diff options
Diffstat (limited to 'host/lib/include/uhdlib')
-rw-r--r-- | host/lib/include/uhdlib/utils/math.hpp | 75 |
1 files changed, 75 insertions, 0 deletions
diff --git a/host/lib/include/uhdlib/utils/math.hpp b/host/lib/include/uhdlib/utils/math.hpp index b7f06ea24..24db23c50 100644 --- a/host/lib/include/uhdlib/utils/math.hpp +++ b/host/lib/include/uhdlib/utils/math.hpp @@ -9,7 +9,9 @@ #ifndef INCLUDED_UHDLIB_UTILS_MATH_HPP #define INCLUDED_UHDLIB_UTILS_MATH_HPP +#include <uhdlib/utils/narrow.hpp> #include <cmath> +#include <vector> namespace uhd { namespace math { @@ -20,6 +22,79 @@ T ceil_log2(T num){ return std::ceil(std::log(num)/std::log(T(2))); } +/** + * Function which attempts to find integer values a and b such that + * a / b approximates the decimal represented by f within max_error and + * b is not greater than maximum_denominator. + * + * If the approximation cannot achieve the desired error without exceeding + * the maximum denominator, b is set to the maximum value and a is set to + * the closest value. + * + * @param f is a positive decimal to be converted, must be between 0 and 1 + * @param maximum_denominator maximum value allowed for b + * @param max_error how close to f the expression a / b should be + */ +template <typename IntegerType> +std::pair<IntegerType, IntegerType> rational_approximation( + const double f, const IntegerType maximum_denominator, const double max_error) +{ + static constexpr IntegerType MIN_DENOM = 1; + static constexpr size_t MAX_APPROXIMATIONS = 64; + + UHD_ASSERT_THROW(maximum_denominator <= std::numeric_limits<IntegerType>::max()); + UHD_ASSERT_THROW(f < 1 and f >= 0); + + // This function uses a successive approximations formula to attempt to + // find a "best" rational to use to represent a decimal. This algorithm + // finds a continued fraction of up to 64 terms, or such that the last + // term is less than max_error + + if (f < max_error) { + return {0, MIN_DENOM}; + } + + double c = f; + std::vector<double> saved_denoms = {c}; + + // Create the continued fraction by taking the reciprocal of the + // fractional part, expressing the denominator as a mixed number, + // then repeating the algorithm on the fractional part of that mixed + // number until a maximum number of terms or the fractional part is + // nearly zero. + for (int i = 0; i < MAX_APPROXIMATIONS; ++i) { + double x = std::floor(1.0 / c); + c = (1.0 / c) - x; + + saved_denoms.push_back(x); + + if (std::abs(c) < max_error) + break; + } + + double num = 1.0; + double denom = saved_denoms.back(); + + // Calculate a single rational which will be equivalent to the + // continued fraction created earlier. Because the continued fraction + // is composed of only integers, the final rational will be as well. + for (auto it = saved_denoms.rbegin() + 1; it != saved_denoms.rend() - 1; ++it) { + double new_denom = denom * (*it) + num; + if (new_denom > maximum_denominator) { + // We can't do any better than using the maximum denominator + num = std::round(f * maximum_denominator); + denom = maximum_denominator; + break; + } + + num = denom; + denom = new_denom; + } + + return {uhd::narrow<IntegerType>(num), uhd::narrow<IntegerType>(denom)}; +} + + }} /* namespace uhd::math */ #endif /* INCLUDED_UHDLIB_UTILS_MATH_HPP */ |