aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/include/uhdlib
diff options
context:
space:
mode:
Diffstat (limited to 'host/lib/include/uhdlib')
-rw-r--r--host/lib/include/uhdlib/utils/math.hpp75
1 files changed, 75 insertions, 0 deletions
diff --git a/host/lib/include/uhdlib/utils/math.hpp b/host/lib/include/uhdlib/utils/math.hpp
index b7f06ea24..24db23c50 100644
--- a/host/lib/include/uhdlib/utils/math.hpp
+++ b/host/lib/include/uhdlib/utils/math.hpp
@@ -9,7 +9,9 @@
#ifndef INCLUDED_UHDLIB_UTILS_MATH_HPP
#define INCLUDED_UHDLIB_UTILS_MATH_HPP
+#include <uhdlib/utils/narrow.hpp>
#include <cmath>
+#include <vector>
namespace uhd { namespace math {
@@ -20,6 +22,79 @@ T ceil_log2(T num){
return std::ceil(std::log(num)/std::log(T(2)));
}
+/**
+ * Function which attempts to find integer values a and b such that
+ * a / b approximates the decimal represented by f within max_error and
+ * b is not greater than maximum_denominator.
+ *
+ * If the approximation cannot achieve the desired error without exceeding
+ * the maximum denominator, b is set to the maximum value and a is set to
+ * the closest value.
+ *
+ * @param f is a positive decimal to be converted, must be between 0 and 1
+ * @param maximum_denominator maximum value allowed for b
+ * @param max_error how close to f the expression a / b should be
+ */
+template <typename IntegerType>
+std::pair<IntegerType, IntegerType> rational_approximation(
+ const double f, const IntegerType maximum_denominator, const double max_error)
+{
+ static constexpr IntegerType MIN_DENOM = 1;
+ static constexpr size_t MAX_APPROXIMATIONS = 64;
+
+ UHD_ASSERT_THROW(maximum_denominator <= std::numeric_limits<IntegerType>::max());
+ UHD_ASSERT_THROW(f < 1 and f >= 0);
+
+ // This function uses a successive approximations formula to attempt to
+ // find a "best" rational to use to represent a decimal. This algorithm
+ // finds a continued fraction of up to 64 terms, or such that the last
+ // term is less than max_error
+
+ if (f < max_error) {
+ return {0, MIN_DENOM};
+ }
+
+ double c = f;
+ std::vector<double> saved_denoms = {c};
+
+ // Create the continued fraction by taking the reciprocal of the
+ // fractional part, expressing the denominator as a mixed number,
+ // then repeating the algorithm on the fractional part of that mixed
+ // number until a maximum number of terms or the fractional part is
+ // nearly zero.
+ for (int i = 0; i < MAX_APPROXIMATIONS; ++i) {
+ double x = std::floor(1.0 / c);
+ c = (1.0 / c) - x;
+
+ saved_denoms.push_back(x);
+
+ if (std::abs(c) < max_error)
+ break;
+ }
+
+ double num = 1.0;
+ double denom = saved_denoms.back();
+
+ // Calculate a single rational which will be equivalent to the
+ // continued fraction created earlier. Because the continued fraction
+ // is composed of only integers, the final rational will be as well.
+ for (auto it = saved_denoms.rbegin() + 1; it != saved_denoms.rend() - 1; ++it) {
+ double new_denom = denom * (*it) + num;
+ if (new_denom > maximum_denominator) {
+ // We can't do any better than using the maximum denominator
+ num = std::round(f * maximum_denominator);
+ denom = maximum_denominator;
+ break;
+ }
+
+ num = denom;
+ denom = new_denom;
+ }
+
+ return {uhd::narrow<IntegerType>(num), uhd::narrow<IntegerType>(denom)};
+}
+
+
}} /* namespace uhd::math */
#endif /* INCLUDED_UHDLIB_UTILS_MATH_HPP */