_reg & 0x3F); // CP current + _io_iface->poke8(0x048, 0xe8); // BBPLL loop filters + _io_iface->poke8(0x049, 0x5b); // BBPLL loop filters + _io_iface->poke8(0x04a, 0x35); // BBPLL loop filters + + _io_iface->poke8(0x04b, 0xe0); + _io_iface->poke8(0x04e, 0x10); // Max accuracy + + _io_iface->poke8(0x043, nfrac & 0xFF); // Nfrac[7:0] + _io_iface->poke8(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8] + _io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16] + _io_iface->poke8(0x044, nint); // Nint + + _calibrate_lock_bbpll(); + + _regs.bbpll = (_regs.bbpll & 0xF8) | i; + + _bbpll_freq = actual_vcorate; + _adcclock_freq = (actual_vcorate / vcodiv); + + return _adcclock_freq; +} + +/* This function re-programs all of the gains in the system. + * + * Because the gain values match to different gain indices based on the + * current operating band, this function can be called to update all gain + * settings to the appropriate index after a re-tune. */ +void ad9361_device_t::_reprogram_gains() +{ + set_gain(RX, CHAIN_1,_rx1_gain); + set_gain(RX, CHAIN_2,_rx2_gain); + set_gain(TX, CHAIN_1,_tx1_gain); + set_gain(TX, CHAIN_2,_tx2_gain); +} + +/* This is the internal tune function, not available for a host call. + * + * Calculate the VCO settings for the requested frquency, and then either + * tune the RX or TX VCO. */ +double ad9361_device_t::_tune_helper(direction_t direction, const double value) +{ + /* The RFPLL runs from 6 GHz - 12 GHz */ + const double fref = 80e6; + const int modulus = 8388593; + const double vcomax = 12e9; + const double vcomin = 6e9; + double vcorate; + int vcodiv; + + /* Iterate over VCO dividers until appropriate divider is found. */ + int i; + for (i = 0; i <= 6; i++) { + vcodiv = 2 << i; + vcorate = value * vcodiv; + if (vcorate >= vcomin && vcorate <= vcomax) + break; + } + if (i == 7) + post_err_msg("RFVCO can't find valid VCO rate!"); + + int nint = vcorate / fref; + int nfrac = ((vcorate / fref) - nint) * modulus; + + double actual_vcorate = fref * (nint + (double) (nfrac) / modulus); + double actual_lo = actual_vcorate / vcodiv; + + if (direction == RX) { + + _req_rx_freq = value; + + /* Set band-specific settings. */ + if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) { + _regs.inputsel = (_regs.inputsel & 0xC0) | 0x30; + } else if ((value + >= _client_params->get_band_edge(AD9361_RX_BAND0)) + && (value + < _client_params->get_band_edge(AD9361_RX_BAND1))) { + _regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C; + } else if ((value + >= _client_params->get_band_edge(AD9361_RX_BAND1)) + && (value <= 6e9)) { + _regs.inputsel = (_regs.inputsel & 0xC0) | 0x03; + } else { + post_err_msg("[_tune_helper] INVALID_CODE_PATH"); + } + + _io_iface->poke8(0x004, _regs.inputsel); + + /* Store vcodiv setting. */ + _regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F); + + /* Setup the synthesizer. */ + _setup_synth(RX, actual_vcorate); + + /* Tune!!!! */ + _io_iface->poke8(0x233, nfrac & 0xFF); + _io_iface->poke8(0x234, (nfrac >> 8) & 0xFF); + _io_iface->poke8(0x235, (nfrac >> 16) & 0xFF); + _io_iface->poke8(0x232, (nint >> 8) & 0xFF); + _io_iface->poke8(0x231, nint & 0xFF); + _io_iface->poke8(0x005, _regs.vcodivs); + + /* Lock the PLL! */ + boost::this_thread::sleep(boost::posix_time::milliseconds(2)); + if ((_io_iface->peek8(0x247) & 0x02) == 0) { + post_err_msg("RX PLL NOT LOCKED"); + } + + _rx_freq = actual_lo; + + return actual_lo; + + } else { + + _req_tx_freq = value; + + /* Set band-specific settings. */ + if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) { + _regs.inputsel = _regs.inputsel | 0x40; + } else if ((value + >= _client_params->get_band_edge(AD9361_TX_BAND0)) + && (value <= 6e9)) { + _regs.inputsel = _regs.inputsel & 0xBF; + } else { + post_err_msg("[_tune_helper] INVALID_CODE_PATH"); + } + + _io_iface->poke8(0x004, _regs.inputsel); + + /* Store vcodiv setting. */ + _regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4); + + /* Setup the synthesizer. */ + _setup_synth(TX, actual_vcorate); + + /* Tune it, homey. */ + _io_iface->poke8(0x273, nfrac & 0xFF); + _io_iface->poke8(0x274, (nfrac >> 8) & 0xFF); + _io_iface->poke8(0x275, (nfrac >> 16) & 0xFF); + _io_iface->poke8(0x272, (nint >> 8) & 0xFF); + _io_iface->poke8(0x271, nint & 0xFF); + _io_iface->poke8(0x005, _regs.vcodivs); + + /* Lock the PLL! */ + boost::this_thread::sleep(boost::posix_time::milliseconds(2)); + if ((_io_iface->peek8(0x287) & 0x02) == 0) { + post_err_msg("TX PLL NOT LOCKED"); + } + + _tx_freq = actual_lo; + + return actual_lo; + } +} + +/* Configure the various clock / sample rates in the RX and TX chains. + * + * Functionally, this function configures AD9361's RX and TX rates. For + * a requested TX & RX rate, it sets the interpolation & decimation filters, + * and tunes the VCO that feeds the ADCs and DACs. + */ +double ad9361_device_t::_setup_rates(const double rate) +{ + /* If we make it into this function, then we are tuning to a new rate. + * Store the new rate. */ + _req_clock_rate = rate; + + /* Set the decimation and interpolation values in the RX and TX chains. + * This also switches filters in / out. Note that all transmitters and + * receivers have to be turned on for the calibration portion of + * bring-up, and then they will be switched out to reflect the actual + * user-requested antenna selections. */ + int divfactor = 0; + _tfir_factor = 0; + if (rate < 0.33e6) { + // RX1 + RX2 enabled, 3, 2, 2, 4 + _regs.rxfilt = B8(11101111); + + // TX1 + TX2 enabled, 3, 2, 2, 4 + _regs.txfilt = B8(11101111); + + divfactor = 48; + _tfir_factor = 2; + } else if (rate < 0.66e6) { + // RX1 + RX2 enabled, 2, 2, 2, 4 + _regs.rxfilt = B8(11011111); + + // TX1 + TX2 enabled, 2, 2, 2, 4 + _regs.txfilt = B8(11011111); + + divfactor = 32; + _tfir_factor = 2; + } else if (rate <= 20e6) { + // RX1 + RX2 enabled, 2, 2, 2, 2 + _regs.rxfilt = B8(11011110); + + // TX1 + TX2 enabled, 2, 2, 2, 2 + _regs.txfilt = B8(11011110); + + divfactor = 16; + _tfir_factor = 2; + } else if ((rate > 20e6) && (rate < 23e6)) { + // RX1 + RX2 enabled, 3, 2, 2, 2 + _regs.rxfilt = B8(11101110); + + // TX1 + TX2 enabled, 3, 1, 2, 2 + _regs.txfilt = B8(11100110); + + divfactor = 24; + _tfir_factor = 2; + } else if ((rate >= 23e6) && (rate < 41e6)) { + // RX1 + RX2 enabled, 2, 2, 2, 2 + _regs.rxfilt = B8(11011110); + + // TX1 + TX2 enabled, 1, 2, 2, 2 + _regs.txfilt = B8(11001110); + + divfactor = 16; + _tfir_factor = 2; + } else if ((rate >= 41e6) && (rate <= 56e6)) { + // RX1 + RX2 enabled, 3, 1, 2, 2 + _regs.rxfilt = B8(11100110); + + // TX1 + TX2 enabled, 3, 1, 1, 2 + _regs.txfilt = B8(11100010); + + divfactor = 12; + _tfir_factor = 2; + } else if ((rate > 56e6) && (rate <= 61.44e6)) { + // RX1 + RX2 enabled, 3, 1, 1, 2 + _regs.rxfilt = B8(11100010); + + // TX1 + TX2 enabled, 3, 1, 1, 1 + _regs.txfilt = B8(11100001); + + divfactor = 6; + _tfir_factor = 1; + } else { + // should never get in here + post_err_msg("[_setup_rates] INVALID_CODE_PATH"); + } + + msg("[_setup_rates] divfactor=%d", divfactor); + + /* Tune the BBPLL to get the ADC and DAC clocks. */ + const double adcclk = _tune_bbvco(rate * divfactor); + double dacclk = adcclk; + + /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the + * ADC clock.*/ + if (adcclk > 336e6) { + /* Make the DAC clock = ADC/2, and bypass the TXFIR. */ + _regs.bbpll = _regs.bbpll | 0x08; + dacclk = adcclk / 2.0; + } else { + _regs.bbpll = _regs.bbpll & 0xF7; + } + + /* Set the dividers / interpolators in AD9361. */ + _io_iface->poke8(0x002, _regs.txfilt); + _io_iface->poke8(0x003, _regs.rxfilt); + _io_iface->poke8(0x004, _regs.inputsel); + _io_iface->poke8(0x00A, _regs.bbpll); + + msg("[_setup_rates] adcclk=%f", adcclk); + _baseband_bw = (adcclk / divfactor); + + /* + The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK + to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz, + then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64. + + Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps + in 1x interpolation mode, and 128 taps in 2x & 4x modes. + */ + const int max_tx_taps = AD9361_MIN( + AD9361_MIN((16 * (int)((dacclk / rate) + 0.5)), 128), + (_tfir_factor == 1) ? 64 : 128); + const int max_rx_taps = AD9361_MIN((16 * (int )((adcclk / rate) + 0.5)), + 128); + + const int num_tx_taps = get_num_taps(max_tx_taps); + const int num_rx_taps = get_num_taps(max_rx_taps); + + _setup_tx_fir(num_tx_taps); + _setup_rx_fir(num_rx_taps); + + return _baseband_bw; +} + +/*********************************************************************** + * Publicly exported functions to host calls + **********************************************************************/ +void ad9361_device_t::initialize() +{ + /* Initialize shadow registers. */ + _regs.vcodivs = 0x00; + _regs.inputsel = 0x30; + _regs.rxfilt = 0x00; + _regs.txfilt = 0x00; + _regs.bbpll = 0x02; + _regs.bbftune_config = 0x1e; + _regs.bbftune_mode = 0x1e; + + /* Initialize private VRQ fields. */ + _rx_freq = 0.0; + _tx_freq = 0.0; + _req_rx_freq = 0.0; + _req_tx_freq = 0.0; + _baseband_bw = 0.0; + _req_clock_rate = 0.0; + _req_coreclk = 0.0; + _bbpll_freq = 0.0; + _adcclock_freq = 0.0; + _rx_bbf_tunediv = 0; + _curr_gain_table = 0; + _rx1_gain = 0; + _rx2_gain = 0; + _tx1_gain = 0; + _tx2_gain = 0; + + /* Reset the device. */ + _io_iface->poke8(0x000, 0x01); + _io_iface->poke8(0x000, 0x00); + boost::this_thread::sleep(boost::posix_time::milliseconds(20)); + + /* There is not a WAT big enough for this. */ + _io_iface->poke8(0x3df, 0x01); + + _io_iface->poke8(0x2a6, 0x0e); // Enable master bias + _io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim + + /* Set RFPLL ref clock scale to REFCLK * 2 */ + _io_iface->poke8(0x2ab, 0x07); + _io_iface->poke8(0x2ac, 0xff); + + /* Enable clocks. */ + switch (_client_params->get_clocking_mode()) { + case AD9361_XTAL_N_CLK_PATH: { + _io_iface->poke8(0x009, 0x17); + } break; + + case AD9361_XTAL_P_CLK_PATH: { + _io_iface->poke8(0x009, 0x07); + _io_iface->poke8(0x292, 0x08); + _io_iface->poke8(0x293, 0x80); + _io_iface->poke8(0x294, 0x00); + _io_iface->poke8(0x295, 0x14); + } break; + + default: + post_err_msg("NOT IMPLEMENTED"); + } + boost::this_thread::sleep(boost::posix_time::milliseconds(20)); + + /* Tune the BBPLL, write TX and RX FIRS. */ + _setup_rates(50e6); + + /* Setup data ports (FDD dual port DDR): + * FDD dual port DDR CMOS no swap. + * Force TX on one port, RX on the other. */ + switch (_client_params->get_digital_interface_mode()) { + case AD9361_DDR_FDD_LVCMOS: { + _io_iface->poke8(0x010, 0xc8); + _io_iface->poke8(0x011, 0x00); + _io_iface->poke8(0x012, 0x02); + } break; + + case AD9361_DDR_FDD_LVDS: { + _io_iface->poke8(0x010, 0xcc); + _io_iface->poke8(0x011, 0x00); + _io_iface->poke8(0x012, 0x10); + + //LVDS Specific + _io_iface->poke8(0x03C, 0x23); + _io_iface->poke8(0x03D, 0xFF); + _io_iface->poke8(0x03E, 0x0F); + } break; + + default: + post_err_msg("NOT IMPLEMENTED"); + } + + /* Data delay for TX and RX data clocks */ + digital_interface_delays_t timing = + _client_params->get_digital_interface_timing(); + uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4) + | (timing.rx_data_delay & 0xF); + uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4) + | (timing.tx_data_delay & 0xF); + _io_iface->poke8(0x006, rx_delays); + _io_iface->poke8(0x007, tx_delays); + + /* Setup AuxDAC */ + _io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2] + _io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2] + _io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0] + _io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0] + _io_iface->poke8(0x022, 0x4A); // Invert Bypassed LNA + _io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control + _io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select + _io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay + _io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay + _io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay + _io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay + + /* Setup AuxADC */ + _io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset) + _io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window) + _io_iface->poke8(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure) + _io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation) + _io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div) + _io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable) + + /* Setup control outputs. */ + _io_iface->poke8(0x035, 0x07); + _io_iface->poke8(0x036, 0xFF); + + /* Setup GPO */ + _io_iface->poke8(0x03a, 0x27); //set delay register + _io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX + _io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT + _io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay + _io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay + _io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay + _io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay + _io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay + _io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay + _io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay + _io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay + + _io_iface->poke8(0x261, 0x00); // RX LO power + _io_iface->poke8(0x2a1, 0x00); // TX LO power + _io_iface->poke8(0x248, 0x0b); // en RX VCO LDO + _io_iface->poke8(0x288, 0x0b); // en TX VCO LDO + _io_iface->poke8(0x246, 0x02); // pd RX cal Tcf + _io_iface->poke8(0x286, 0x02); // pd TX cal Tcf + _io_iface->poke8(0x249, 0x8e); // rx vco cal length + _io_iface->poke8(0x289, 0x8e); // rx vco cal length + _io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp + _io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above + _io_iface->poke8(0x243, 0x0d); // set rx prescaler bias + _io_iface->poke8(0x283, 0x0d); // "" TX + + _io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting + _io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting + + /* The order of the following process is EXTREMELY important. If the + * below functions are modified at all, device initialization and + * calibration might be broken in the process! */ + + _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en + _io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on + _io_iface->poke8(0x013, 0x01); // enable ENSM + boost::this_thread::sleep(boost::posix_time::milliseconds(1)); + + _calibrate_synth_charge_pumps(); + + _tune_helper(RX, 800e6); + _tune_helper(TX, 850e6); + + _program_mixer_gm_subtable(); + _program_gain_table(); + _setup_gain_control(); + + _calibrate_baseband_rx_analog_filter(); + _calibrate_baseband_tx_analog_filter(); + _calibrate_rx_TIAs(); + _calibrate_secondary_tx_filter(); + + _setup_adc(); + + _calibrate_tx_quadrature(); + _calibrate_rx_quadrature(); + + // cals done, set PPORT config + switch (_client_params->get_digital_interface_mode()) { + case AD9361_DDR_FDD_LVCMOS: { + _io_iface->poke8(0x012, 0x02); + } break; + + case AD9361_DDR_FDD_LVDS: { + _io_iface->poke8(0x012, 0x10); + } break; + + default: + post_err_msg("NOT IMPLEMENTED"); + } + + _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit + _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en + + /* Default TX attentuation to 10dB on both TX1 and TX2 */ + _io_iface->poke8(0x073, 0x00); + _io_iface->poke8(0x074, 0x00); + _io_iface->poke8(0x075, 0x00); + _io_iface->poke8(0x076, 0x00); + + /* Setup RSSI Measurements */ + _io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1 + _io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3 + _io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0 + _io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1 + _io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2 + _io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3 + _io_iface->poke8(0x156, 0x00); // RSSI Delay + _io_iface->poke8(0x157, 0x00); // RSSI Wait + _io_iface->poke8(0x158, 0x0D); // RSSI Mode Select + _io_iface->poke8(0x15C, 0x67); // Power Measurement Duration + + /* Turn on the default RX & TX chains. */ + set_active_chains(true, false, false, false); + + /* Set TXers & RXers on (only works in FDD mode) */ + _io_iface->poke8(0x014, 0x21); +} + + +/* This function sets the RX / TX rate between AD9361 and the FPGA, and + * thus determines the interpolation / decimation required in the FPGA to + * achieve the user's requested rate. + * + * This is the only clock setting function that is exposed to the outside. */ +double ad9361_device_t::set_clock_rate(const double req_rate) +{ + if (req_rate > 61.44e6) { + post_err_msg("Requested master clock rate outside range"); + } + + msg("[set_clock_rate] req_rate=%.10f", req_rate); + + /* UHD has a habit of requesting the same rate like four times when it + * starts up. This prevents that, and any bugs in user code that request + * the same rate over and over. */ + if (freq_is_nearly_equal(req_rate, _req_clock_rate)) { + return _baseband_bw; + } + + /* We must be in the SLEEP / WAIT state to do this. If we aren't already + * there, transition the ENSM to State 0. */ + uint8_t current_state = _io_iface->peek8(0x017) & 0x0F; + switch (current_state) { + case 0x05: + /* We are in the ALERT state. */ + _io_iface->poke8(0x014, 0x21); + boost::this_thread::sleep(boost::posix_time::milliseconds(5)); + _io_iface->poke8(0x014, 0x00); + break; + + case 0x0A: + /* We are in the FDD state. */ + _io_iface->poke8(0x014, 0x00); + break; + + default: + post_err_msg("[set_clock_rate:1] AD9361 in unknown state"); + break; + }; + + /* Store the current chain / antenna selections so that we can restore + * them at the end of this routine; all chains will be enabled from + * within setup_rates for calibration purposes. */ + uint8_t orig_tx_chains = _regs.txfilt & 0xC0; + uint8_t orig_rx_chains = _regs.rxfilt & 0xC0; + + /* Call into the clock configuration / settings function. This is where + * all the hard work gets done. */ + double rate = _setup_rates(req_rate); + + msg("[set_clock_rate] rate=%.10f", rate); + + /* Transition to the ALERT state and calibrate everything. */ + _io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en + _io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on + _io_iface->poke8(0x013, 0x01); //enable ENSM + boost::this_thread::sleep(boost::posix_time::milliseconds(1)); + + _calibrate_synth_charge_pumps(); + + _tune_helper(RX, _rx_freq); + _tune_helper(TX, _tx_freq); + + _program_mixer_gm_subtable(); + _program_gain_table(); + _setup_gain_control(); + _reprogram_gains(); + + _calibrate_baseband_rx_analog_filter(); + _calibrate_baseband_tx_analog_filter(); + _calibrate_rx_TIAs(); + _calibrate_secondary_tx_filter(); + + _setup_adc(); + + _calibrate_tx_quadrature(); + _calibrate_rx_quadrature(); + + // cals done, set PPORT config + switch (_client_params->get_digital_interface_mode()) { + case AD9361_DDR_FDD_LVCMOS: { + _io_iface->poke8(0x012, 0x02); + }break; + + case AD9361_DDR_FDD_LVDS: { + _io_iface->poke8(0x012, 0x10); + }break; + + default: + post_err_msg("NOT IMPLEMENTED"); + } + _io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit + _io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en + + /* End the function in the same state as the entry state. */ + switch (current_state) { + case 0x05: + /* We are already in ALERT. */ + break; + + case 0x0A: + /* Transition back to FDD, and restore the original antenna + * / chain selections. */ + _regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains; + _regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains; + + _io_iface->poke8(0x002, _regs.txfilt); + _io_iface->poke8(0x003, _regs.rxfilt); + _io_iface->poke8(0x014, 0x21); + break; + + default: + post_err_msg("[set_clock_rate:2] AD9361 in unknown state"); + break; + }; + + return rate; +} + + +/* Set which of the four TX / RX chains provided by AD9361 are active. + * + * AD9361 provides two sets of chains, Side A and Side B. Each side + * provides one TX antenna, and one RX antenna. The B200 maintains the USRP + * standard of providing one antenna connection that is both TX & RX, and + * one that is RX-only - for each chain. Thus, the possible antenna and + * chain selections are: + * + * B200 Antenna AD9361 Side AD9361 Chain + * ------------------------------------------------------------------- + * TX / RX1 Side A TX1 (when switched to TX) + * TX / RX1 Side A RX1 (when switched to RX) + * RX1 Side A RX1 + * + * TX / RX2 Side B TX2 (when switched to TX) + * TX / RX2 Side B RX2 (when switched to RX) + * RX2 Side B RX2 + */ +void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) +{ + /* Clear out the current active chain settings. */ + _regs.txfilt = _regs.txfilt & 0x3F; + _regs.rxfilt = _regs.rxfilt & 0x3F; + + /* Turn on the different chains based on the passed parameters. */ + if (tx1) { + _regs.txfilt = _regs.txfilt | 0x40; + } + if (tx2) { + _regs.txfilt = _regs.txfilt | 0x80; + } + if (rx1) { + _regs.rxfilt = _regs.rxfilt | 0x40; + } + if (rx2) { + _regs.rxfilt = _regs.rxfilt | 0x80; + } + + /* Check for FDD state */ + uint8_t set_back_to_fdd = 0; + uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F; + if (ensm_state == 0xA) // FDD + { + /* Put into ALERT state (via the FDD flush state). */ + _io_iface->poke8(0x014, 0x01); + set_back_to_fdd = 1; + } + + /* Wait for FDD flush state to complete (if necessary) */ + while (ensm_state == 0xA || ensm_state == 0xB) + ensm_state = _io_iface->peek8(0x017) & 0x0F; + + /* Turn on / off the chains. */ + _io_iface->poke8(0x002, _regs.txfilt); + _io_iface->poke8(0x003, _regs.rxfilt); + + /* Put back into FDD state if necessary */ + if (set_back_to_fdd) + _io_iface->poke8(0x014, 0x21); +} + +/* Tune the RX or TX frequency. + * + * This is the publicly-accessible tune function. It makes sure the tune + * isn't a redundant request, and if not, passes it on to the class's + * internal tune function. + * + * After tuning, it runs any appropriate calibrations. */ +double ad9361_device_t::tune(direction_t direction, const double value) +{ + if (direction == RX) { + if (freq_is_nearly_equal(value, _req_rx_freq)) { + return _rx_freq; + } + + } else if (direction == TX) { + if (freq_is_nearly_equal(value, _req_tx_freq)) { + return _tx_freq; + } + + } else { + post_err_msg("[tune] INVALID_CODE_PATH"); + } + + /* If we aren't already in the ALERT state, we will need to return to + * the FDD state after tuning. */ + int not_in_alert = 0; + if ((_io_iface->peek8(0x017) & 0x0F) != 5) { + /* Force the device into the ALERT state. */ + not_in_alert = 1; + _io_iface->poke8(0x014, 0x01); + } + + /* Tune the RF VCO! */ + double tune_freq = _tune_helper(direction, value); + + /* Run any necessary calibrations / setups */ + if (direction == RX) { + _program_gain_table(); + } + + /* Update the gain settings. */ + _reprogram_gains(); + + /* Run the calibration algorithms. */ + _calibrate_tx_quadrature(); + _calibrate_rx_quadrature(); + + /* If we were in the FDD state, return it now. */ + if (not_in_alert) { + _io_iface->poke8(0x014, 0x21); + } + + return tune_freq; +} + +/* Set the gain of RX1, RX2, TX1, or TX2. + * + * Note that the 'value' passed to this function is the actual gain value, + * _not_ the gain index. This is the opposite of the eval software's GUI! + * Also note that the RX chains are done in terms of gain, and the TX chains + * are done in terms of attenuation. */ +double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value) +{ + if (direction == RX) { + /* Indexing the gain tables requires an offset from the requested + * amount of total gain in dB: + * < 1300MHz: dB + 5 + * >= 1300MHz and < 4000MHz: dB + 3 + * >= 4000MHz and <= 6000MHz: dB + 14 + */ + int gain_offset = 0; + if (_rx_freq < 1300e6) { + gain_offset = 5; + } else if (_rx_freq < 4000e6) { + gain_offset = 3; + } else { + gain_offset = 14; + } + + int gain_index = value + gain_offset; + + /* Clip the gain values to the proper min/max gain values. */ + if (gain_index > 76) + gain_index = 76; + if (gain_index < 0) + gain_index = 0; + + if (chain == CHAIN_1) { + _rx1_gain = value; + _io_iface->poke8(0x109, gain_index); + } else { + _rx2_gain = value; + _io_iface->poke8(0x10c, gain_index); + } + + return gain_index - gain_offset; + } else { + /* Setting the below bits causes a change in the TX attenuation word + * to immediately take effect. */ + _io_iface->poke8(0x077, 0x40); + _io_iface->poke8(0x07c, 0x40); + + /* Each gain step is -0.25dB. Calculate the attenuation necessary + * for the requested gain, convert it into gain steps, then write + * the attenuation word. Max gain (so zero attenuation) is 89.75. */ + double atten = AD9361_MAX_GAIN - value; + int attenreg = atten * 4; + if (chain == CHAIN_1) { + _tx1_gain = value; + _io_iface->poke8(0x073, attenreg & 0xFF); + _io_iface->poke8(0x074, (attenreg >> 8) & 0x01); + } else { + _tx2_gain = value; + _io_iface->poke8(0x075, attenreg & 0xFF); + _io_iface->poke8(0x076, (attenreg >> 8) & 0x01); + } + return AD9361_MAX_GAIN - ((double) (attenreg) / 4); + } +} + +}} |