aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/cal/interpolation.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'host/lib/cal/interpolation.hpp')
-rw-r--r--host/lib/cal/interpolation.hpp61
1 files changed, 0 insertions, 61 deletions
diff --git a/host/lib/cal/interpolation.hpp b/host/lib/cal/interpolation.hpp
deleted file mode 100644
index d0c9b5b47..000000000
--- a/host/lib/cal/interpolation.hpp
+++ /dev/null
@@ -1,61 +0,0 @@
-//
-// Copyright 2016 Ettus Research
-// Copyright 2018 Ettus Research, a National Instruments Company
-//
-// SPDX-License-Identifier: GPL-3.0-or-later
-//
-
-#ifndef INCLUDED_UHD_INTERPOLATION_HPP
-#define INCLUDED_UHD_INTERPOLATION_HPP
-
-#include <uhd/exception.hpp>
-#include <boost/format.hpp>
-#include <map>
-#include <cmath>
-
-namespace uhd {
-namespace cal {
-
-template<typename in_type, typename out_type>
-struct interp
-{
-public:
- typedef std::vector<in_type> args_t;
- typedef std::map<args_t, out_type> container_t;
-
- /*!
- * Nearest neighbor interpolation given a mapping: R^n -> R
- *
- * 1) search for the nearest point in R^n
- * 2) find the nearest output scalars in R
- *
- * \param data input data container
- * \param args input data point
- * \returns interpolated output value
- */
- const out_type nn_interp(container_t &data, const args_t &args);
-
- /*!
- * Bilinear interpolation given a mapping: R^2 -> R
- *
- * 1) search for 4 surrounding points in R^2
- * 2) find the output scalars in R
- * 3) solve the system of equations given our input mappings
- *
- * \param data input data container
- * \param args input data point
- * \returns interpolated output value
- */
- const out_type bl_interp(container_t &data, const args_t &args);
-
-private:
- /*!
- * Calculate the distance between two points
- */
- static in_type calc_dist(const args_t &a, const args_t &b);
-};
-
-} // namespace cal
-} // namespace uhd
-
-#endif /* INCLUDED_UHD_INTERPOLATION_HPP */