aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/top/n3xx/dboards/rh
diff options
context:
space:
mode:
Diffstat (limited to 'fpga/usrp3/top/n3xx/dboards/rh')
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/Makefile.srcs32
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/Makefile27
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rh_tb.v410
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_ctrl.v203
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_table.v54
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_lo_gain.v124
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qpf31
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qsf306
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.sdc415
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.v605
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_clocks.xdc118
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/ClockingRegs.vhd345
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DaughterboardRegs.vhd116
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DbCore.vhd563
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore.edfbin0 -> 220528 bytes
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore_stub.vhd54
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgAdcDacInterfaceTypes.vhd302
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgClockingRegMap.vhd107
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgDaughterboardRegMap.vhd56
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgJesdConfig.vhd165
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgRhPersonality.vhd62
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_ifc/RadioClocking.vhd305
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_pins.xdc280
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc264
-rwxr-xr-xfpga/usrp3/top/n3xx/dboards/rh/doc/rh_timing.xlsxbin0 -> 320432 bytes
-rw-r--r--fpga/usrp3/top/n3xx/dboards/rh/n3xx.v3855
26 files changed, 8799 insertions, 0 deletions
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/Makefile.srcs b/fpga/usrp3/top/n3xx/dboards/rh/Makefile.srcs
new file mode 100644
index 000000000..1296e68e6
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/Makefile.srcs
@@ -0,0 +1,32 @@
+#
+# Copyright 2018 Ettus Research, a National Instruments Company
+#
+
+##################################################
+# DB IFC Sources
+##################################################
+RHODIUM_DB_SRCS = $(abspath $(addprefix $(BASE_DIR)/n3xx/dboards/rh/db_ifc/, \
+DbCore.vhd \
+DaughterboardRegs.vhd \
+ClockingRegs.vhd \
+PkgRhPersonality.vhd \
+PkgDaughterboardRegMap.vhd \
+PkgClockingRegMap.vhd \
+PkgJesdConfig.vhd \
+PkgAdcDacInterfaceTypes.vhd \
+RadioClocking.vhd \
+Jesd204bXcvrCore.edf \
+))
+
+RHODIUM_TOP_SRCS = $(abspath $(addprefix $(BASE_DIR)/n3xx/dboards/rh/, \
+n3xx.v \
+))
+
+RHODIUM_DB_CLOCKS_XDC = $(abspath $(addprefix $(BASE_DIR)/n3xx/dboards/rh/, \
+db_clocks.xdc \
+))
+
+RHODIUM_DB_XDC = $(abspath $(addprefix $(BASE_DIR)/n3xx/dboards/rh/, \
+db_pins.xdc \
+db_timing.xdc \
+))
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/Makefile b/fpga/usrp3/top/n3xx/dboards/rh/cpld/Makefile
new file mode 100644
index 000000000..ff1598894
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/Makefile
@@ -0,0 +1,27 @@
+#
+# Copyright 2018 Ettus Research, a National Instruments Company
+#
+
+.PHONY: all clean
+
+SRCS=rhodium_top.qpf rhodium_top.qsf rhodium_top.sdc rhodium_top.v rhodium_gain_ctrl.v rhodium_gain_table.v rhodium_lo_gain.v
+SIM_SRCS=rh_tb.v rhodium_top.v rhodium_gain_ctrl.v rhodium_gain_table.v rhodium_lo_gain.v
+SHORT_HASH=$(addprefix GIT_HASH=,$(shell ../../../../../tools/scripts/git-hash.sh))
+
+all: cpld-rhodium-revb.svf
+
+output_files/rhodium_top.pof: $(SRCS)
+ quartus_map rhodium_top --verilog_macro="$(SHORT_HASH)"
+ quartus_fit rhodium_top
+ quartus_asm rhodium_top
+ quartus_sta rhodium_top
+
+cpld-rhodium-revb.svf: output_files/rhodium_top.pof
+ quartus_cpf --convert --frequency 10.0MHz --voltage 2.5 --operation p $? $@
+
+clean:
+ rm -rf db incremental_db output_files simulation cpld-rhodium-revb.svf
+
+a.out: $(SIM_SRCS)
+ iverilog -tvvp -D$(SHORT_HASH) -s rh_tb $(SIM_SRCS)
+
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rh_tb.v b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rh_tb.v
new file mode 100644
index 000000000..fb5f62328
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rh_tb.v
@@ -0,0 +1,410 @@
+///////////////////////////////////////////////////////////////////
+//
+// Copyright 2018 Ettus Research, A National Instruments Company
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Module: rh_tb
+// Simple testbench for rhodium_top
+// This creates a rudimentary stimulus only, to allow results to be viewed
+// in the waveform viewer
+//////////////////////////////////////////////////////////////////////
+
+`timescale 1ns/1ps
+
+
+module rh_tb;
+
+reg ADC_A_Over_Range_18, ADC_B_Over_Range_18;
+
+wire [13:0] usrpio_io; // TODO: use one of these as pl_spi_addr[3]
+
+wire CPLD_PS_SPI_LE_25, CPLD_PS_SPI_CLK_25,
+ CPLD_PS_ADDR0_25, CPLD_PS_ADDR1_25, CPLD_PS_SPI_SDI_25;
+wire CPLD_PS_SPI_SDO_25;
+
+wire CPLD_PL_SPI_SDO_18;
+wire CPLD_PL_SPI_LE_18, CPLD_PL_SPI_SCLK_18,
+ CPLD_PL_SPI_SDI_18,
+ CPLD_PL_SPI_ADDR0_18, CPLD_PL_SPI_ADDR1_18,
+ CPLD_PL_SPI_ADDR2_18,
+ CPLD_ATR_TX_18, CPLD_ATR_RX_18;
+// NOTE: TxRx front-end switches are driven direct from the motherboard, so these ATR
+// lines have no function at this time.
+
+wire ADC_SPI_CS_L_18, ADC_SPI_SCLK_18;
+wire ADC_SPI_SDIO_18;
+
+wire DAC_SPI_CS_L_18, DAC_SPI_SCLK_18;
+wire DAC_SPI_SDIO_18;
+reg DAC_Alarm_18; // TODO: drive to gpio?
+
+wire PHDAC_SPI_CS_L, PHDAC_SPI_SCLK, PHDAC_SPI_SDI;
+
+
+reg LO_SYNC;
+
+wire CLKDIST_SPI_CS_L,
+ CLKDIST_SPI_SCLK;
+wire CLKDIST_SPI_SDIO;
+
+wire Tx_DSA_C1,
+ Tx_DSA_C2,
+ Tx_DSA_C4,
+ Tx_DSA_C8,
+ Tx_DSA_C16;
+ wire Tx_DSA1_LE,
+ Tx_DSA2_LE;
+ wire Tx_Sw1_Ctrl_1,
+ Tx_Sw1_Ctrl_2,
+ Tx_Sw2_Ctrl_1,
+ Tx_Sw2_Ctrl_2,
+ Tx_Sw3_Ctrl_1,
+ Tx_Sw3_Ctrl_2,
+ Tx_Sw3_Ctrl_3,
+ Tx_Sw3_Ctrl_4,
+ Rx_LO_Input_Select,
+ Rx_LO_Filter_Sw_1,
+ Rx_LO_Filter_Sw_2,
+ Tx_LO_Input_Select,
+ Tx_LO_Filter_Sw_1,
+ Tx_LO_Filter_Sw_2;
+wire CLKDIST_Status_LD1,
+ CLKDIST_Status_LD2;
+wire LOSYNTH_RX_MUXOUT,
+ LOSYNTH_TX_MUXOUT;
+
+wire LO_SPI_SCLK,
+ LO_SPI_SDI,
+ LO_TX_CS_L,
+ LO_RX_CS_L,
+ Rx_Sw1_Ctrl_1,
+ Rx_Sw1_Ctrl_2,
+ Rx_DSA_C1,
+ Rx_DSA_C2,
+ Rx_DSA_C4,
+ Rx_DSA_C8,
+ Rx_DSA_C16;
+ wire Rx_DSA1_LE,
+ Rx_DSA2_LE;
+ wire Rx_Sw2_Ctrl,
+ Rx_Sw3_Ctrl_1,
+ Rx_Sw3_Ctrl_2,
+ Rx_Sw4_Ctrl_1,
+ Rx_Sw4_Ctrl_2,
+ Rx_Sw4_Ctrl_3,
+ Rx_Sw4_Ctrl_4,
+ Rx_Demod_ADJ_1,
+ Rx_Demod_ADJ_2;
+wire LO_DSA_C1,
+ LO_DSA_C2,
+ LO_DSA_C4,
+ LO_DSA_C8,
+ LO_DSA_C16;
+wire RxLO_DSA_LE,
+ TxLO_DSA_LE;
+wire LODIST_Bd_SPI_CS_L,
+ LODIST_Bd_SPI_SDI,
+ LODIST_Bd_SPI_SCLK,
+ Tx_Sw5_Ctrl_1,
+ Tx_Sw5_Ctrl_2,
+ Rx_Sw6_Ctrl_1,
+ Rx_Sw6_Ctrl_2;
+wire LODIST_Bd_IO1;
+wire Tx_HB_LB_Select,
+Rx_HB_LB_Select,
+Cal_iso_Sw_Ctrl;
+
+
+parameter dly = 20;
+
+integer scnt;
+integer acnt;
+integer ccnt;
+integer ccnt_max;
+
+reg ps_sck;
+reg ps_mosi;
+reg clkdis_cs_b;
+reg cpld_ps_cs_b;
+reg phdac_cs_b;
+reg adc_cs_b;
+reg dac_cs_b;
+
+reg pl_sck;
+reg pl_mosi;
+reg txlo_cs_b;
+reg rxlo_cs_b;
+reg lodis_cs_b;
+reg cpld_pl_cs_b;
+
+task ps_cpld_xfer;
+ input [1:0] tbl;
+ input [5:0] cmd;
+ input [15:0] data;
+ reg [23:0] shiftreg;
+ integer i;
+begin
+ ps_sck <= 1'b0;
+ clkdis_cs_b <= 1'b1;
+ cpld_ps_cs_b <= 1'b1;
+ phdac_cs_b <= 1'b1;
+ adc_cs_b <= 1'b1;
+ dac_cs_b <= 1'b1;
+ txlo_cs_b <= 1'b1;
+ rxlo_cs_b <= 1'b1;
+ lodis_cs_b <= 1'b1;
+ cpld_pl_cs_b <= 1'b1;
+ shiftreg <= {tbl,cmd,data};
+ #(dly);
+ cpld_ps_cs_b <= 1'b0;
+ #(dly);
+ for (i = 0; i < 24; i = i + 1) begin
+ ps_sck <= 1'b0;
+ ps_mosi <= shiftreg[23-i];
+ #(dly);
+ ps_sck <= 1'b1;
+ #(dly);
+ end
+ ps_sck <= 1'b0;
+ #(dly);
+ cpld_ps_cs_b <= 1'b1;
+ #(dly);
+end
+endtask
+
+task pl_cpld_xfer;
+ input [1:0] tbl;
+ input [5:0] cmd;
+ input [15:0] data;
+ reg [23:0] shiftreg;
+ integer i;
+begin
+ pl_sck <= 1'b0;
+ clkdis_cs_b <= 1'b1;
+ cpld_ps_cs_b <= 1'b1;
+ phdac_cs_b <= 1'b1;
+ adc_cs_b <= 1'b1;
+ dac_cs_b <= 1'b1;
+ txlo_cs_b <= 1'b1;
+ rxlo_cs_b <= 1'b1;
+ lodis_cs_b <= 1'b1;
+ cpld_pl_cs_b <= 1'b1;
+ shiftreg <= {tbl,cmd,data};
+ #(dly);
+ cpld_pl_cs_b <= 1'b0;
+ #(dly);
+ for (i = 0; i < 24; i = i + 1) begin
+ pl_sck <= 1'b0;
+ pl_mosi <= shiftreg[23-i];
+ #(dly);
+ pl_sck <= 1'b1;
+ #(dly);
+ end
+ pl_sck <= 1'b0;
+ #(dly);
+ cpld_pl_cs_b <= 1'b1;
+ #(dly);
+end
+endtask
+
+assign CPLD_PS_SPI_LE_25 = clkdis_cs_b;
+assign CPLD_PS_ADDR0_25 = cpld_ps_cs_b;
+assign CPLD_PS_ADDR1_25 = phdac_cs_b;
+assign usrpio_io[12] = adc_cs_b;
+assign usrpio_io[13] = dac_cs_b;
+assign CPLD_PS_SPI_CLK_25 = ps_sck;
+assign CPLD_PS_SPI_SDI_25 = ps_mosi;
+
+assign CPLD_PL_SPI_LE_18 = txlo_cs_b;
+assign CPLD_PL_SPI_ADDR1_18 = rxlo_cs_b;
+assign CPLD_PL_SPI_ADDR2_18 = lodis_cs_b;
+assign CPLD_PL_SPI_ADDR0_18 = cpld_pl_cs_b;
+assign CPLD_PL_SPI_SCLK_18 = pl_sck;
+assign CPLD_PL_SPI_SDI_18 = pl_mosi;
+
+assign CLKDIST_Status_LD1 = 1'b0;
+assign LOSYNTH_RX_MUXOUT = 1'b1;
+assign LOSYNTH_TX_MUXOUT = 1'b1;
+
+initial
+begin
+ $dumpfile("rh_cpld.vcd");
+ $dumpvars;
+ // Check Signature register read-back
+ #(dly) ps_cpld_xfer(2'b00, {5'b00000, 1'b1}, 16'h0000);
+ // Check Signature register is read-only
+ #(dly) ps_cpld_xfer(2'b00, {5'b00000, 1'b0}, 16'h1234);
+ #(dly) ps_cpld_xfer(2'b00, {5'b00000, 1'b1}, 16'h0000);
+
+ // Load portions of lower RX gain table with some values
+ #(dly) ps_cpld_xfer(2'b00, {5'b00110, 1'b0}, 16'h0000); /* Write GAIN_BAND_SEL for lower table */
+ #(dly) ps_cpld_xfer(2'b01, 6'd0, {2'd0, 5'd0, 5'd1, 1'b1, 3'd0});
+ #(dly) ps_cpld_xfer(2'b01, 6'd1, {2'd0, 5'd0, 5'd2, 1'b1, 3'd0});
+ #(dly) ps_cpld_xfer(2'b01, 6'd2, {2'd0, 5'd1, 5'd2, 1'b1, 3'd0});
+ #(dly) ps_cpld_xfer(2'b01, 6'd3, {2'd0, 5'd1, 5'd3, 1'b1, 3'd0});
+
+ // Load portions of upper RX gain table with some values
+ #(dly) ps_cpld_xfer(2'b00, {5'b00110, 1'b0}, 16'h0101); /* Write GAIN_BAND_SEL for upper table */
+ #(dly) ps_cpld_xfer(2'b01, 6'd4, {2'd0, 5'd2, 5'd3, 1'b1, 3'd0});
+ #(dly) ps_cpld_xfer(2'b01, 6'd5, {2'd0, 5'd2, 5'd4, 1'b1, 3'd0});
+ #(dly) ps_cpld_xfer(2'b01, 6'd6, {2'd0, 5'd3, 5'd4, 1'b1, 3'd0});
+ #(dly) ps_cpld_xfer(2'b01, 6'd7, {2'd0, 5'd3, 5'd5, 1'b1, 3'd0});
+
+ // Check RX gain table readback
+ #(dly) ps_cpld_xfer(2'b01, 6'd0, 16'h0);
+ #(dly) ps_cpld_xfer(2'b01, 6'd1, 16'h0);
+ #(dly) ps_cpld_xfer(2'b01, 6'd2, 16'h0);
+ #(dly) ps_cpld_xfer(2'b01, 6'd3, 16'h0);
+ #(dly) ps_cpld_xfer(2'b01, 6'd4, 16'h0);
+ #(dly) ps_cpld_xfer(2'b01, 6'd5, 16'h0);
+ #(dly) ps_cpld_xfer(2'b01, 6'd6, 16'h0);
+
+ // Check can write a couple registers on PL side
+ // (Also make sure we're looking at the lower gain tables)
+ #(dly) pl_cpld_xfer(2'b00, {5'd6, 1'b0}, 16'h0000);
+ #(dly) pl_cpld_xfer(2'b00, {5'd7, 1'b0}, 16'h0000);
+
+ // Check retrieval of gain values for RX table and program DSAs
+ #(dly) pl_cpld_xfer(2'b01, 6'd2, {2'b0, 1'b1, 6'b0, 1'b1, 6'b0});
+ #(dly) pl_cpld_xfer(2'b01, 6'd3, {2'b0, 1'b0, 6'b0, 1'b1, 6'b0});
+ #(dly) pl_cpld_xfer(2'b01, 6'd1, {2'b0, 1'b1, 6'b0, 1'b0, 6'b0});
+
+ // Check writes to RXBS and TXBS registers
+ #(dly) pl_cpld_xfer(2'b00, {5'd6, 1'b0}, 16'h1ABC);
+ #(dly) pl_cpld_xfer(2'b00, {5'd7, 1'b0}, 16'h1CAB);
+
+ // Check TX DSA programming is independent of RX DSA programming
+ #(dly) pl_cpld_xfer(2'b10, 6'd4, {2'b0, 1'b1, 6'b0, 1'b0, 6'b0});
+
+ // Check LO gain programming works
+ #(dly) pl_cpld_xfer(2'b11, 6'd5, {2'b0, 1'b1, 6'b0, 1'b0, 6'b0});
+ #(dly) pl_cpld_xfer(2'b11, 6'd7, {2'b0, 1'b0, 6'b0, 1'b1, 6'b0});
+ #(dly) pl_cpld_xfer(2'b11, 6'd0, {2'b0, 1'b0, 6'b0, 1'b0, 6'b0});
+
+ // More checks for PL register writes
+ #(dly) pl_cpld_xfer(2'b00, {5'd6, 1'b0}, 16'h0ABC);
+ #(dly) pl_cpld_xfer(2'b00, {5'd7, 1'b0}, 16'h0CAB);
+ #(dly) pl_cpld_xfer(2'b00, {5'd8, 1'b0}, 16'hAA5C);
+ #(dly) pl_cpld_xfer(2'b00, {5'd8, 1'b0}, 16'h5A5C);
+ #(dly) pl_cpld_xfer(2'b00, {5'd6, 1'b0}, 16'h1C42);
+
+ // Check low/high gain tables and independence of RX vs. TX
+ #(dly) pl_cpld_xfer(2'b01, 6'd0, 16'h2040);
+ #(dly) pl_cpld_xfer(2'b00, {5'd7, 1'b0}, 16'h104C);
+ #(dly) pl_cpld_xfer(2'b10, 6'd0, 16'h2040);
+ #(dly) pl_cpld_xfer(2'b00, {5'd7, 1'b0}, 16'h0C80);
+ #(dly) pl_cpld_xfer(2'b10, 6'd5, 16'h2040);
+ $finish;
+end
+
+rhodium_top toplevel_inst(usrpio_io, // bank 1A, 1B and 6
+ADC_A_Over_Range_18, ADC_B_Over_Range_18, // bank 1A
+
+// bank 6
+CPLD_PS_SPI_LE_25,
+CPLD_PS_SPI_CLK_25,
+CPLD_PS_ADDR0_25,
+CPLD_PS_ADDR1_25,
+CPLD_PS_SPI_SDI_25,
+CPLD_PS_SPI_SDO_25,
+PHDAC_SPI_CS_L, PHDAC_SPI_SCLK, PHDAC_SPI_SDI,
+LO_SYNC,
+
+// bank 2
+CPLD_PL_SPI_SDO_18,
+CPLD_PL_SPI_LE_18,
+CPLD_PL_SPI_SCLK_18,
+CPLD_PL_SPI_SDI_18,
+CPLD_PL_SPI_ADDR0_18,
+CPLD_PL_SPI_ADDR1_18,
+CPLD_PL_SPI_ADDR2_18,
+CPLD_ATR_TX_18,
+CPLD_ATR_RX_18,
+ADC_SPI_CS_L_18,
+ADC_SPI_SCLK_18,
+ADC_SPI_SDIO_18,
+DAC_SPI_CS_L_18,
+DAC_SPI_SCLK_18,
+DAC_SPI_SDIO_18,
+DAC_Alarm_18,
+
+// bank 3
+
+CLKDIST_SPI_CS_L,
+CLKDIST_SPI_SCLK,
+CLKDIST_SPI_SDIO,
+Tx_DSA_C1,
+Tx_DSA_C2,
+Tx_DSA_C4,
+Tx_DSA_C8,
+Tx_DSA_C16,
+Tx_DSA1_LE,
+Tx_DSA2_LE,
+Tx_Sw1_Ctrl_1,
+Tx_Sw1_Ctrl_2,
+Tx_Sw2_Ctrl_1,
+Tx_Sw2_Ctrl_2,
+Tx_Sw3_Ctrl_1,
+Tx_Sw3_Ctrl_2,
+Tx_Sw3_Ctrl_3,
+Tx_Sw3_Ctrl_4,
+Rx_LO_Input_Select,
+Rx_LO_Filter_Sw_1,
+Rx_LO_Filter_Sw_2,
+Tx_LO_Input_Select,
+Tx_LO_Filter_Sw_1,
+Tx_LO_Filter_Sw_2,
+CLKDIST_Status_LD1,
+CLKDIST_Status_LD2,
+LOSYNTH_RX_MUXOUT,
+LOSYNTH_TX_MUXOUT,
+
+// bank 8
+LO_SPI_SCLK, // fans out to both rx & tx synths
+LO_SPI_SDI,
+LO_TX_CS_L,
+LO_RX_CS_L,
+Rx_Sw1_Ctrl_1,
+Rx_Sw1_Ctrl_2,
+Rx_DSA_C1,
+Rx_DSA_C2,
+Rx_DSA_C4,
+Rx_DSA_C8,
+Rx_DSA_C16,
+Rx_DSA1_LE,
+Rx_DSA2_LE,
+Rx_Sw2_Ctrl,
+Rx_Sw3_Ctrl_1,
+Rx_Sw3_Ctrl_2,
+Rx_Sw4_Ctrl_1,
+Rx_Sw4_Ctrl_2,
+Rx_Sw4_Ctrl_3,
+Rx_Sw4_Ctrl_4,
+Rx_Demod_ADJ_1,
+Rx_Demod_ADJ_2,
+
+// bank 5
+LO_DSA_C1,
+LO_DSA_C2,
+LO_DSA_C4,
+LO_DSA_C8,
+LO_DSA_C16,
+RxLO_DSA_LE,
+TxLO_DSA_LE,
+LODIST_Bd_SPI_CS_L,
+LODIST_Bd_SPI_SDI,
+LODIST_Bd_SPI_SCLK,
+LODIST_Bd_IO1,
+Tx_Sw5_Ctrl_1,
+Tx_Sw5_Ctrl_2,
+Rx_Sw6_Ctrl_1,
+Rx_Sw6_Ctrl_2,
+
+Tx_HB_LB_Select,
+Rx_HB_LB_Select,
+Cal_iso_Sw_Ctrl
+
+
+);
+endmodule // rh_tb
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_ctrl.v b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_ctrl.v
new file mode 100644
index 000000000..b13eca846
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_ctrl.v
@@ -0,0 +1,203 @@
+///////////////////////////////////////////////////////////////////
+//
+// Copyright 2018 Ettus Research, A National Instruments Company
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Module: rhodium_gain_ctrl
+// Description:
+// Gain controller for Rhodium
+// Provides 2 SPI slaves:
+// The "load" slave is used to load the gain table with DSA settings for
+// each index.
+// The "ctrl" slave takes in a gain index and drives the DSAs with the
+// setting found in the gain table.
+// The SPI formats are provided below.
+//////////////////////////////////////////////////////////////////////
+
+`default_nettype none
+
+/**
+* SPI DATA FORMAT
+* LOADER
+* M {table_sel[1:0], gain_index[5:0], rsvd[1:0], dsa1[4:0], dsa2[4:0], wr_en, rsvd[2:0]}
+* S {-------------------------------, rsvd[1:0], dsa1[4:0], dsa2[4:0], -------rsvd[3:0]}
+* CTRL
+* M {table_sel[1:0], gain_index[5:0], rsvd[1:0], wr_dsa1, -rsvd[5:0], wr_dsa2, rsvd[5:0]}
+* S {-------------------------------, ---------rsvd[2:0], gain1[5:0], ---rsvd, gain2[5:0]}
+*/
+module rhodium_gain_ctrl
+#(
+ parameter TABLE_NUM = 2'b01
+) (
+ input wire load_table_sel,
+ input wire load_sck,
+ input wire load_csb,
+ input wire load_mosi,
+ output wire load_miso,
+ input wire ctrl_table_sel,
+ input wire ctrl_sck,
+ input wire ctrl_csb,
+ input wire ctrl_mosi,
+ output reg ctrl_miso,
+ output wire [4:0] dsa,
+ output reg dsa1_le,
+ output reg dsa2_le
+);
+
+localparam CNT_GAIN1_DRIVE = 10,
+ CNT_DSA1_LE_RISE = 11,
+ CNT_DSA1_LE_FALL = 14,
+ CNT_GAIN1_RELEASE = 17;
+localparam CNT_GAIN2_DRIVE = 17,
+ CNT_DSA2_LE_RISE = 18,
+ CNT_DSA2_LE_FALL = 21,
+ CNT_GAIN2_RELEASE = 24;
+
+/******************
+* Gain table loader
+*******************/
+reg [4:0] load_bit_cnt;
+reg [1:0] load_tbl;
+reg [5:0] load_index;
+reg [15:0] load_rd_data;
+reg [4:0] load_dsa1;
+reg [4:0] load_dsa2;
+wire [4:0] load_dsa1_prev;
+wire [4:0] load_dsa2_prev;
+
+assign load_miso = load_rd_data[15]; // Shift out on neg edge
+
+wire wr_en;
+assign wr_en = (!load_csb) && (load_tbl == TABLE_NUM) && (load_bit_cnt == 20) && (load_mosi);
+
+// Cycle counter for where we are in protocol and shift register for input
+always @ (posedge load_sck or posedge load_csb)
+begin
+ if (load_csb) begin
+ load_bit_cnt <= 5'd0;
+ end else if (!load_csb) begin
+ {load_dsa1, load_dsa2} <= {load_dsa1[3:0], load_dsa2, load_mosi};
+
+ if (load_bit_cnt < 23) begin
+ load_bit_cnt <= load_bit_cnt + 5'd1;
+ end
+ if (load_bit_cnt < 8) begin
+ {load_tbl, load_index} <= {load_tbl[0], load_index, load_mosi};
+ end
+ end
+end
+
+// Readback shift register
+always @ (negedge load_sck)
+begin
+ if (load_bit_cnt == 9) begin
+ load_rd_data <= {load_dsa1_prev, load_dsa2_prev, 5'b000};
+ end else begin
+ load_rd_data <= {load_rd_data[14:0], 1'b0};
+ end
+end
+
+/******************
+* Gain table RAM
+*******************/
+wire [4:0] ctrl_dsa1;
+wire [4:0] ctrl_dsa2;
+
+/* Use half of table for low band, other half for high band
+ * Software decides address mapping
+ */
+rhodium_gain_table gain_table(
+ .wr_clk(load_sck),
+ .wr_en(wr_en),
+ .wr_addr({load_table_sel, load_index}),
+ .wr_data({load_dsa1, load_dsa2}),
+ .wr_data_prev({load_dsa1_prev, load_dsa2_prev}),
+ .rd_clk(ctrl_sck),
+ .rd_addr({ctrl_table_sel, ctrl_index}),
+ .rd_data({ctrl_dsa1, ctrl_dsa2})
+);
+
+/******************
+* Gain control
+*******************/
+reg [4:0] ctrl_bit_cnt;
+reg [1:0] ctrl_tbl;
+reg [5:0] ctrl_index;
+
+reg [5:0] gain1;
+reg [5:0] gain2;
+reg gain1_t;
+reg gain2_t;
+
+assign dsa = !gain1_t ? ctrl_dsa1 :
+ (!gain2_t ? ctrl_dsa2 :
+ 5'b11111);
+
+// Cycle counter for where we are in protocol and shift register for input
+// Also controls timing of DSAs' latch enable signals
+always @ (posedge ctrl_sck or posedge ctrl_csb)
+begin
+ if (ctrl_csb) begin
+ ctrl_bit_cnt <= 5'd0;
+ dsa1_le <= 1'b0;
+ dsa2_le <= 1'b0;
+ gain1_t <= 1'b1;
+ gain2_t <= 1'b1;
+ end else if (!ctrl_csb) begin
+ if (ctrl_bit_cnt < 23) begin
+ ctrl_bit_cnt <= ctrl_bit_cnt + 5'd1;
+ end
+
+ if (ctrl_bit_cnt < 8) begin
+ {ctrl_tbl, ctrl_index} <= {ctrl_tbl[0], ctrl_index, ctrl_mosi};
+ end
+
+ if (ctrl_tbl == TABLE_NUM) begin
+ if ((ctrl_bit_cnt == CNT_GAIN1_DRIVE) && (ctrl_mosi)) begin
+ gain1 <= ctrl_index;
+ gain1_t <= 1'b0;
+ end else if ((gain1_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA1_LE_RISE)) begin
+ dsa1_le <= 1'b1;
+ end else if ((gain1_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA1_LE_FALL)) begin
+ dsa1_le <= 1'b0;
+ end else if ((gain1_t == 1'b0) && (ctrl_bit_cnt == CNT_GAIN1_RELEASE)) begin
+ gain1_t <= 1'b1;
+ end
+
+ if ((ctrl_bit_cnt == CNT_GAIN2_DRIVE) && (ctrl_mosi)) begin
+ gain2 <= ctrl_index;
+ gain2_t <= 1'b0;
+ end else if ((gain2_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA2_LE_RISE)) begin
+ dsa2_le <= 1'b1;
+ end else if ((gain2_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA2_LE_FALL)) begin
+ dsa2_le <= 1'b0;
+ end else if ((gain2_t == 1'b0) && (ctrl_bit_cnt == CNT_GAIN2_RELEASE)) begin
+ gain2_t <= 1'b1;
+ end
+ end
+ end
+end
+
+// SPI readback for ctrl bus, based on current bit count
+always @ (negedge ctrl_sck)
+begin
+ case (ctrl_bit_cnt) // Shift out on neg edge
+ 11: ctrl_miso <= gain1[5];
+ 12: ctrl_miso <= gain1[4];
+ 13: ctrl_miso <= gain1[3];
+ 14: ctrl_miso <= gain1[2];
+ 15: ctrl_miso <= gain1[1];
+ 16: ctrl_miso <= gain1[0];
+ 18: ctrl_miso <= gain2[5];
+ 19: ctrl_miso <= gain2[4];
+ 20: ctrl_miso <= gain2[3];
+ 21: ctrl_miso <= gain2[2];
+ 22: ctrl_miso <= gain2[1];
+ 23: ctrl_miso <= gain2[0];
+ default: ctrl_miso <= 1'b0;
+ endcase
+end
+
+endmodule // rhodium_gain_ctrl
+`default_nettype wire
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_table.v b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_table.v
new file mode 100644
index 000000000..abaca43ba
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_gain_table.v
@@ -0,0 +1,54 @@
+///////////////////////////////////////////////////////////////////
+//
+// Copyright 2018 Ettus Research, A National Instruments Company
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Module: rhodium_gain_table
+// Description:
+// Simple dual port memory for use as gain table
+// Implements a 128 x 16 bit dual-port RAM for storing 10-bit gain values.
+// Write and read domains are independent. Data takes 1 cycle to become valid
+// on the output of the RAM once written.
+//////////////////////////////////////////////////////////////////////
+
+`default_nettype none
+
+module rhodium_gain_table
+(
+ input wire wr_clk,
+ input wire wr_en,
+ input wire [6:0] wr_addr,
+ input wire [9:0] wr_data,
+
+ // Read data for wr_addr (read-first/read-before-write): One cycle latency
+ output wire [9:0] wr_data_prev,
+
+ input wire rd_clk,
+ input wire [6:0] rd_addr,
+ output wire [9:0] rd_data // Read data for rd_addr: One cycle latency
+);
+
+reg [15:0] gain_table[127:0];
+reg [15:0] wr_data_prev_r;
+reg [15:0] rd_data_r;
+
+assign wr_data_prev = wr_data_prev_r[15:6];
+assign rd_data = rd_data_r[15:6];
+
+always @ (posedge wr_clk)
+begin
+ if (wr_en)
+ gain_table[wr_addr] <= {wr_data, 6'b0};
+ wr_data_prev_r <= gain_table[wr_addr];
+end
+
+always @ (posedge rd_clk)
+begin
+ rd_data_r <= gain_table[rd_addr];
+end
+
+
+endmodule // rhodium_gain_table
+`default_nettype wire
+
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_lo_gain.v b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_lo_gain.v
new file mode 100644
index 000000000..0c4ed4c52
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_lo_gain.v
@@ -0,0 +1,124 @@
+///////////////////////////////////////////////////////////////////
+//
+// Copyright 2018 Ettus Research, A National Instruments Company
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Module: rhodium_lo_gain
+// Description:
+// LO Gain controller for Rhodium
+// Implements a gain index register (not a table)
+//
+// Provides 1 SPI slave:
+// The "ctrl" slave takes in a gain index and drives the DSA with that
+// value.
+// The SPI formats are provided below.
+//////////////////////////////////////////////////////////////////////
+
+`default_nettype none
+
+/**
+* SPI DATA FORMAT (left-most bit is first)
+* CTRL
+* M {table_sel[1:0], rsvd, gain[4:0], rsvd[1:0], wr_dsa1, ------rsvd[5:0], wr_dsa2, ----rsvd[5:0]
+* S {-------------------------------, --------------rsvd[3:0], gain1[4:0], -rsvd[1:0], gain2[4:0]}
+*/
+module rhodium_lo_gain #(
+ parameter TABLE_NUM = 2'b01
+) (
+ input wire ctrl_sck,
+ input wire ctrl_csb,
+ input wire ctrl_mosi,
+ output reg ctrl_miso,
+ output wire [4:0] dsa,
+ output reg dsa1_le,
+ output reg dsa2_le
+);
+
+localparam CNT_GAIN1_DRIVE = 10,
+ CNT_DSA1_LE_RISE = 11,
+ CNT_DSA1_LE_FALL = 14,
+ CNT_GAIN1_RELEASE = 17;
+localparam CNT_GAIN2_DRIVE = 17,
+ CNT_DSA2_LE_RISE = 18,
+ CNT_DSA2_LE_FALL = 21,
+ CNT_GAIN2_RELEASE = 24;
+
+reg [4:0] ctrl_bit_cnt;
+reg [1:0] ctrl_tbl;
+reg [5:0] ctrl_index;
+reg [5:0] gain1, gain2;
+reg gain1_t;
+reg gain2_t;
+
+assign dsa = (!gain1_t | !gain2_t) ? ctrl_index[4:0] : 5'b11111;
+
+// Cycle counter for where we are in protocol and shift register for input
+// Also controls timing of DSAs' latch enable signals
+always @ (posedge ctrl_sck or posedge ctrl_csb)
+begin
+ if (ctrl_csb) begin
+ ctrl_bit_cnt <= 5'd0;
+ dsa1_le <= 1'b0;
+ dsa2_le <= 1'b0;
+ gain1_t <= 1'b1;
+ gain2_t <= 1'b1;
+ end else if (!ctrl_csb) begin
+ if (ctrl_bit_cnt < 23) begin
+ ctrl_bit_cnt <= ctrl_bit_cnt + 5'd1;
+ end
+
+ if (ctrl_bit_cnt < 8) begin
+ {ctrl_tbl, ctrl_index} <= {ctrl_tbl[0], ctrl_index, ctrl_mosi};
+ end
+
+ if (ctrl_tbl == TABLE_NUM) begin
+ if ((ctrl_bit_cnt == CNT_GAIN1_DRIVE) && (ctrl_mosi)) begin
+ gain1 <= ctrl_index;
+ gain1_t <= 1'b0;
+ end else if ((gain1_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA1_LE_RISE)) begin
+ dsa1_le <= 1'b1;
+ end else if ((gain1_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA1_LE_FALL)) begin
+ dsa1_le <= 1'b0;
+ end else if ((gain1_t == 1'b0) && (ctrl_bit_cnt == CNT_GAIN1_RELEASE)) begin
+ gain1_t <= 1'b1;
+ end
+
+ if ((ctrl_bit_cnt == CNT_GAIN2_DRIVE) && (ctrl_mosi)) begin
+ gain2 <= ctrl_index;
+ gain2_t <= 1'b0;
+ end else if ((gain2_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA2_LE_RISE)) begin
+ dsa2_le <= 1'b1;
+ end else if ((gain2_t == 1'b0) && (ctrl_bit_cnt == CNT_DSA2_LE_FALL)) begin
+ dsa2_le <= 1'b0;
+ end else if ((gain2_t == 1'b0) && (ctrl_bit_cnt == CNT_GAIN2_RELEASE)) begin
+ gain2_t <= 1'b1;
+ end
+ end
+ end
+end
+
+// SPI readback for ctrl bus, based on current bit count
+always @ (negedge ctrl_sck)
+begin
+ case (ctrl_bit_cnt) // Shift out on neg edge
+ 11: ctrl_miso <= gain1[5];
+ 12: ctrl_miso <= gain1[4];
+ 13: ctrl_miso <= gain1[3];
+ 14: ctrl_miso <= gain1[2];
+ 15: ctrl_miso <= gain1[1];
+ 16: ctrl_miso <= gain1[0];
+ 18: ctrl_miso <= gain2[5];
+ 19: ctrl_miso <= gain2[4];
+ 20: ctrl_miso <= gain2[3];
+ 21: ctrl_miso <= gain2[2];
+ 22: ctrl_miso <= gain2[1];
+ 23: ctrl_miso <= gain2[0];
+ default: ctrl_miso <= 1'b0;
+ endcase
+end
+
+
+endmodule // rhodium_lo_gain
+`default_nettype wire
+
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qpf b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qpf
new file mode 100644
index 000000000..5e1bf4d57
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qpf
@@ -0,0 +1,31 @@
+# -------------------------------------------------------------------------- #
+#
+# Copyright (C) 2017 Intel Corporation. All rights reserved.
+# Your use of Intel Corporation's design tools, logic functions
+# and other software and tools, and its AMPP partner logic
+# functions, and any output files from any of the foregoing
+# (including device programming or simulation files), and any
+# associated documentation or information are expressly subject
+# to the terms and conditions of the Intel Program License
+# Subscription Agreement, the Intel Quartus Prime License Agreement,
+# the Intel MegaCore Function License Agreement, or other
+# applicable license agreement, including, without limitation,
+# that your use is for the sole purpose of programming logic
+# devices manufactured by Intel and sold by Intel or its
+# authorized distributors. Please refer to the applicable
+# agreement for further details.
+#
+# -------------------------------------------------------------------------- #
+#
+# Quartus Prime
+# Version 17.0.2 Build 602 07/19/2017 SJ Lite Edition
+# Date created = 08:22:34 September 13, 2017
+#
+# -------------------------------------------------------------------------- #
+
+QUARTUS_VERSION = "17.0"
+DATE = "08:22:34 September 13, 2017"
+
+# Revisions
+
+PROJECT_REVISION = "rhodium_top"
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qsf b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qsf
new file mode 100644
index 000000000..e94f0bbc8
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.qsf
@@ -0,0 +1,306 @@
+# -------------------------------------------------------------------------- #
+#
+# Copyright (C) 2017 Intel Corporation. All rights reserved.
+# Your use of Intel Corporation's design tools, logic functions
+# and other software and tools, and its AMPP partner logic
+# functions, and any output files from any of the foregoing
+# (including device programming or simulation files), and any
+# associated documentation or information are expressly subject
+# to the terms and conditions of the Intel Program License
+# Subscription Agreement, the Intel Quartus Prime License Agreement,
+# the Intel MegaCore Function License Agreement, or other
+# applicable license agreement, including, without limitation,
+# that your use is for the sole purpose of programming logic
+# devices manufactured by Intel and sold by Intel or its
+# authorized distributors. Please refer to the applicable
+# agreement for further details.
+#
+# -------------------------------------------------------------------------- #
+#
+# Quartus Prime
+# Version 17.0.2 Build 602 07/19/2017 SJ Lite Edition
+# Date created = 08:22:34 September 13, 2017
+#
+# -------------------------------------------------------------------------- #
+#
+# Notes:
+#
+# 1) The default values for assignments are stored in the file:
+# rhodium_top_assignment_defaults.qdf
+# If this file doesn't exist, see file:
+# assignment_defaults.qdf
+#
+# 2) Altera recommends that you do not modify this file. This
+# file is updated automatically by the Quartus Prime software
+# and any changes you make may be lost or overwritten.
+#
+# -------------------------------------------------------------------------- #
+
+
+set_global_assignment -name FAMILY "MAX 10"
+set_global_assignment -name DEVICE 10M04SAU169I7G
+set_global_assignment -name TOP_LEVEL_ENTITY rhodium_top
+set_global_assignment -name ORIGINAL_QUARTUS_VERSION 17.0.2
+set_global_assignment -name PROJECT_CREATION_TIME_DATE "08:22:34 SEPTEMBER 13, 2017"
+set_global_assignment -name LAST_QUARTUS_VERSION "18.1.0 Lite Edition"
+set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
+set_global_assignment -name MIN_CORE_JUNCTION_TEMP "-40"
+set_global_assignment -name MAX_CORE_JUNCTION_TEMP 100
+set_global_assignment -name ERROR_CHECK_FREQUENCY_DIVISOR 256
+set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
+set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL PLACEMENT_AND_ROUTING -section_id Top
+set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
+set_location_assignment PIN_D11 -to CPLD_PS_SPI_LE_25
+set_location_assignment PIN_F13 -to CPLD_PS_SPI_CLK_25
+set_location_assignment PIN_E10 -to CPLD_PS_ADDR0_25
+set_location_assignment PIN_A12 -to CPLD_PS_ADDR1_25
+set_location_assignment PIN_F12 -to CPLD_PS_SPI_SDI_25
+set_location_assignment PIN_F10 -to CPLD_PS_SPI_SDO_25
+set_location_assignment PIN_B1 -to ADC_A_Over_Range_18
+set_location_assignment PIN_D1 -to ADC_B_Over_Range_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to ADC_A_Over_Range_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to ADC_B_Over_Range_18
+set_instance_assignment -name IO_STANDARD LVDS -to LO_SYNC
+set_location_assignment PIN_G9 -to LO_SYNC
+set_location_assignment PIN_G10 -to "LO_SYNC(n)"
+set_instance_assignment -name IO_STANDARD "1.8 V" -to ADC_SPI_CS_L_18
+set_location_assignment PIN_C2 -to ADC_SPI_CS_L_18
+set_location_assignment PIN_C1 -to ADC_SPI_SCLK_18
+set_location_assignment PIN_E3 -to ADC_SPI_SDIO_18
+set_location_assignment PIN_M5 -to CLKDIST_SPI_CS_L
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to CLKDIST_SPI_CS_L
+set_instance_assignment -name IO_STANDARD "1.8 V" -to ADC_SPI_SCLK_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to ADC_SPI_SDIO_18
+set_location_assignment PIN_L5 -to CLKDIST_SPI_SCLK
+set_location_assignment PIN_N5 -to CLKDIST_SPI_SDIO
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to CLKDIST_SPI_SCLK
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to CLKDIST_SPI_SDIO
+set_location_assignment PIN_K6 -to CLKDIST_Status_LD1
+set_location_assignment PIN_J6 -to CLKDIST_Status_LD2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to CLKDIST_Status_LD1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to CLKDIST_Status_LD2
+set_location_assignment PIN_M1 -to CPLD_ATR_TX_18
+set_location_assignment PIN_L1 -to CPLD_ATR_RX_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_ATR_RX_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_ATR_TX_18
+set_location_assignment PIN_H6 -to CPLD_PL_SPI_ADDR0_18
+set_location_assignment PIN_K2 -to CPLD_PL_SPI_ADDR1_18
+set_location_assignment PIN_J2 -to CPLD_PL_SPI_ADDR2_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_PL_SPI_ADDR0_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_PL_SPI_ADDR1_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_PL_SPI_ADDR2_18
+set_location_assignment PIN_K1 -to CPLD_PL_SPI_LE_18
+set_location_assignment PIN_H5 -to CPLD_PL_SPI_SCLK_18
+set_location_assignment PIN_L3 -to CPLD_PL_SPI_SDI_18
+set_location_assignment PIN_L2 -to CPLD_PL_SPI_SDO_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_PL_SPI_LE_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_PL_SPI_SCLK_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_PL_SPI_SDI_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to CPLD_PL_SPI_SDO_18
+set_location_assignment PIN_M2 -to DAC_Alarm_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to DAC_Alarm_18
+set_location_assignment PIN_N3 -to DAC_SPI_SDIO_18
+set_location_assignment PIN_N2 -to DAC_SPI_SCLK_18
+set_location_assignment PIN_M3 -to DAC_SPI_CS_L_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to DAC_SPI_CS_L_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to DAC_SPI_SCLK_18
+set_instance_assignment -name IO_STANDARD "1.8 V" -to DAC_SPI_SDIO_18
+set_location_assignment PIN_M7 -to LOSYNTH_RX_MUXOUT
+set_location_assignment PIN_N7 -to LOSYNTH_TX_MUXOUT
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LOSYNTH_RX_MUXOUT
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LOSYNTH_TX_MUXOUT
+set_location_assignment PIN_E6 -to LO_RX_CS_L
+set_location_assignment PIN_B2 -to LO_SPI_SCLK
+set_location_assignment PIN_M4 -to LO_SPI_SDI
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_RX_CS_L
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_SPI_SCLK
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_SPI_SDI
+set_location_assignment PIN_K5 -to LO_TX_CS_L
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_TX_CS_L
+set_location_assignment PIN_B6 -to Rx_DSA1_LE
+set_location_assignment PIN_A9 -to Rx_DSA2_LE
+set_location_assignment PIN_D8 -to Rx_DSA_C1
+set_location_assignment PIN_D6 -to Rx_DSA_C2
+set_location_assignment PIN_A11 -to Rx_DSA_C4
+set_location_assignment PIN_B10 -to Rx_DSA_C8
+set_location_assignment PIN_A10 -to Rx_DSA_C16
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_DSA1_LE
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_DSA2_LE
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_DSA_C1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_DSA_C2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_DSA_C4
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_DSA_C8
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_DSA_C16
+set_location_assignment PIN_B3 -to Rx_Demod_ADJ_1
+set_location_assignment PIN_N4 -to Rx_Demod_ADJ_2
+set_location_assignment PIN_J5 -to Rx_LO_Filter_Sw_1
+set_location_assignment PIN_J7 -to Rx_LO_Filter_Sw_2
+set_location_assignment PIN_L4 -to Rx_LO_Input_Select
+set_location_assignment PIN_A6 -to Rx_Sw1_Ctrl_1
+set_location_assignment PIN_A7 -to Rx_Sw1_Ctrl_2
+set_location_assignment PIN_A5 -to Rx_Sw2_Ctrl
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Demod_ADJ_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Demod_ADJ_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw1_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw1_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw2_Ctrl
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_LO_Filter_Sw_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_LO_Filter_Sw_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_LO_Input_Select
+set_location_assignment PIN_A4 -to Rx_Sw3_Ctrl_1
+set_location_assignment PIN_A3 -to Rx_Sw3_Ctrl_2
+set_location_assignment PIN_C10 -to Rx_Sw4_Ctrl_1
+set_location_assignment PIN_A8 -to Rx_Sw4_Ctrl_2
+set_location_assignment PIN_B9 -to Rx_Sw4_Ctrl_3
+set_location_assignment PIN_C9 -to Rx_Sw4_Ctrl_4
+set_location_assignment PIN_K13 -to Tx_DSA1_LE
+set_location_assignment PIN_K12 -to Tx_DSA2_LE
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw3_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw3_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw4_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw4_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw4_Ctrl_3
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw4_Ctrl_4
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_DSA1_LE
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_DSA2_LE
+set_location_assignment PIN_H13 -to Tx_DSA_C1
+set_location_assignment PIN_H8 -to Tx_DSA_C2
+set_location_assignment PIN_J13 -to Tx_DSA_C4
+set_location_assignment PIN_H10 -to Tx_DSA_C8
+set_location_assignment PIN_J12 -to Tx_DSA_C16
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_DSA_C1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_DSA_C2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_DSA_C4
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_DSA_C8
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_DSA_C16
+set_location_assignment PIN_N6 -to Tx_LO_Filter_Sw_1
+set_location_assignment PIN_N12 -to Tx_LO_Filter_Sw_2
+set_location_assignment PIN_N8 -to Tx_LO_Input_Select
+set_location_assignment PIN_L10 -to Tx_Sw1_Ctrl_1
+set_location_assignment PIN_N10 -to Tx_Sw1_Ctrl_2
+set_location_assignment PIN_N11 -to Tx_Sw2_Ctrl_1
+set_location_assignment PIN_L11 -to Tx_Sw2_Ctrl_2
+set_location_assignment PIN_L12 -to Tx_Sw3_Ctrl_1
+set_location_assignment PIN_M13 -to Tx_Sw3_Ctrl_2
+set_location_assignment PIN_K11 -to Tx_Sw3_Ctrl_3
+set_location_assignment PIN_J9 -to Tx_Sw3_Ctrl_4
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_LO_Filter_Sw_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_LO_Filter_Sw_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_LO_Input_Select
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw1_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw1_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw2_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw2_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw3_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw3_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw3_Ctrl_3
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw3_Ctrl_4
+set_location_assignment PIN_B11 -to PHDAC_SPI_CS_L
+set_location_assignment PIN_C11 -to PHDAC_SPI_SCLK
+set_location_assignment PIN_D9 -to PHDAC_SPI_SDI
+set_location_assignment PIN_N9 -to LODIST_Bd_SPI_CS_L
+set_location_assignment PIN_J8 -to LODIST_Bd_SPI_SCLK
+set_location_assignment PIN_M9 -to LODIST_Bd_SPI_SDI
+set_location_assignment PIN_L13 -to LO_DSA_C1
+set_location_assignment PIN_K10 -to LO_DSA_C2
+set_location_assignment PIN_H9 -to LO_DSA_C4
+set_location_assignment PIN_G12 -to LO_DSA_C8
+set_location_assignment PIN_G13 -to LO_DSA_C16
+set_location_assignment PIN_J10 -to RxLO_DSA_LE
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LODIST_Bd_SPI_CS_L
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LODIST_Bd_SPI_SCLK
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LODIST_Bd_SPI_SDI
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_DSA_C1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_DSA_C2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_DSA_C4
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_DSA_C8
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to LO_DSA_C16
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to RxLO_DSA_LE
+set_location_assignment PIN_B4 -to Rx_Sw6_Ctrl_1
+set_location_assignment PIN_B5 -to Rx_Sw6_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw6_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_Sw6_Ctrl_2
+set_location_assignment PIN_M8 -to TxLO_DSA_LE
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to TxLO_DSA_LE
+set_location_assignment PIN_M11 -to Tx_Sw5_Ctrl_1
+set_location_assignment PIN_M12 -to Tx_Sw5_Ctrl_2
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw5_Ctrl_1
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_Sw5_Ctrl_2
+set_location_assignment PIN_D12 -to Cal_iso_Sw_Ctrl
+set_location_assignment PIN_K8 -to LODIST_Bd_IO1
+set_location_assignment PIN_M10 -to Tx_HB_LB_Select
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Tx_HB_LB_Select
+set_location_assignment PIN_E8 -to Rx_HB_LB_Select
+set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to Rx_HB_LB_Select
+set_instance_assignment -name IO_STANDARD "2.5 V" -to PHDAC_SPI_CS_L
+set_instance_assignment -name IO_STANDARD "2.5 V" -to PHDAC_SPI_SCLK
+set_instance_assignment -name IO_STANDARD "2.5 V" -to PHDAC_SPI_SDI
+set_instance_assignment -name IO_STANDARD "2.5 V" -to CPLD_PS_ADDR0_25
+set_instance_assignment -name IO_STANDARD "2.5 V" -to CPLD_PS_ADDR1_25
+set_instance_assignment -name IO_STANDARD "2.5 V" -to CPLD_PS_SPI_CLK_25
+set_instance_assignment -name IO_STANDARD "2.5 V" -to CPLD_PS_SPI_LE_25
+set_instance_assignment -name IO_STANDARD "2.5 V" -to CPLD_PS_SPI_SDI_25
+set_instance_assignment -name IO_STANDARD "2.5 V" -to CPLD_PS_SPI_SDO_25
+set_instance_assignment -name IO_STANDARD "2.5 V" -to Cal_iso_Sw_Ctrl
+set_instance_assignment -name IO_STANDARD "3.3 V SCHMITT TRIGGER" -to LODIST_Bd_IO1
+set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (Verilog)"
+set_global_assignment -name EDA_OUTPUT_DATA_FORMAT "VERILOG HDL" -section_id eda_simulation
+set_location_assignment PIN_E4 -to usrp_io[0]
+set_location_assignment PIN_G5 -to usrp_io[1]
+set_location_assignment PIN_H4 -to usrp_io[2]
+set_location_assignment PIN_J1 -to usrp_io[3]
+set_location_assignment PIN_F1 -to usrp_io[4]
+set_location_assignment PIN_C12 -to usrp_io[5]
+set_location_assignment PIN_C13 -to usrp_io[6]
+set_location_assignment PIN_E12 -to usrp_io[7]
+set_location_assignment PIN_E13 -to usrp_io[8]
+set_location_assignment PIN_B13 -to usrp_io[9]
+set_location_assignment PIN_F9 -to usrp_io[10]
+set_location_assignment PIN_B12 -to usrp_io[11]
+set_location_assignment PIN_E9 -to usrp_io[12]
+set_location_assignment PIN_F8 -to usrp_io[13]
+set_instance_assignment -name IO_STANDARD "1.8 V" -to usrp_io[0]
+set_instance_assignment -name IO_STANDARD "1.8 V" -to usrp_io[1]
+set_instance_assignment -name IO_STANDARD "1.8 V" -to usrp_io[2]
+set_instance_assignment -name IO_STANDARD "1.8 V" -to usrp_io[3]
+set_instance_assignment -name IO_STANDARD "1.8 V" -to usrp_io[4]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[5]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[6]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[7]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[8]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[9]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[10]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[11]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[12]
+set_instance_assignment -name IO_STANDARD "2.5 V" -to usrp_io[13]
+set_global_assignment -name POWER_PRESET_COOLING_SOLUTION "23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
+set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
+set_global_assignment -name EDA_TIME_SCALE "1 ps" -section_id eda_simulation
+set_global_assignment -name EDA_TEST_BENCH_ENABLE_STATUS TEST_BENCH_MODE -section_id eda_simulation
+set_global_assignment -name EDA_NATIVELINK_SIMULATION_TEST_BENCH rh_tb -section_id eda_simulation
+set_global_assignment -name EDA_TEST_BENCH_NAME rh_tb -section_id eda_simulation
+set_global_assignment -name EDA_DESIGN_INSTANCE_NAME NA -section_id rh_tb
+set_global_assignment -name EDA_TEST_BENCH_RUN_SIM_FOR "9000 ns" -section_id rh_tb
+set_global_assignment -name EDA_TEST_BENCH_MODULE_NAME rh_tb -section_id rh_tb
+set_global_assignment -name FLOW_ENABLE_POWER_ANALYZER ON
+set_global_assignment -name POWER_DEFAULT_INPUT_IO_TOGGLE_RATE "12.5 %"
+set_global_assignment -name EDA_RUN_TOOL_AUTOMATICALLY OFF -section_id eda_simulation
+set_global_assignment -name OPTIMIZATION_MODE "HIGH PERFORMANCE EFFORT"
+set_global_assignment -name VERILOG_FILE rhodium_top.v
+set_global_assignment -name VERILOG_FILE rhodium_gain_ctrl.v
+set_global_assignment -name VERILOG_FILE rhodium_gain_table.v
+set_global_assignment -name VERILOG_FILE rhodium_lo_gain.v
+set_global_assignment -name VERILOG_FILE rh_tb.v
+set_global_assignment -name EDA_TEST_BENCH_FILE rh_tb.v -section_id rh_tb
+
+
+set_global_assignment -name ENABLE_OCT_DONE OFF
+set_global_assignment -name STRATIXV_CONFIGURATION_SCHEME "PASSIVE SERIAL"
+set_global_assignment -name USE_CONFIGURATION_DEVICE ON
+set_global_assignment -name CRC_ERROR_OPEN_DRAIN OFF
+set_global_assignment -name GENERATE_SVF_FILE ON
+set_global_assignment -name OUTPUT_IO_TIMING_NEAR_END_VMEAS "HALF VCCIO" -rise
+set_global_assignment -name OUTPUT_IO_TIMING_NEAR_END_VMEAS "HALF VCCIO" -fall
+set_global_assignment -name OUTPUT_IO_TIMING_FAR_END_VMEAS "HALF SIGNAL SWING" -rise
+set_global_assignment -name OUTPUT_IO_TIMING_FAR_END_VMEAS "HALF SIGNAL SWING" -fall
+set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.sdc b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.sdc
new file mode 100644
index 000000000..4b00a5053
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.sdc
@@ -0,0 +1,415 @@
+# SPDX-License-Identifier: LGPL-3.0-or-later
+#
+# Copyright 2019 Ettus Research, A National Instruments Company
+#
+# Timing constraints for Rhodium's MAX 10 board controller
+
+set_time_format -unit ns -decimal_places 3
+
+# Some constants for constraining the design with the FPGA-centric method:
+# Maximum trace propagation delay is assumed to be 0.6 ns on any traces
+# to on-dboard slaves
+set board_delay 0.600
+set clk_uncertainty 0.150
+
+###############################################################################
+# Clocks
+###############################################################################
+
+# The PS SPI clock is maximum 10 MHz. It is driven from another source and
+# provided with the data.
+# CPLD_PS_SPI_CLK_25: 8 MHz
+set sclk_ps_period 125.000
+
+# Create clock for the PS's SPI interface
+create_clock -name sclk_ps -period $sclk_ps_period \
+ [get_ports CPLD_PS_SPI_CLK_25]
+
+# The PL SPI clock is split into two pieces. For the normal case, the clock
+# frequency is 10 MHz. This is for any read operations.
+#
+# CPLD_PL_SPI_SCLK_18 pass through / read back ONLY: 10 MHz
+set sclk_pl_period 100.000
+create_clock -name sclk_pl -period $sclk_pl_period \
+ [get_ports CPLD_PL_SPI_SCLK_18]
+
+# We can go faster for the PL writes to the internal registers and LOs.
+# This rate is not supported for readback, but it helps with getting the DSA
+# settings and LO settings in faster.
+# CPLD_PL_SPI_SCLK_18 internal ONLY: 25 MHz
+set sclk_pl_wr_period 40.000
+create_clock -name sclk_pl_wr -period $sclk_pl_wr_period \
+ [get_ports CPLD_PL_SPI_SCLK_18] -add
+
+# Output clocks for the MAX 10's SPI master interfaces (1 for each slave IC)
+create_generated_clock -source [get_ports CPLD_PS_SPI_CLK_25] \
+ -name clkdist_clk [get_ports CLKDIST_SPI_SCLK]
+create_generated_clock -source [get_ports CPLD_PS_SPI_CLK_25] \
+ -name adc_clk [get_ports ADC_SPI_SCLK_18]
+create_generated_clock -source [get_ports CPLD_PS_SPI_CLK_25] \
+ -name dac_clk [get_ports DAC_SPI_SCLK_18]
+create_generated_clock -source [get_ports CPLD_PS_SPI_CLK_25] \
+ -name phdac_clk [get_ports PHDAC_SPI_SCLK]
+
+create_generated_clock -source [get_ports CPLD_PL_SPI_SCLK_18] \
+ -master_clock [get_clocks sclk_pl] \
+ -name lo_clk [get_ports LO_SPI_SCLK]
+create_generated_clock -source [get_ports CPLD_PL_SPI_SCLK_18] \
+ -master_clock [get_clocks sclk_pl_wr] \
+ -name lo_wr_clk [get_ports LO_SPI_SCLK] -add
+create_generated_clock -source [get_ports CPLD_PL_SPI_SCLK_18] \
+ -master_clock [get_clocks sclk_pl] \
+ -name lodist_clk [get_ports LODIST_Bd_SPI_SCLK]
+
+# Virtual clock for DSA writes for skew calculations
+#create_generated_clock -source [get_pins lo_gain_table\|dsa1_le\|clk]
+create_generated_clock -source [get_ports CPLD_PL_SPI_SCLK_18] \
+ -master_clock [get_clocks sclk_pl_wr] \
+ -name dsa_reg_clk [get_pins lo_gain_table\|dsa1_le\|q]
+
+create_generated_clock -source [get_pins lo_gain_table\|dsa1_le\|q] \
+ -name dsa_clk [get_ports RxLO_DSA_LE]
+
+# PL's pass through clock doesn't interact with internal clock
+set_clock_groups -physically_exclusive \
+ -group [get_clocks {sclk_pl_wr lo_wr_clk dsa_reg_clk dsa_clk}] \
+ -group [get_clocks {sclk_pl lo_clk lodist_clk}]
+
+set_clock_groups -asynchronous \
+ -group [get_clocks {sclk_ps clkdist_clk adc_clk dac_clk phdac_clk}] \
+ -group [get_clocks {sclk_pl sclk_pl_wr lo_clk lodist_clk}]
+
+set_clock_uncertainty -to [get_clocks {sclk_ps sclk_pl sclk_pl_wr clkdist_clk
+ adc_clk dac_clk phdac_clk lo_clk lo_wr_clk lodist_clk dsa_reg_clk dsa_clk}] \
+ $clk_uncertainty
+
+###############################################################################
+# Timing Budget Calculations
+###############################################################################
+# Here we carve out some timing budget for the master's SPI interfaces.
+# The master will use these values to time its SPI interface.
+# The PL's write-only values are smaller because there are no external chip
+# dependencies.
+set setup_ps 25
+set hold_ps 30
+
+# PL SPI is constrained on the master with an allowed skew value of +/- 3 ns
+# relative to the launch clock
+# Increase to 5 ns here for more margin
+set pl_skew 5
+
+# Clocks are nominally a 50% duty cycle, so difference between latch and
+# launch is half a period, so subtract allowed skew from that for setup/hold
+# specification. The half period is due to launch being the falling edge and
+# latch being the rising edge.
+set setup_pl [expr {$sclk_pl_period / 2 - $pl_skew}]
+set hold_pl [expr {$sclk_pl_period / 2 - $pl_skew}]
+set setup_pl_wr [expr {$sclk_pl_wr_period / 2 - $pl_skew}]
+set hold_pl_wr [expr {$sclk_pl_wr_period / 2 - $pl_skew}]
+
+# Calculate input delays relative to falling edge (launch)
+# Min is hold time after previous rising edge (previous latch)
+# Max is setup time before next rising edge (next latch)
+set input_delay_min_ps [expr {-$sclk_ps_period / 2 + $hold_ps}]
+set input_delay_max_ps [expr {$sclk_ps_period / 2 - $setup_ps}]
+set input_delay_min_pl [expr {-$sclk_pl_period / 2 + $hold_pl}]
+set input_delay_max_pl [expr {$sclk_pl_period / 2 - $setup_pl}]
+set input_delay_min_pl_wr [expr {-$sclk_pl_wr_period / 2 + $hold_pl_wr}]
+set input_delay_max_pl_wr [expr {$sclk_pl_wr_period / 2 - $setup_pl_wr}]
+
+# Again, carve out timing budget for master's SPI interface
+# Readback on the master will depend on clk-to-q of our slave.
+# These values will need to be at least as large as the worst slave.
+# Clock arrival at the slave will be delayed by propagation through the MAX 10
+# Data to the MAX 10's input port will be further delayed by slave's clk-to-q
+# On top of that, we then need budget for the data to cross the MAX 10, head
+# out the I/O, and propagate to the master's pin. Then the master will need
+# some budget for setup time.
+#
+# Here is what we'll budget:
+# Clk propagation to I/O: 7 ns
+# Clk trace delay: 1 ns
+# Worst-case chip clk-to-q: 10 ns
+# Data trace delay: 1 ns
+# Data propagation delay from input pin to output pin: 8 ns
+# Total clk-to-q from MAX 10 sclk input to MAX 10 output: 27 ns
+#
+# Then master's budget is 23 ns for clock delay + data delay + setup time
+set clk_q_max_ps 27.000
+
+# For the PL, the worst-case chip changes to 2 ns, so there is more budget
+set clk_q_max_pl 20.000
+
+# clk-to-q determines one side of the data invalid window
+# The maximum output delay is simply latch edge - clk-to-q
+# Launch is falling edge, and latch is rising edge, so...
+set output_delay_max_ps [expr {$sclk_ps_period / 2 - $clk_q_max_ps}]
+set output_delay_max_pl [expr {$sclk_pl_period / 2 - $clk_q_max_pl}]
+
+# The minimum output delay represents the other edge of the data invalid
+# window. Our clock is likely quite delayed already, but add a little more
+# margin for hold time.
+set output_delay_min_ps -5.000
+set output_delay_min_pl -5.000
+
+
+###############################################################################
+# I/O groups (for reference later)
+###############################################################################
+
+# Chip selects
+set ps_csb [get_ports {
+ CPLD_PS_ADDR0_25
+ CPLD_PS_ADDR1_25
+ CPLD_PS_SPI_LE_25
+ usrp_io[12]
+ usrp_io[13]
+}]
+set pl_csb [get_ports {
+ CPLD_PL_SPI_ADDR0_18
+ CPLD_PL_SPI_ADDR1_18
+ CPLD_PL_SPI_ADDR2_18
+ CPLD_PL_SPI_LE_18
+}]
+
+# Data for internal PL SPI
+set pl_src [get_ports {
+ CPLD_PL_SPI_SDI_18
+}]
+
+# Passthrough inputs (forward direction)
+# CPLD_PS_SPI_CLK_25 and CPLD_PL_SPI_SCLK_18 are special
+set ps_pt_src [get_ports {CPLD_PS_SPI_LE_25
+ usrp_io[12]
+ usrp_io[13]
+ CPLD_PS_ADDR1_25
+ CPLD_PS_SPI_SDI_25
+ }]
+
+set pl_pt_src [get_ports {CPLD_PL_SPI_LE_18
+ CPLD_PL_SPI_ADDR1_18
+ CPLD_PL_SPI_ADDR2_18
+ CPLD_PL_SPI_SDI_18
+ }]
+
+# Passthrough outputs (forward direction)
+# And inputs from the SPI slaves (readback direction)
+set clkdist_spi_out [get_ports {
+ CLKDIST_SPI_CS_L
+ CLKDIST_SPI_SDIO
+}]
+
+set clkdist_spi_in [get_ports {
+ CLKDIST_SPI_SDIO
+}]
+
+set phdac_spi [get_ports {
+ PHDAC_SPI_CS_L
+ PHDAC_SPI_SDI
+}]
+
+set dac_spi_out [get_ports {
+ DAC_SPI_CS_L_18
+ DAC_SPI_SDIO_18
+}]
+
+set dac_spi_in [get_ports {
+ DAC_SPI_SDIO_18
+}]
+
+set adc_spi_out [get_ports {
+ ADC_SPI_CS_L_18
+ ADC_SPI_SDIO_18
+}]
+
+set adc_spi_in [get_ports {
+ ADC_SPI_SDIO_18
+}]
+
+set lo_spi_out [get_ports {
+ LO_TX_CS_L
+ LO_RX_CS_L
+ LO_SPI_SDI
+}]
+
+set lo_spi_in [get_ports {
+ LOSYNTH_RX_MUXOUT
+ LOSYNTH_TX_MUXOUT
+}]
+
+set lodist_spi_out [get_ports {
+ LODIST_Bd_SPI_CS_L
+ LODIST_Bd_SPI_SDI
+}]
+
+# Readback outputs
+set ps_rb_out [get_ports CPLD_PS_SPI_SDO_25]
+set pl_rb_out [get_ports CPLD_PL_SPI_SDO_18]
+
+##############################################################################
+# Chip-selects provide async resets
+##############################################################################
+set_false_path -from $ps_csb -to [get_pins *|clrn]
+set_false_path -from $pl_csb -to [get_pins *|clrn]
+
+# Also ignore setup/hold analysis for chip-selects affecting readback path
+# These are available many cycles before readback begins and have
+# combinatorial paths to the output
+set_false_path -from $ps_csb -to $ps_rb_out
+set_false_path -from $pl_csb -to $pl_rb_out
+
+set_input_delay -clock sclk_ps -clock_fall -max $input_delay_max_ps \
+ [get_ports CPLD_PS_ADDR0_25]
+set_input_delay -clock sclk_ps -clock_fall -min $input_delay_min_ps \
+ [get_ports CPLD_PS_ADDR0_25]
+
+set_input_delay -clock sclk_pl -clock_fall -max $input_delay_max_pl \
+ [get_ports CPLD_PL_SPI_ADDR0_18]
+set_input_delay -clock sclk_pl -clock_fall -min $input_delay_min_pl \
+ [get_ports CPLD_PL_SPI_ADDR0_18]
+
+set_input_delay -clock sclk_pl_wr -clock_fall -max $input_delay_max_pl_wr \
+ [get_ports CPLD_PL_SPI_ADDR0_18] -add
+set_input_delay -clock sclk_pl_wr -clock_fall -min $input_delay_min_pl_wr \
+ [get_ports CPLD_PL_SPI_ADDR0_18] -add
+
+
+##############################################################################
+# Input delays from SPI master
+##############################################################################
+set_input_delay -clock sclk_ps -clock_fall -max $input_delay_max_ps $ps_pt_src
+set_input_delay -clock sclk_ps -clock_fall -min $input_delay_min_ps $ps_pt_src
+
+set_input_delay -clock sclk_pl -clock_fall -max $input_delay_max_pl $pl_pt_src
+set_input_delay -clock sclk_pl -clock_fall -min $input_delay_min_pl $pl_pt_src
+
+set_input_delay -clock sclk_pl_wr -clock_fall -max $input_delay_max_pl_wr $pl_src -add
+set_input_delay -clock sclk_pl_wr -clock_fall -min $input_delay_min_pl_wr $pl_src -add
+
+##############################################################################
+# Output delays to each SPI slave (uses setup/hold times from data sheet)
+##############################################################################
+set adc_setup 4
+set adc_hold 2
+set_output_delay -clock adc_clk -max [expr {$adc_setup + $board_delay}] \
+ $adc_spi_out
+set_output_delay -clock adc_clk -min [expr {-$adc_hold - $board_delay}] \
+ $adc_spi_out
+
+set dac_setup 10
+set dac_hold 5
+set_output_delay -clock dac_clk -max [expr {$dac_setup + $board_delay}] \
+ $dac_spi_out
+set_output_delay -clock dac_clk -min [expr {-$dac_hold - $board_delay}] \
+ $dac_spi_out
+
+set phdac_setup 5
+set phdac_hold 5
+set_output_delay -clock phdac_clk -max [expr {$phdac_setup + $board_delay}] \
+ $phdac_spi
+set_output_delay -clock phdac_clk -min [expr {-$phdac_hold - $board_delay}] \
+ $phdac_spi
+
+set clkdist_setup 10
+set clkdist_hold 10
+set_output_delay -clock clkdist_clk -max [expr {$clkdist_setup + $board_delay}] \
+ $clkdist_spi_out
+set_output_delay -clock clkdist_clk -min [expr {-$clkdist_hold - $board_delay}] \
+ $clkdist_spi_out
+
+set lo_setup 2
+set lo_hold 2
+set_output_delay -clock lo_wr_clk -max [expr {$lo_setup + $board_delay}] \
+ $lo_spi_out
+set_output_delay -clock lo_wr_clk -min [expr {-$lo_hold - $board_delay}] \
+ $lo_spi_out
+
+##############################################################################
+# Input delays from each SPI slave (uses clk-to-q times from data sheet)
+# One board delay for clock, another for data
+##############################################################################
+set lo_clk_q 2
+set_input_delay -clock lo_clk -clock_fall -max [expr {$lo_clk_q + $board_delay + $board_delay}] \
+ $lo_spi_in
+set_input_delay -clock lo_clk -clock_fall -min 0 \
+ $lo_spi_in
+
+set adc_clk_q 10
+set dac_clk_q 10
+set clkdist_clk_q 10
+set_input_delay -clock adc_clk -clock_fall -max [expr {$adc_clk_q + $board_delay + $board_delay}] \
+ $adc_spi_in
+set_input_delay -clock adc_clk -clock_fall -min 0 \
+ $adc_spi_in
+set_input_delay -clock dac_clk -clock_fall -max [expr {$dac_clk_q + $board_delay + $board_delay}] \
+ $dac_spi_in
+set_input_delay -clock dac_clk -clock_fall -min 0 \
+ $dac_spi_in
+set_input_delay -clock clkdist_clk -clock_fall -max [expr {$clkdist_clk_q + $board_delay + $board_delay}] \
+ $clkdist_spi_in
+set_input_delay -clock clkdist_clk -clock_fall -min 0 \
+ $clkdist_spi_in
+
+
+##############################################################################
+# Output delays for readback path
+##############################################################################
+set_output_delay -clock sclk_ps -max $output_delay_max_ps $ps_rb_out
+set_output_delay -clock sclk_ps -min $output_delay_min_ps $ps_rb_out
+
+set_output_delay -clock sclk_pl -max $output_delay_max_pl $pl_rb_out
+set_output_delay -clock sclk_pl -min $output_delay_min_pl $pl_rb_out
+
+##############################################################################
+# GPIOs and DSAs
+# Outputs that aren't timing-critical
+##############################################################################
+set gpos [get_ports {Tx_Sw*
+ Rx_LO_*
+ Tx_LO_*
+ Rx_Sw*
+ Rx_Demod_*
+ Tx_HB_LB_Select
+ Rx_HB_LB_Select
+ Cal_iso_Sw_Ctrl
+ LODIST_Bd_IO1
+ }]
+
+# Inputs that aren't timing-critical
+set gpis [get_ports {LO_SYNC
+ CPLD_ATR_TX_18
+ CPLD_ATR_RX_18
+ DAC_Alarm_18
+ CLKDIST_Status*
+ LODIST_Bd_IO1
+ }]
+
+# DSAs (special skew needs)
+# RxLO_DSA_LE used for skew basis
+set dsas [get_ports {Tx_DSA*
+ Rx_DSA*
+ TxLO_DSA*
+ LO_DSA*
+ }]
+
+# Just do false paths for gpios
+set_false_path -to $gpos
+set_false_path -from $gpis
+
+# Unused
+set_false_path -to $lodist_spi_out
+
+# DSA skew timing
+# Earlier, we created a "clock" for one of the DSA latch enable signals
+# Use set_output_delay to constrain skew around the latch enable
+# set_multicycle_path is used to make latch clock = launch clock for setup
+# Constrain skew to 8 ns -- controller nominally does 120 ns minimum between
+# edges, and 100 ns is the DSA's requirement for setup/hold
+set dsa_skew 8.0
+set_output_delay -clock dsa_clk -max -$dsa_skew $dsas
+set_output_delay -clock dsa_clk -min $dsa_skew $dsas
+set_multicycle_path -start -setup 0 -to $dsas
+
+set_max_delay -from [get_ports CPLD_ATR_TX_18] \
+ -to [get_ports {Tx_Sw1_Ctrl_1 Tx_Sw1_Ctrl_2}] 10.0
+
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.v b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.v
new file mode 100644
index 000000000..1d0d640da
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/cpld/rhodium_top.v
@@ -0,0 +1,605 @@
+///////////////////////////////////////////////////////////////////
+//
+// Copyright 2018 Ettus Research, A National Instruments Company
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Module: rhodium_top
+//////////////////////////////////////////////////////////////////////
+
+`default_nettype none
+
+module rhodium_top(
+
+input [13:0] usrp_io, // bank 1A, 1B and 6
+
+input ADC_A_Over_Range_18, input ADC_B_Over_Range_18, // bank 1A
+
+// bank 6
+input CPLD_PS_SPI_LE_25,
+input CPLD_PS_SPI_CLK_25,
+input CPLD_PS_ADDR0_25,
+input CPLD_PS_ADDR1_25,
+input CPLD_PS_SPI_SDI_25,
+output reg CPLD_PS_SPI_SDO_25,
+output PHDAC_SPI_CS_L,
+output PHDAC_SPI_SCLK,
+output PHDAC_SPI_SDI,
+input LO_SYNC,
+
+// bank 2
+output reg CPLD_PL_SPI_SDO_18,
+input CPLD_PL_SPI_LE_18,
+input CPLD_PL_SPI_SCLK_18,
+input CPLD_PL_SPI_SDI_18,
+input CPLD_PL_SPI_ADDR0_18,
+input CPLD_PL_SPI_ADDR1_18,
+input CPLD_PL_SPI_ADDR2_18,
+// NOTE: TxRx front-end switches are driven direct from the motherboard, so these ATR
+// lines have no function at this time.
+input CPLD_ATR_TX_18,
+input CPLD_ATR_RX_18,
+output ADC_SPI_CS_L_18,
+output ADC_SPI_SCLK_18,
+inout ADC_SPI_SDIO_18,
+output DAC_SPI_CS_L_18,
+output DAC_SPI_SCLK_18,
+inout DAC_SPI_SDIO_18,
+input DAC_Alarm_18, // TODO: drive to gpio?
+
+// bank 3
+
+output CLKDIST_SPI_CS_L,
+output CLKDIST_SPI_SCLK,
+inout CLKDIST_SPI_SDIO,
+output Tx_DSA_C1,
+output Tx_DSA_C2,
+output Tx_DSA_C4,
+output Tx_DSA_C8,
+output Tx_DSA_C16,
+output Tx_DSA1_LE,
+output Tx_DSA2_LE,
+output Tx_Sw1_Ctrl_1,
+output Tx_Sw1_Ctrl_2,
+output Tx_Sw2_Ctrl_1,
+output Tx_Sw2_Ctrl_2,
+output Tx_Sw3_Ctrl_1,
+output Tx_Sw3_Ctrl_2,
+output Tx_Sw3_Ctrl_3,
+output Tx_Sw3_Ctrl_4,
+output Rx_LO_Input_Select,
+output Rx_LO_Filter_Sw_1,
+output Rx_LO_Filter_Sw_2,
+output Tx_LO_Input_Select,
+output Tx_LO_Filter_Sw_1,
+output Tx_LO_Filter_Sw_2,
+input CLKDIST_Status_LD1,
+input CLKDIST_Status_LD2,
+input LOSYNTH_RX_MUXOUT,
+input LOSYNTH_TX_MUXOUT,
+
+// bank 8
+output LO_SPI_SCLK, // fans out to both rx & tx synths
+output LO_SPI_SDI,
+output LO_TX_CS_L,
+output LO_RX_CS_L,
+output Rx_Sw1_Ctrl_1,
+output Rx_Sw1_Ctrl_2,
+output Rx_DSA_C1,
+output Rx_DSA_C2,
+output Rx_DSA_C4,
+output Rx_DSA_C8,
+output Rx_DSA_C16,
+output Rx_DSA1_LE,
+output Rx_DSA2_LE,
+output Rx_Sw2_Ctrl,
+output Rx_Sw3_Ctrl_1,
+output Rx_Sw3_Ctrl_2,
+output Rx_Sw4_Ctrl_1,
+output Rx_Sw4_Ctrl_2,
+output Rx_Sw4_Ctrl_3,
+output Rx_Sw4_Ctrl_4,
+output Rx_Demod_ADJ_1,
+output Rx_Demod_ADJ_2,
+
+// bank 5
+output LO_DSA_C1,
+output LO_DSA_C2,
+output LO_DSA_C4,
+output LO_DSA_C8,
+output LO_DSA_C16,
+output RxLO_DSA_LE,
+output TxLO_DSA_LE,
+output LODIST_Bd_SPI_CS_L,
+output LODIST_Bd_SPI_SDI,
+output LODIST_Bd_SPI_SCLK,
+inout LODIST_Bd_IO1,
+output Tx_Sw5_Ctrl_1,
+output Tx_Sw5_Ctrl_2,
+output Rx_Sw6_Ctrl_1,
+output Rx_Sw6_Ctrl_2,
+
+output Tx_HB_LB_Select,
+output Rx_HB_LB_Select,
+output Cal_iso_Sw_Ctrl
+
+
+);
+
+/* PS SPI */
+
+localparam GIT_HASH = 36'h`GIT_HASH;
+localparam PROD_SIGNATURE = 16'h0045; // Product signature (Rhodium atomic number in BCD)
+localparam REVISION_MINOR = 16'h0002;
+localparam REVISION_MAJOR = 16'h0004;
+localparam CPLD_BUILD_LSB = GIT_HASH[15:0]; // Build code LSB
+localparam CPLD_BUILD_MSB = GIT_HASH[31:16]; // Build code MSB
+localparam PSADDR_SIGNATURE = 3'd0;
+localparam PSADDR_REV_MINOR = 3'd1; // Minor version register
+localparam PSADDR_REV_MAJOR = 3'd2; // Major version register
+localparam PSADDR_BUILD_LSB = 3'd3;
+localparam PSADDR_BUILD_MSB = 3'd4;
+localparam PSADDR_SCRATCH = 3'd5; // scratchpad register
+localparam PSADDR_GAIN_SEL = 3'd6; // band select for gain table loader
+localparam PSADDR_DAC_ALARM = 3'd7; // DAC alarm pin register
+
+// Sub-device selection for PS SPI
+localparam PS_CPLD_REGS = 2'b00;
+localparam GAIN_TABLE_RX = 2'b01;
+localparam GAIN_TABLE_TX = 2'b10;
+localparam GAIN_TABLE_LO = 2'b11;
+
+// Setting to put TX SW1 in isolation mode
+localparam [1:0] TX_SW1_TERM = 2'b11;
+
+wire clkdis_cs_b = CPLD_PS_SPI_LE_25;
+wire cpld_ps_cs_b = CPLD_PS_ADDR0_25;
+wire phdac_cs_b = CPLD_PS_ADDR1_25;
+wire adc_cs_b = usrp_io[12];
+wire dac_cs_b = usrp_io[13];
+
+// CPLD PS SPI format (left-most bit first):
+// {table_sel[1:0], rsvd, reg_addr[3:0], rnw, data[15:0]}
+wire [1:0] cpld_ps_table_sel;
+wire [6:0] cpld_ps_spi_addr;
+wire cpld_ps_spi_rnw;
+reg [7:0] cpld_ps_spi_cmd;
+reg [15:0] cpld_ps_spi_rdata;
+reg [14:0] cpld_ps_spi_wdata;
+reg cpld_ps_spi_sdo;
+reg [4:0] cpld_ps_cnt;
+
+assign {cpld_ps_spi_addr, cpld_ps_spi_rnw} = cpld_ps_spi_cmd;
+
+// CPLD registers
+reg [15:0] spad;
+reg [15:0] gain_load_sel;
+
+// Double sync. the DAC ALARM pin (async).
+reg dac_alarm_ms, dac_alarm = 0;
+always @(posedge CPLD_PS_SPI_CLK_25) begin
+ {dac_alarm, dac_alarm_ms} <= {dac_alarm_ms, DAC_Alarm_18};
+end
+
+wire rx_gain_load_tbl_sel;
+wire rx_gain_load_miso;
+wire rx_gain_ctrl_tbl_sel;
+wire rx_gain_ctrl_miso;
+wire tx_gain_load_tbl_sel;
+wire tx_gain_load_miso;
+wire tx_gain_ctrl_tbl_sel;
+wire tx_gain_ctrl_miso;
+wire lo_gain_ctrl_miso;
+
+assign rx_gain_load_tbl_sel = gain_load_sel[0];
+assign tx_gain_load_tbl_sel = gain_load_sel[8];
+
+always @(posedge CPLD_PS_SPI_CLK_25 or posedge cpld_ps_cs_b)
+begin
+ if (cpld_ps_cs_b) begin
+ cpld_ps_cnt <= 5'd0;
+ end else if (!cpld_ps_cs_b) begin
+ if (cpld_ps_cnt < 8) begin // Address / command
+ cpld_ps_spi_cmd <= {cpld_ps_spi_cmd[6:0], CPLD_PS_SPI_SDI_25};
+ cpld_ps_cnt <= cpld_ps_cnt + 5'd1;
+ end else if (cpld_ps_cnt < 23) begin // Shift in write data
+ cpld_ps_spi_wdata <= {cpld_ps_spi_wdata[13:0], CPLD_PS_SPI_SDI_25};
+ cpld_ps_cnt <= cpld_ps_cnt + 5'd1;
+ end else if (!cpld_ps_spi_rnw && cpld_ps_cnt == 23 && cpld_ps_spi_addr[6:5] == PS_CPLD_REGS) begin // Write
+ case (cpld_ps_spi_addr[2:0])
+ PSADDR_SIGNATURE: ;
+ PSADDR_REV_MINOR: ;
+ PSADDR_REV_MAJOR: ;
+ PSADDR_BUILD_LSB: ;
+ PSADDR_BUILD_MSB: ;
+ PSADDR_SCRATCH: spad <= {cpld_ps_spi_wdata, CPLD_PS_SPI_SDI_25};
+ PSADDR_GAIN_SEL: gain_load_sel <= {cpld_ps_spi_wdata, CPLD_PS_SPI_SDI_25};
+ endcase
+ end
+ if (cpld_ps_cnt == 7) begin // Set up read one cycle earlier
+ case (cpld_ps_spi_cmd[2:0])
+
+ PSADDR_SIGNATURE: cpld_ps_spi_rdata <= PROD_SIGNATURE;
+ PSADDR_REV_MINOR: cpld_ps_spi_rdata <= REVISION_MINOR;
+ PSADDR_REV_MAJOR: cpld_ps_spi_rdata <= REVISION_MAJOR;
+ PSADDR_BUILD_LSB: cpld_ps_spi_rdata <= CPLD_BUILD_LSB;
+ PSADDR_BUILD_MSB: cpld_ps_spi_rdata <= CPLD_BUILD_MSB;
+ PSADDR_SCRATCH: cpld_ps_spi_rdata <= spad;
+ PSADDR_GAIN_SEL: cpld_ps_spi_rdata <= gain_load_sel;
+ PSADDR_DAC_ALARM: cpld_ps_spi_rdata <= {15'b0, dac_alarm};
+ endcase
+ end else begin
+ cpld_ps_spi_rdata <= {cpld_ps_spi_rdata[14:0], 1'b1};
+ end
+ end
+end
+
+always @(negedge CPLD_PS_SPI_CLK_25)
+begin
+ cpld_ps_spi_sdo <= cpld_ps_spi_rdata[15]; // Shift out on negative edge
+end
+
+// CLKDIST 3-wire to 4-wire
+reg [4:0] clkdis_cnt;
+reg clkdis_rd_pre, clkdis_rd, clkdis_sdio_t;
+
+always @(posedge CPLD_PS_SPI_CLK_25 or posedge clkdis_cs_b)
+begin
+ if (clkdis_cs_b) begin
+ clkdis_cnt <= 5'd0;
+ clkdis_rd <= 1'b0;
+ clkdis_rd_pre <= 1'b0;
+ end else if (!clkdis_cs_b) begin
+ if (clkdis_cnt < 23)
+ clkdis_cnt <= clkdis_cnt + 5'd1;
+
+ if (clkdis_cnt == 5'd0) // Check if read
+ clkdis_rd_pre <= CPLD_PS_SPI_SDI_25;
+
+ if (clkdis_cnt == 5'd15)
+ clkdis_rd <= clkdis_rd_pre;
+ end
+end
+
+always @(negedge CPLD_PS_SPI_CLK_25 or posedge clkdis_cs_b)
+begin
+ if (clkdis_cs_b) begin
+ clkdis_sdio_t <= 1'b0;
+ end else begin
+ clkdis_sdio_t <= clkdis_rd;
+ end
+end
+
+// ADC 3-wire to 4-wire
+reg [4:0] adc_cnt;
+reg adc_rd_pre, adc_rd, adc_sdio_t;
+
+always @(posedge CPLD_PS_SPI_CLK_25 or posedge adc_cs_b)
+begin
+ if (adc_cs_b) begin
+ adc_cnt <= 5'd0;
+ adc_rd <= 1'b0;
+ adc_rd_pre <= 1'b0;
+ end else if (!adc_cs_b) begin
+ if (adc_cnt < 23)
+ adc_cnt <= adc_cnt + 5'd1;
+
+ if (adc_cnt == 5'd0) // Check if read
+ adc_rd_pre <= CPLD_PS_SPI_SDI_25;
+
+ if (adc_cnt == 5'd15)
+ adc_rd <= adc_rd_pre;
+ end
+end
+
+always @(negedge CPLD_PS_SPI_CLK_25 or posedge adc_cs_b)
+begin
+ if (adc_cs_b) begin
+ adc_sdio_t <= 1'b0;
+ end else begin
+ adc_sdio_t <= adc_rd;
+ end
+end
+
+// DAC 3-wire to 4-wire
+reg [4:0] dac_cnt;
+reg dac_rd_pre, dac_rd, dac_sdio_t;
+
+always @(posedge CPLD_PS_SPI_CLK_25 or posedge dac_cs_b)
+begin
+ if (dac_cs_b) begin
+ dac_cnt <= 5'd0;
+ dac_rd <= 1'b0;
+ dac_rd_pre <= 1'b0;
+ end else if (!dac_cs_b) begin
+ if (dac_cnt < 23)
+ dac_cnt <= dac_cnt + 5'd1;
+
+ if (dac_cnt == 5'd0) // Check if read
+ dac_rd_pre <= CPLD_PS_SPI_SDI_25;
+
+ if (dac_cnt == 5'd7)
+ dac_rd <= dac_rd_pre;
+ end
+end
+
+always @(negedge CPLD_PS_SPI_CLK_25 or posedge dac_cs_b)
+begin
+ if (dac_cs_b) begin
+ dac_sdio_t <= 1'b0;
+ end else begin
+ dac_sdio_t <= dac_rd;
+ end
+end
+
+// multiplexed slave device SPI ports
+wire phdac_sck, phdac_sdi;
+wire clkdis_sck, adc_sck, dac_sck;
+assign clkdis_sck = (clkdis_cs_b == 1'b0) ? CPLD_PS_SPI_CLK_25 : 1'b0;
+
+assign CLKDIST_SPI_CS_L = clkdis_cs_b;
+assign CLKDIST_SPI_SCLK = clkdis_sck;
+
+assign adc_sck = !adc_cs_b ? CPLD_PS_SPI_CLK_25 : 1'b0;
+assign dac_sck = !dac_cs_b ? CPLD_PS_SPI_CLK_25 : 1'b0;
+
+assign ADC_SPI_CS_L_18 = adc_cs_b;
+assign ADC_SPI_SCLK_18 = adc_sck;
+
+assign DAC_SPI_CS_L_18 = dac_cs_b;
+assign DAC_SPI_SCLK_18 = dac_sck;
+
+assign CLKDIST_SPI_SDIO = (!clkdis_sdio_t && !clkdis_cs_b) ? CPLD_PS_SPI_SDI_25 : 1'bz ;
+assign ADC_SPI_SDIO_18 = (!adc_sdio_t && !adc_cs_b) ? CPLD_PS_SPI_SDI_25 : 1'bz ;
+assign DAC_SPI_SDIO_18 = (!dac_sdio_t && !dac_cs_b) ? CPLD_PS_SPI_SDI_25 : 1'bz ;
+
+always @(*)
+begin
+ CPLD_PS_SPI_SDO_25 = 1'b1;
+ case ({cpld_ps_cs_b, clkdis_cs_b, adc_cs_b, dac_cs_b})
+ 4'b0111: begin
+ case (cpld_ps_spi_addr[6:5])
+ PS_CPLD_REGS : CPLD_PS_SPI_SDO_25 = cpld_ps_spi_sdo;
+ GAIN_TABLE_RX: CPLD_PS_SPI_SDO_25 = rx_gain_load_miso;
+ GAIN_TABLE_TX: CPLD_PS_SPI_SDO_25 = tx_gain_load_miso;
+ GAIN_TABLE_LO: CPLD_PS_SPI_SDO_25 = 1'b1;
+ endcase
+ end
+ 4'b1011: CPLD_PS_SPI_SDO_25 = CLKDIST_SPI_SDIO;
+ 4'b1101: CPLD_PS_SPI_SDO_25 = ADC_SPI_SDIO_18;
+ 4'b1110: CPLD_PS_SPI_SDO_25 = DAC_SPI_SDIO_18;
+ default: ;
+ endcase
+end
+
+// note: no readback from PHDAC
+assign phdac_sck = (phdac_cs_b == 1'b0) ? CPLD_PS_SPI_CLK_25 : 1'b0;
+assign phdac_sdi = (phdac_cs_b == 1'b0) ? CPLD_PS_SPI_SDI_25 : 1'b1;
+
+
+assign PHDAC_SPI_SCLK = phdac_sck;
+assign PHDAC_SPI_CS_L = phdac_cs_b;
+assign PHDAC_SPI_SDI = phdac_sdi;
+
+
+/* PL SPI */
+// CPLD PL SPI format (left-most bit first):
+// {table_sel[1:0], reg_addr[4:0], rnw, data[15:0]}
+
+//TXLO, RXLO, LODIS, CPLD
+localparam PLADDR_SCRATCH = 4'b0101; // scratchpad register
+localparam PLADDR_RXBS = 4'b0110;
+localparam PLADDR_TXBS = 4'b0111;
+localparam PLADDR_RFCTRL = 4'b1000;
+localparam PL_CPLD_REGS = 2'b00;
+
+// CPLD PL registers
+reg [15:0] rxbs = 'h0;
+reg [15:0] txbs = 'h0;
+reg [15:0] rfctrl = 'h0;
+
+// register address on the falling edge of chip-select
+wire txlo_cs_b = CPLD_PL_SPI_LE_18;
+wire rxlo_cs_b = CPLD_PL_SPI_ADDR1_18;
+wire lodis_cs_b = CPLD_PL_SPI_ADDR2_18;
+wire cpld_pl_cs_b = CPLD_PL_SPI_ADDR0_18;
+
+wire cpld_pl_spi_rnw;
+wire [6:0] cpld_pl_spi_addr;
+reg [7:0] cpld_pl_spi_cmd;
+reg [15:0] cpld_pl_spi_rdata;
+reg [14:0] cpld_pl_spi_wdata;
+reg cpld_pl_spi_sdo;
+reg [4:0] cpld_pl_cnt;
+
+assign {cpld_pl_spi_addr, cpld_pl_spi_rnw} = cpld_pl_spi_cmd;
+
+reg [15:0] pl_spad;
+
+always @(posedge CPLD_PL_SPI_SCLK_18 or posedge cpld_pl_cs_b)
+begin
+ if (cpld_pl_cs_b) begin
+ cpld_pl_cnt <= 5'd0;
+ end else if (!cpld_pl_cs_b) begin
+ if (cpld_pl_cnt < 8) begin // Address / command
+ cpld_pl_spi_cmd <= {cpld_pl_spi_cmd[6:0], CPLD_PL_SPI_SDI_18};
+ cpld_pl_cnt <= cpld_pl_cnt + 5'd1;
+ end else if (cpld_pl_cnt < 23) begin // Shift in write data
+ cpld_pl_spi_wdata <= {cpld_pl_spi_wdata[13:0], CPLD_PL_SPI_SDI_18};
+ cpld_pl_cnt <= cpld_pl_cnt + 5'd1;
+ end else if (!cpld_pl_spi_rnw && cpld_pl_cnt == 23 && cpld_pl_spi_addr[6:5] == PL_CPLD_REGS) begin // Write
+ case (cpld_pl_spi_addr[3:0])
+ PLADDR_SCRATCH: pl_spad <= {cpld_pl_spi_wdata, CPLD_PL_SPI_SDI_18};
+ PLADDR_RXBS: rxbs <= {cpld_pl_spi_wdata, CPLD_PL_SPI_SDI_18};
+ PLADDR_TXBS: txbs <= {cpld_pl_spi_wdata, CPLD_PL_SPI_SDI_18};
+ PLADDR_RFCTRL: rfctrl <= {cpld_pl_spi_wdata, CPLD_PL_SPI_SDI_18};
+ endcase
+ end
+ if (cpld_pl_cnt == 7) begin // Set up read one cycle earlier
+ case (cpld_pl_spi_cmd[3:0])
+ PLADDR_SCRATCH: cpld_pl_spi_rdata <= pl_spad;
+ PLADDR_RXBS: cpld_pl_spi_rdata <= rxbs;
+ PLADDR_TXBS: cpld_pl_spi_rdata <= txbs;
+ PLADDR_RFCTRL: cpld_pl_spi_rdata <= rfctrl;
+ endcase
+ end else begin
+ cpld_pl_spi_rdata <= {cpld_pl_spi_rdata[14:0], 1'b1};
+ end
+ end
+end
+
+always @(negedge CPLD_PL_SPI_SCLK_18)
+begin
+ cpld_pl_spi_sdo <= cpld_pl_spi_rdata[15]; // Shift out on negative edge
+end
+
+// multiplexed slave device SPI ports, names aliased to protect the innocent
+wire lo_sck, lodis_sck;
+wire lo_sdi, lodis_sdi;
+// Note: lo_sck and lo_sdi -> fan out to both rxlo and txlo synths
+
+assign { LO_TX_CS_L, LO_RX_CS_L } = { txlo_cs_b, rxlo_cs_b};
+assign LO_SPI_SCLK = lo_sck;
+assign LO_SPI_SDI = lo_sdi;
+
+
+assign LODIST_Bd_SPI_CS_L = lodis_cs_b;
+assign LODIST_Bd_SPI_SDI = lodis_sdi;
+assign LODIST_Bd_SPI_SCLK = lodis_sck;
+
+
+assign lodis_sck = !lodis_cs_b ? CPLD_PL_SPI_SCLK_18 : 1'b0;
+assign lodis_sdi = !lodis_cs_b ? CPLD_PL_SPI_SDI_18 : 1'b1;
+
+assign { lo_sck, lo_sdi } = (!txlo_cs_b | !rxlo_cs_b) ? {CPLD_PL_SPI_SCLK_18,CPLD_PL_SPI_SDI_18} : 2'b01;
+
+
+always @(*)
+begin
+ CPLD_PL_SPI_SDO_18 = 1'bz;
+ case ({cpld_pl_cs_b, txlo_cs_b, rxlo_cs_b})
+ 3'b110: CPLD_PL_SPI_SDO_18 = LOSYNTH_RX_MUXOUT;
+ 3'b101: CPLD_PL_SPI_SDO_18 = LOSYNTH_TX_MUXOUT;
+ 3'b011: begin
+ case (cpld_pl_spi_addr[6:5])
+ PL_CPLD_REGS : CPLD_PL_SPI_SDO_18 = cpld_pl_spi_sdo;
+ GAIN_TABLE_RX: CPLD_PL_SPI_SDO_18 = rx_gain_ctrl_miso;
+ GAIN_TABLE_TX: CPLD_PL_SPI_SDO_18 = tx_gain_ctrl_miso;
+ GAIN_TABLE_LO: CPLD_PL_SPI_SDO_18 = lo_gain_ctrl_miso;
+ endcase
+ end
+ default: ;
+ endcase
+end
+
+assign rx_gain_ctrl_tbl_sel = rxbs[12];
+assign { Rx_Sw6_Ctrl_2,
+ Rx_Sw6_Ctrl_1,
+ Rx_Sw4_Ctrl_4,
+ Rx_Sw4_Ctrl_3,
+ Rx_Sw4_Ctrl_2,
+ Rx_Sw4_Ctrl_1,
+ Rx_Sw3_Ctrl_2,
+ Rx_Sw3_Ctrl_1,
+ Rx_Sw2_Ctrl,
+ Rx_Sw1_Ctrl_2,
+ Rx_Sw1_Ctrl_1 } = { rxbs[11:1] };
+
+assign tx_gain_ctrl_tbl_sel = txbs[12];
+assign { Tx_Sw5_Ctrl_2,
+ Tx_Sw5_Ctrl_1,
+ Tx_Sw3_Ctrl_4,
+ Tx_Sw3_Ctrl_3,
+ Tx_Sw3_Ctrl_2,
+ Tx_Sw3_Ctrl_1,
+ Tx_Sw2_Ctrl_2,
+ Tx_Sw2_Ctrl_1} = { txbs[11:4] };
+
+// Terminate TX when idle
+assign {Tx_Sw1_Ctrl_2, Tx_Sw1_Ctrl_1} = CPLD_ATR_TX_18 ? txbs[3:2] : TX_SW1_TERM;
+
+assign { Rx_LO_Filter_Sw_2,
+ Rx_LO_Filter_Sw_1,
+ Tx_LO_Filter_Sw_2,
+ Tx_LO_Filter_Sw_1,
+ Rx_Demod_ADJ_1,
+ Rx_Demod_ADJ_2,
+ Rx_LO_Input_Select } = rfctrl[15:9];
+
+assign { Rx_HB_LB_Select,
+ Tx_LO_Input_Select } = rfctrl[7:6];
+
+assign { Tx_HB_LB_Select,
+ Cal_iso_Sw_Ctrl }
+ = { rfctrl[4:3] };
+
+
+// RX Gain Table
+wire [4:0] rx_dsa;
+
+rhodium_gain_ctrl #(
+ .TABLE_NUM(GAIN_TABLE_RX)
+) rx_gain_table (
+ .load_table_sel(rx_gain_load_tbl_sel),
+ .load_sck(CPLD_PS_SPI_CLK_25),
+ .load_csb(cpld_ps_cs_b),
+ .load_mosi(CPLD_PS_SPI_SDI_25),
+ .load_miso(rx_gain_load_miso),
+ .ctrl_table_sel(rx_gain_ctrl_tbl_sel),
+ .ctrl_sck(CPLD_PL_SPI_SCLK_18),
+ .ctrl_csb(cpld_pl_cs_b),
+ .ctrl_mosi(CPLD_PL_SPI_SDI_18),
+ .ctrl_miso(rx_gain_ctrl_miso),
+ .dsa(rx_dsa),
+ .dsa1_le(Rx_DSA1_LE),
+ .dsa2_le(Rx_DSA2_LE)
+);
+
+// TX Gain Table
+wire [4:0] tx_dsa;
+
+rhodium_gain_ctrl #(
+ .TABLE_NUM(GAIN_TABLE_TX)
+) tx_gain_table (
+ .load_table_sel(tx_gain_load_tbl_sel),
+ .load_sck(CPLD_PS_SPI_CLK_25),
+ .load_csb(cpld_ps_cs_b),
+ .load_mosi(CPLD_PS_SPI_SDI_25),
+ .load_miso(tx_gain_load_miso),
+ .ctrl_table_sel(tx_gain_ctrl_tbl_sel),
+ .ctrl_sck(CPLD_PL_SPI_SCLK_18),
+ .ctrl_csb(cpld_pl_cs_b),
+ .ctrl_mosi(CPLD_PL_SPI_SDI_18),
+ .ctrl_miso(tx_gain_ctrl_miso),
+ .dsa(tx_dsa),
+ .dsa1_le(Tx_DSA1_LE),
+ .dsa2_le(Tx_DSA2_LE)
+);
+
+// LO Gain Table
+wire [4:0] lo_dsa;
+
+rhodium_lo_gain #(
+ .TABLE_NUM(GAIN_TABLE_LO)
+) lo_gain_table (
+ .ctrl_sck(CPLD_PL_SPI_SCLK_18),
+ .ctrl_csb(cpld_pl_cs_b),
+ .ctrl_mosi(CPLD_PL_SPI_SDI_18),
+ .ctrl_miso(lo_gain_ctrl_miso),
+ .dsa(lo_dsa),
+ .dsa1_le(RxLO_DSA_LE),
+ .dsa2_le(TxLO_DSA_LE)
+);
+
+// Rx data shared by DSA1, DSA2
+assign { Rx_DSA_C16, Rx_DSA_C8, Rx_DSA_C4, Rx_DSA_C2, Rx_DSA_C1 } = rx_dsa;
+
+// Tx data shared by DSA1, DSA2
+assign { Tx_DSA_C16, Tx_DSA_C8, Tx_DSA_C4, Tx_DSA_C2, Tx_DSA_C1 } = tx_dsa;
+
+// data shared by both tx and rx lo DSAs
+assign { LO_DSA_C16, LO_DSA_C8, LO_DSA_C4, LO_DSA_C2, LO_DSA_C1 } = lo_dsa;
+
+endmodule
+`default_nettype wire
+
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_clocks.xdc b/fpga/usrp3/top/n3xx/dboards/rh/db_clocks.xdc
new file mode 100644
index 000000000..e78342849
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_clocks.xdc
@@ -0,0 +1,118 @@
+#
+# Copyright 2017 Ettus Research, A National Instruments Company
+# SPDX-License-Identifier: LGPL-3.0
+#
+# Timing analysis is performed in "usrp3/top/n3xx/dboards/rh/doc/rh_timing.xlsx".
+# See this spreadsheet for more details and explanations.
+
+#*******************************************************************************
+## Daughterboard Clocks
+#
+# 122.88, 200, 245.76 and 250 MHz Sample Rates are allowable with 2:1/1:2 DSP and
+# 2 samples/cycle arriving at the FPGA:
+#
+# <-- 2:1/1:2 -->
+# | Supported | Sample rate | FPGA Clk |
+# |sample rates | at JESD core | Frequency |
+# | (MSPS) | (MSPS) | (MHz) |
+# |-------------|--------------|-----------|
+# | 122.88 | 491.52 | 245.76 | (uses DUC/DDC)
+# | 200.00 | 400.00 | 200.00 |
+# | 245.76 | 491.52 | 245.76 |
+# | 250.00 | 500.00 | 250.00 |
+#
+# Therefore, supported sample clocks are: 122.88, 200, 245.76 and 250 MHz.
+# Constrain the paths to the max rate to support all rates in a single FPGA image.
+set SAMPLE_CLK_PERIOD 4.00
+create_clock -name fpga_clk_a -period $SAMPLE_CLK_PERIOD [get_ports DBA_FPGA_CLK_P]
+create_clock -name fpga_clk_b -period $SAMPLE_CLK_PERIOD [get_ports DBB_FPGA_CLK_P]
+create_clock -name mgt_clk_dba -period $SAMPLE_CLK_PERIOD [get_ports DBA_MGTCLK_P]
+create_clock -name mgt_clk_dbb -period $SAMPLE_CLK_PERIOD [get_ports DBB_MGTCLK_P]
+
+# The Radio Clocks coming from the DBs are synchronized together (at the converters) to
+# a typical value of less than 100ps. To give ourselves and Vivado some margin, we claim
+# here that the DB-B Radio Clock can arrive 500ps before or after the DB-A clock at
+# the FPGA (note that the trace lengths of the Radio Clocks coming from the DBs to the
+# FPGA are about 0.5" different, thereby incurring ~80ps of additional skew at the FPGA).
+# There is one spot in the FPGA where we cross domains between the DB-A and
+# DB-B clock, so we must ensure that Vivado can analyze that path safely.
+set FPGA_CLK_EARLY -0.5
+set FPGA_CLK_LATE 0.5
+set_clock_latency -source -early $FPGA_CLK_EARLY [get_clocks fpga_clk_b]
+set_clock_latency -source -late $FPGA_CLK_LATE [get_clocks fpga_clk_b]
+
+# Virtual clocks for constraining I/O (used below)
+create_clock -name fpga_clk_a_v -period $SAMPLE_CLK_PERIOD
+create_clock -name fpga_clk_b_v -period $SAMPLE_CLK_PERIOD
+
+# The set_clock_latency constraints set on fpga_clk_b are problematic when used with
+# I/O timing, since the analyzer gives us a double-hit on the latency. One workaround
+# (used here) is to simply swap the early and late times for the virtual clock so that
+# it cancels out the source latency during analysis. D. Jepson tested this by setting
+# the early and late numbers to zero and then their actual value, running timing reports
+# on each. The slack report matches for both cases, showing that the reversed early/late
+# numbers on the virtual clock zero out the latency effects on the actual clock.
+#
+# Note this is not a problem for the fpga_clk_a, since no latency is added. So only apply
+# it to fpga_clk_b_v.
+set_clock_latency -source -early $FPGA_CLK_LATE [get_clocks fpga_clk_b_v]
+set_clock_latency -source -late $FPGA_CLK_EARLY [get_clocks fpga_clk_b_v]
+
+
+
+#*******************************************************************************
+## Aliases for auto-generated clocks
+
+create_generated_clock -name radio_clk_fb [get_pins {dba_core/RadioClockingx/RadioClkMmcm/CLKFBOUT}]
+create_generated_clock -name radio_clk [get_pins {dba_core/RadioClockingx/RadioClkMmcm/CLKOUT0}]
+create_generated_clock -name radio_clk_2x [get_pins {dba_core/RadioClockingx/RadioClkMmcm/CLKOUT1}]
+
+create_generated_clock -name radio_clk_b_fb [get_pins {dbb_core/RadioClockingx/RadioClkMmcm/CLKFBOUT}]
+create_generated_clock -name radio_clk_b [get_pins {dbb_core/RadioClockingx/RadioClkMmcm/CLKOUT0}]
+create_generated_clock -name radio_clk_b_2x [get_pins {dbb_core/RadioClockingx/RadioClkMmcm/CLKOUT1}]
+
+
+
+#*******************************************************************************
+## Generated clocks for output busses to the daughterboard
+#
+# These clock definitions need to come above the set_clock_groups commands below to work!
+
+# Define clocks on the PL SPI clock output pins for both DBs. Actual divider values are
+# set by SW at run-time. Current divider value is 125 based on what radio clock
+# rate is set.
+# For the CPLD SPI endpoint alone, we need it to run at ~25 MHz (writes only), this means
+# that at times, the PL SPI will have its divider set to 10 (radio_clock = 250 MHz) or 8
+# (radio_clock = 200 MHz).
+# The readback clock is lower (~10 MHz), so create a separate clock for it.
+# Use readback divide value of 24 for an even divider (and some overconstraining).
+set PL_SPI_DIVIDE_VAL 10
+set PL_SPI_RB_DIVIDE_VAL 24
+set PL_SPI_CLK_A [get_ports DBA_CPLD_PL_SPI_SCLK]
+create_generated_clock -name pl_spi_clk_a \
+ -source [get_pins [all_fanin -flat -only_cells -startpoints_only $PL_SPI_CLK_A]/C] \
+ -divide_by $PL_SPI_DIVIDE_VAL $PL_SPI_CLK_A
+create_generated_clock -name pl_spi_rb_clk_a \
+ -master_clock [get_clocks radio_clk] \
+ -source [get_pins [all_fanin -flat -only_cells -startpoints_only $PL_SPI_CLK_A]/C] \
+ -divide_by $PL_SPI_RB_DIVIDE_VAL -add $PL_SPI_CLK_A
+set PL_SPI_CLK_B [get_ports DBB_CPLD_PL_SPI_SCLK]
+create_generated_clock -name pl_spi_clk_b \
+ -source [get_pins [all_fanin -flat -only_cells -startpoints_only $PL_SPI_CLK_B]/C] \
+ -divide_by $PL_SPI_DIVIDE_VAL $PL_SPI_CLK_B
+create_generated_clock -name pl_spi_rb_clk_b \
+ -master_clock [get_clocks radio_clk] \
+ -source [get_pins [all_fanin -flat -only_cells -startpoints_only $PL_SPI_CLK_B]/C] \
+ -divide_by $PL_SPI_RB_DIVIDE_VAL -add $PL_SPI_CLK_B
+
+#*******************************************************************************
+## JTAG
+set DB_JTAG_DIVISOR 4
+create_generated_clock -name dba_jtag_tck -divide_by $DB_JTAG_DIVISOR \
+ -source [get_pins {inst_n310_ps/jtag_0/U0/bitq_ctrl/bitq_state_reg[1]/C}] \
+ [get_ports DBA_CPLD_JTAG_TCK]
+
+create_generated_clock -name dbb_jtag_tck -divide_by $DB_JTAG_DIVISOR \
+ -source [get_pins {inst_n310_ps/jtag_1/U0/bitq_ctrl/bitq_state_reg[1]/C}] \
+ [get_ports DBB_CPLD_JTAG_TCK]
+
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/ClockingRegs.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/ClockingRegs.vhd
new file mode 100644
index 000000000..52c68ab4a
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/ClockingRegs.vhd
@@ -0,0 +1,345 @@
+-------------------------------------------------------------------------------
+--
+-- File: ClockingRegs.vhd
+-- Author: Daniel Jepson; mods by Humberto Jimenez
+-- Original Project: N310; N32x
+-- Date: 17 March 2016
+--
+-------------------------------------------------------------------------------
+-- Copyright 2016-2018 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: LGPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose:
+--
+-- Register access to the control/status bits and interfaces for the
+-- RadioClocking module.
+--
+-- XML register definition is included below the module.
+--
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+
+library work;
+ use work.PkgClockingRegMap.all;
+ use work.PkgRegs.all;
+
+
+entity ClockingRegs is
+ port(
+ -- Async reset. Can be tied low if desired.
+ aReset : in boolean;
+ -- Sync reset... used in the same places as the async one.
+ bReset : in boolean;
+ -- Register Bus Clock -- this module connects the BusClk to PsClk, so it's limited
+ -- to 200 MHz!
+ BusClk : in std_logic;
+
+ bRegPortOut : out RegPortOut_t;
+ bRegPortIn : in RegPortIn_t;
+
+ -- Phase shift interface to the RadioClkMmcm.
+ -- There is a reset crossing here between the MMCM reset and aReset. The outgoing
+ -- crossing is safe because (a) the enable signal driven to the MMCM is a strobe-only
+ -- signal and (b) this interface should only be used when the MMCM is not in reset
+ -- (SW waits for the MMCM to be out of reset and locked before using this interface).
+ -- The only input signal, pPsDone, is double-synced in this file before being used.
+ -- This is OK (even though it is a strobe signal) because there is only a reset
+ -- crossing and not a clock domain crossing.
+ pPsInc : out std_logic;
+ pPsEn : out std_logic;
+ pPsDone : in std_logic;
+
+ -- PsClk is driven directly by BusClk, so p = b in the logic below!
+ PsClk : out std_logic;
+
+ -- Sync reset strobes from the register bus to the RadioClkMmcm.
+ bRadioClkMmcmReset : out std_logic;
+ -- Status of RadioClk MMCM lock to register bus.
+ aRadioClksValid : in std_logic;
+
+ bRadioClk1xEnabled : out std_logic;
+ bRadioClk2xEnabled : out std_logic;
+ bRadioClk3xEnabled : out std_logic;
+
+ bJesdRefClkPresent : in std_logic
+ );
+end ClockingRegs;
+
+
+architecture RTL of ClockingRegs is
+
+ --vhook_sigstart
+ --vhook_sigend
+
+ signal bRadioClkMmcmResetInt : std_logic := '1';
+
+ signal bRegPortOutLcl : RegPortOut_t := kRegPortOutZero;
+
+ signal bPsDone,
+ bPsEn,
+ bPsInc,
+ pPsDoneDs_ms,
+ pPsDoneDs : std_logic := '0';
+
+ signal bRadioClk1xEnabledInt,
+ bRadioClk2xEnabledInt,
+ bRadioClk3xEnabledInt,
+ bRadioClksValid_ms,
+ bRadioClksValid : std_logic := '0';
+
+ attribute ASYNC_REG : string;
+ attribute ASYNC_REG of bRadioClksValid_ms : signal is "true";
+ attribute ASYNC_REG of bRadioClksValid : signal is "true";
+ attribute ASYNC_REG of pPsDoneDs_ms : signal is "true";
+ attribute ASYNC_REG of pPsDoneDs : signal is "true";
+
+begin
+
+ -- Locals to outputs.
+ PsClk <= BusClk;
+ pPsInc <= bPsInc;
+ pPsEn <= bPsEn;
+
+ bRadioClkMmcmReset <= bRadioClkMmcmResetInt;
+
+ bRadioClk1xEnabled <= bRadioClk1xEnabledInt;
+ bRadioClk2xEnabled <= bRadioClk2xEnabledInt;
+ bRadioClk3xEnabled <= bRadioClk3xEnabledInt;
+
+
+ -- Write Registers : ------------------------------------------------------------------
+ -- ------------------------------------------------------------------------------------
+ WriteRegisters: process(aReset, BusClk)
+ begin
+ if aReset then
+ bRadioClkMmcmResetInt <= '1';
+ bPsInc <= '0';
+ bPsEn <= '0';
+ bRadioClk1xEnabledInt <= '0';
+ bRadioClk2xEnabledInt <= '0';
+ bRadioClk3xEnabledInt <= '0';
+ elsif rising_edge(BusClk) then
+
+ if bReset then
+ bRadioClkMmcmResetInt <= '1';
+ bPsInc <= '0';
+ bPsEn <= '0';
+ bRadioClk1xEnabledInt <= '0';
+ bRadioClk2xEnabledInt <= '0';
+ bRadioClk3xEnabledInt <= '0';
+ else
+ -- Clear strobe
+ bPsEn <= '0';
+
+ if RegWrite(kPhaseShiftControl, bRegPortIn) then
+ if bRegPortIn.Data(kPsInc) = '1' then
+ bPsInc <= '1';
+ bPsEn <= '1';
+ elsif bRegPortIn.Data(kPsDec) = '1' then
+ bPsInc <= '0';
+ bPsEn <= '1';
+ end if;
+ end if;
+
+ if RegWrite(kRadioClkMmcm, bRegPortIn) then
+ -- Set/Clear pair
+ if bRegPortIn.Data(kRadioClkMmcmResetSet) = '1' then
+ bRadioClkMmcmResetInt <= '1';
+ elsif bRegPortIn.Data(kRadioClkMmcmResetClear) = '1' then
+ bRadioClkMmcmResetInt <= '0';
+ end if;
+ end if;
+
+ if RegWrite(kRadioClkEnables, bRegPortIn) then
+ bRadioClk1xEnabledInt <= bRegPortIn.Data(kRadioClk1xEnabled);
+ bRadioClk2xEnabledInt <= bRegPortIn.Data(kRadioClk2xEnabled);
+ bRadioClk3xEnabledInt <= bRegPortIn.Data(kRadioClk3xEnabled);
+ end if;
+
+ end if;
+ end if;
+ end process WriteRegisters;
+
+
+ DoubleSyncs : process (aReset, BusClk)
+ begin
+ if aReset then
+ bRadioClksValid_ms <= '0';
+ bRadioClksValid <= '0';
+ pPsDoneDs_ms <= '0';
+ pPsDoneDs <= '0';
+ elsif rising_edge(BusClk) then
+ -- No sync reset on double-syncs (however there are default assignments above)!
+ bRadioClksValid_ms <= aRadioClksValid;
+ bRadioClksValid <= bRadioClksValid_ms;
+ pPsDoneDs_ms <= pPsDone;
+ pPsDoneDs <= pPsDoneDs_ms;
+ end if;
+ end process;
+
+
+ -- Read Registers : -------------------------------------------------------------------
+ -- ------------------------------------------------------------------------------------
+ ReadRegisters: process(aReset, BusClk)
+ begin
+ if aReset then
+ bRegPortOutLcl <= kRegPortOutZero;
+ bPsDone <= '0';
+ elsif rising_edge(BusClk) then
+
+ if bReset then
+ bRegPortOutLcl <= kRegPortOutZero;
+ bPsDone <= '0';
+ else
+ -- Deassert strobes
+ bRegPortOutLcl.Data <= kRegPortDataZero;
+
+ -- All of these transactions only take one clock cycle, so we do not have to
+ -- de-assert the Ready signal (ever).
+ bRegPortOutLcl.Ready <= true;
+
+ -- Process the returned data from the phase shifter in the MMCM. Note that even
+ -- though the prefixes are different (p and b), we drive the PsClk from the BusClk
+ -- so this "crossing" is actually safe. Whenever the Done signal asserts (pPsDone -
+ -- pay attention to the prefix!) from the MMCM, we set a sticky bit to tell SW
+ -- that the shift operation is complete.
+ --
+ -- However, if pPsDone asserts at the same time that SW tries to read the register,
+ -- we should accurately report that the operation is indeed complete and then NOT
+ -- store the sticky (since it has already been read by SW). If a read does not come
+ -- through at the same time pPsDone is asserted, then we store the done state as a
+ -- sticky, bPsDone, which is only cleared by a read to this register.
+ if RegRead(kPhaseShiftControl, bRegPortIn) then
+ -- The phase shift is always enabled for the feedback clock in RadioClocking.vhd
+ bRegPortOutLcl.Data(kPsEnabledForFdbClk) <= '1';
+ bRegPortOutLcl.Data(kPsDone) <= bPsDone or pPsDoneDs;
+ bPsDone <= '0';
+ elsif pPsDoneDs = '1' then
+ bPsDone <= '1';
+ end if;
+
+ if RegRead(kRadioClkMmcm, bRegPortIn) then
+ bRegPortOutLcl.Data(kRadioClkMmcmLocked) <= bRadioClksValid;
+ end if;
+
+ if RegRead(kRadioClkEnables, bRegPortIn) then
+ bRegPortOutLcl.Data(kRadioClk1xEnabled) <= bRadioClk1xEnabledInt;
+ bRegPortOutLcl.Data(kRadioClk2xEnabled) <= bRadioClk2xEnabledInt;
+ bRegPortOutLcl.Data(kRadioClk3xEnabled) <= bRadioClk3xEnabledInt;
+ end if;
+
+ if RegRead(kMgtRefClkStatus, bRegPortIn) then
+ bRegPortOutLcl.Data(kJesdRefClkPresent) <= bJesdRefClkPresent;
+ end if;
+
+ end if;
+ end if;
+ end process ReadRegisters;
+
+ -- Local to output
+ bRegPortOut <= bRegPortOutLcl;
+
+
+end RTL;
+
+
+--XmlParse xml_on
+--<regmap name="ClockingRegMap">
+-- <group name="ClockingRegs">
+--
+-- <register name="RadioClkMmcm" size="32" offset="0x20" attributes="Readable|Writable">
+-- <info>
+-- </info>
+-- <bitfield name="RadioClkMmcmLocked" range="4">
+-- <info>
+-- Reflects the locked status of the MMCM. '1' = locked. This bit is only valid
+-- when the MMCM reset is de-asserted. Read-only.
+-- </info>
+-- </bitfield>
+-- <bitfield name="RadioClkMmcmResetClear" range="1" attributes="Strobe">
+-- <info>
+-- Controls the reset to the Radio Clock MMCM. Strobe this bit to de-assert the
+-- reset to the MMCM. Default is reset asserted. Write-only.
+-- </info>
+-- </bitfield>
+-- <bitfield name="RadioClkMmcmResetSet" range="0" attributes="Strobe">
+-- <info>
+-- Controls the reset to the Radio Clock MMCM. Strobe this bit to assert the
+-- reset to the MMCM. Default is reset asserted. Write-only.
+-- </info>
+-- </bitfield>
+-- </register>
+--
+-- <register name="PhaseShiftControl" size="32" offset="0x24" attributes="Readable|Writable">
+-- <info>
+-- Phase Shift for RadioClkMmcm.
+-- </info>
+-- <bitfield name="PsDone" range="28">
+-- <info>
+-- This bit should set after a shift operation successfully completes.
+-- Reading this register will clear this bit. Read-only.
+-- </info>
+-- </bitfield>
+-- <bitfield name="PsInc" range="0" attributes="Strobe">
+-- <info>
+-- Strobe this bit to increment the phase. This bit is self-clearing and will
+-- always return '0' when read. If PsInc and PsDec are asserted together,
+-- the phase will increment.
+-- </info>
+-- </bitfield>
+-- <bitfield name="PsDec" range="4" attributes="Strobe">
+-- <info>
+-- Strobe this bit to decrement the phase. This bit is self-clearing and will
+-- always return '0' when read. If PsInc and PsDec are asserted together,
+-- the phase will increment.
+-- </info>
+-- </bitfield>
+-- <bitfield name="PsEnabledForFdbClk" range="16">
+-- <info>
+-- Read-only.
+-- </info>
+-- </bitfield>
+-- </register>
+--
+-- <register name="RadioClkEnables" size="32" offset="0x28" attributes="Readable|Writable">
+-- <info>
+-- </info>
+-- <bitfield name="RadioClk3xEnabled" range="8">
+-- <info>
+-- Set to '1' to enable the clock. Default disabled = '0'.
+-- Do so ONLY after the MMCM is out of reset and locked!
+-- </info>
+-- </bitfield>
+-- <bitfield name="RadioClk2xEnabled" range="4">
+-- <info>
+-- Set to '1' to enable the clock. Default disabled = '0'.
+-- Do so ONLY after the MMCM is out of reset and locked!
+-- </info>
+-- </bitfield>
+-- <bitfield name="RadioClk1xEnabled" range="0">
+-- <info>
+-- Set to '1' to enable the clock. Default disabled = '0'.
+-- Do so ONLY after the MMCM is out of reset and locked!
+-- </info>
+-- </bitfield>
+-- </register>
+--
+-- <register name="MgtRefClkStatus" size="32" offset="0x30" attributes="Readable">
+-- <info>
+-- </info>
+-- <bitfield name="JesdRefClkPresent" range="0">
+-- <info>
+-- Live indicator of the MGT Reference Clock toggling and within expected
+-- frequency limits. If this bit is de-asserted, then the JESD204b core will
+-- not function correctly!
+-- </info>
+-- </bitfield>
+-- </register>
+--
+-- </group>
+--
+--</regmap>
+--XmlParse xml_off
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DaughterboardRegs.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DaughterboardRegs.vhd
new file mode 100644
index 000000000..8a9c20372
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DaughterboardRegs.vhd
@@ -0,0 +1,116 @@
+-------------------------------------------------------------------------------
+--
+-- File: DaughterboardRegs.vhd
+-- Author: Daniel Jepson; mods by Humberto Jimenez
+-- Original Project: N310; N32x
+-- Date: 27 April 2016
+--
+-------------------------------------------------------------------------------
+-- Copyright 2016-2018 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: LGPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose:
+--
+-- Register interface to the semi-static control lines for the Mg
+-- Daughterboard.
+--
+-- XML register definition is included below the module.
+--
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+
+library work;
+ use work.PkgDaughterboardRegMap.all;
+ use work.PkgRegs.all;
+
+
+entity DaughterboardRegs is
+ port(
+ -- Async reset. Can be tied low if desired.
+ aReset : in boolean;
+ -- Sync reset... used in the same places as the async one.
+ bReset : in boolean;
+ BusClk : in std_logic;
+
+ bRegPortOut : out RegPortOut_t;
+ bRegPortIn : in RegPortIn_t;
+
+ -- Slot and DB ID values. These should be tied to constants!
+ kDbId : in std_logic_vector(15 downto 0);
+ kSlotId : in std_logic
+
+ );
+end DaughterboardRegs;
+
+
+architecture RTL of DaughterboardRegs is
+
+ --vhook_sigstart
+ --vhook_sigend
+
+ signal bRegPortOutLcl : RegPortOut_t := kRegPortOutZero;
+
+begin
+
+
+ -- Read Registers : -------------------------------------------------------------------
+ -- ------------------------------------------------------------------------------------
+ ReadRegisters: process(aReset, BusClk)
+ begin
+ if aReset then
+ bRegPortOutLcl <= kRegPortOutZero;
+ elsif rising_edge(BusClk) then
+ if bReset then
+ bRegPortOutLcl <= kRegPortOutZero;
+ else
+ -- De-assert strobes
+ bRegPortOutLcl.Data <= kRegPortDataZero;
+
+ -- All of these transactions only take one clock cycle, so we do not have to
+ -- de-assert the Ready signal (ever).
+ bRegPortOutLcl.Ready <= true;
+
+ if RegRead(kDaughterboardId, bRegPortIn) then
+ bRegPortOutLcl.Data(kDbIdValMsb downto kDbIdVal) <= kDbId;
+ bRegPortOutLcl.Data(kSlotIdVal) <= kSlotId;
+ end if;
+
+ end if;
+ end if;
+ end process ReadRegisters;
+
+ -- Local to output
+ bRegPortOut <= bRegPortOutLcl;
+
+
+end RTL;
+
+
+--XmlParse xml_on
+--<regmap name="DaughterboardRegMap">
+-- <group name="StaticControl" order="1">
+--
+-- <register name="DaughterboardId" size="32" offset="0x30" attributes="Readable">
+-- <info>
+-- </info>
+-- <bitfield name="DbIdVal" range="15..0">
+-- <info>
+-- ID for the DB with which this file is designed to communicate. Matches the DB
+-- EEPROM ID.
+-- </info>
+-- </bitfield>
+-- <bitfield name="SlotIdVal" range="16">
+-- <info>
+-- ID for the Slot this module controls. Options are 0 and 1 for the N310 MB.
+-- </info>
+-- </bitfield>
+-- </register>
+--
+-- </group>
+--
+--
+--</regmap>
+--XmlParse xml_off
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DbCore.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DbCore.vhd
new file mode 100644
index 000000000..f54a976d1
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/DbCore.vhd
@@ -0,0 +1,563 @@
+-------------------------------------------------------------------------------
+--
+-- File: DbCore.vhd
+-- Author: Daniel Jepson; mods by Humberto Jimenez
+-- Original Project: N310; N320
+-- Date: 12 April 2017
+--
+-------------------------------------------------------------------------------
+-- Copyright 2017-2018 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: LGPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose:
+--
+-- Wrapper file for Daughterboard Control. This includes the semi-static control
+-- and status registers, clocking, synchronization, and JESD204B cores.
+--
+-- There is no version register for the plain-text files here.
+-- Version control for the Sync and JESD204B cores is internal to the netlists.
+--
+-- The resets for this core are almost entirely local and/or synchronous.
+-- bBusReset is a Synchronous reset on the BusClk domain that resets all of the
+-- registers connected to the RegPort, as well as any other stray registers
+-- connected to the BusClk. All other resets are local to the modules they touch.
+-- No other reset drives all modules universally.
+--
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+ use ieee.numeric_std.all;
+
+library work;
+ use work.PkgRhPersonality.all;
+ use work.PkgRegs.all;
+ use work.PkgJesdConfig.all;
+ use work.PkgAdcDacInterfaceTypes.all;
+
+
+entity DbCore is
+ generic(
+ -- Set to '1' to include the White Rabbit TDC.
+ kInclWhiteRabbitTdc : std_logic := '0'
+ );
+ port(
+
+ -- Resets --
+ -- Synchronous Reset for the BusClk domain (mainly for the RegPort)
+ bBusReset : in std_logic;
+
+ -- Clocks --
+ -- Register Bus Clock (any frequency)
+ BusClk : in std_logic;
+ -- Always-on at 40 MHz
+ Clk40 : in std_logic;
+ -- Super secret crazy awesome measurement clock at weird frequencies.
+ MeasClk : in std_logic;
+ -- FPGA Sample Clock from DB LMK
+ FpgaClk_p : in std_logic;
+ FpgaClk_n : in std_logic;
+
+ -- Sample Clock Sharing. The clocks generated in this module are exported out to the
+ -- top level so they can be shared amongst daughterboards. Therefore they must be
+ -- driven back into the SampleClk*x inputs at a higher level in order for this module
+ -- to work correctly. There are a few isolated cases where SampleClk*xOut is used
+ -- directly in this module, and those are documented below.
+ SampleClk1xOut : out std_logic;
+ SampleClk1x : in std_logic;
+ SampleClk2xOut : out std_logic;
+ SampleClk2x : in std_logic;
+
+
+ -- Register Ports --
+ --
+ -- Only synchronous resets can be used for these ports!
+ bRegPortInFlat : in std_logic_vector(49 downto 0);
+ bRegPortOutFlat : out std_logic_vector(33 downto 0);
+
+ -- Slot ID value. This should be tied to a constant!
+ kSlotId : in std_logic;
+
+
+ -- SYSREF --
+ --
+ -- SYSREF direct from the LMK
+ sSysRefFpgaLvds_p,
+ sSysRefFpgaLvds_n : in std_logic;
+ -- SYNC directly to the LMK
+ aLmkSync : out std_logic;
+
+
+ -- JESD Signals --
+ --
+ -- GTX Sample Clock Reference Input. Direct connect to FPGA pins.
+ JesdRefClk_p,
+ JesdRefClk_n : in std_logic;
+
+ -- ADC JESD PHY Interface. Direct connect to FPGA pins.
+ aAdcRx_p,
+ aAdcRx_n : in std_logic_vector(3 downto 0);
+ aSyncAdcOut_n : out std_logic;
+
+ -- DAC JESD PHY Interface. Direct connect to FPGA pins.
+ aDacTx_p,
+ aDacTx_n : out std_logic_vector(3 downto 0);
+ aSyncDacIn_n : in std_logic;
+
+
+ -- Data Pipes to/from the DACs/ADCs --
+ --
+ -- - Data is presented as two samples per cycle.
+ -- - sAdcDataValid asserts when ADC data is valid.
+ -- - sDacReadyForInput asserts when DAC data is ready to be received.
+ --
+ -- Reset Crossings:
+ -- The ADC data and valid outputs are synchronously cleared before the asynchronous
+ -- reset is asserted--preventing any reset crossing issues here between the RX
+ -- (internal to the core) reset and the no-reset domain of RFNoC.
+ --
+ -- The DAC samples should be zeros on reset de-assertion due to RFI being de-asserted
+ -- in reset. If they are not zeros, then it is still OK because data is ignored until
+ -- RFI is asserted. DAC RFI is double-synchronized to protect against the reset
+ -- crossing. This is safe to do because it simply delays the output of RFI by two
+ -- cycles on the assertion edge, and as long as reset is held for more than two
+ -- cycles, the de-assertion edge of RFI should come long before the TX module is
+ -- taken out of reset.
+
+ -- Supporting 2 samples per clk cycle.
+ sAdcDataValid : out std_logic;
+ sAdcDataSample0I : out std_logic_vector(15 downto 0);
+ sAdcDataSample0Q : out std_logic_vector(15 downto 0);
+ sAdcDataSample1I : out std_logic_vector(15 downto 0);
+ sAdcDataSample1Q : out std_logic_vector(15 downto 0);
+ --
+ sDacReadyForInput : out std_logic;
+ sDacDataSample0I : in std_logic_vector(15 downto 0);
+ sDacDataSample0Q : in std_logic_vector(15 downto 0);
+ sDacDataSample1I : in std_logic_vector(15 downto 0);
+ sDacDataSample1Q : in std_logic_vector(15 downto 0);
+
+
+ -- RefClk & Timing & Sync --
+ RefClk : in std_logic;
+ rPpsPulse : in std_logic;
+ rGatedPulseToPin : inout std_logic; -- straight to pin
+ sGatedPulseToPin : inout std_logic; -- straight to pin
+ sPps : out std_logic;
+ sPpsToIob : out std_logic;
+
+ -- White Rabbit Timing & Sync --
+ WrRefClk : in std_logic;
+ rWrPpsPulse : in std_logic;
+ rWrGatedPulseToPin : inout std_logic; -- straight to pin
+ sWrGatedPulseToPin : inout std_logic; -- straight to pin
+ aPpsSfpSel : in std_logic_vector(1 downto 0);
+
+ -- Debug for JESD
+ sAdcSync : out std_logic;
+ sDacSync : out std_logic;
+ sSysRef : out std_logic;
+
+ -- Debug for Timing & Sync
+ rRpTransfer : out std_logic;
+ sSpTransfer : out std_logic;
+ rWrRpTransfer : out std_logic;
+ sWrSpTransfer : out std_logic
+ );
+
+end DbCore;
+
+
+architecture RTL of DbCore is
+
+ component Jesd204bXcvrCore
+ port (
+ bBusReset : in STD_LOGIC;
+ BusClk : in STD_LOGIC;
+ ReliableClk40 : in STD_LOGIC;
+ FpgaClk1x : in STD_LOGIC;
+ FpgaClk2x : in STD_LOGIC;
+ bFpgaClksStable : in STD_LOGIC;
+ JesdRefClk_p : in STD_LOGIC;
+ JesdRefClk_n : in STD_LOGIC;
+ bJesdRefClkPresent : out STD_LOGIC;
+ aLmkSync : out STD_LOGIC;
+ bRegPortInFlat : in STD_LOGIC_VECTOR(49 downto 0);
+ bRegPortOutFlat : out STD_LOGIC_VECTOR(33 downto 0);
+ CaptureSysRefClk : in STD_LOGIC;
+ cSysRefFpgaLvds_p : in STD_LOGIC;
+ cSysRefFpgaLvds_n : in STD_LOGIC;
+ fSysRef : out STD_LOGIC;
+ aAdcRx_p : in STD_LOGIC_VECTOR(3 downto 0);
+ aAdcRx_n : in STD_LOGIC_VECTOR(3 downto 0);
+ aSyncAdcOut_n : out STD_LOGIC;
+ aDacTx_p : out STD_LOGIC_VECTOR(3 downto 0);
+ aDacTx_n : out STD_LOGIC_VECTOR(3 downto 0);
+ aSyncDacIn_n : in STD_LOGIC;
+ fAdcDataFlatter : out STD_LOGIC_VECTOR(63 downto 0);
+ fDacDataFlatter : in STD_LOGIC_VECTOR(63 downto 0);
+ fAdcDataValid : out STD_LOGIC;
+ fDacReadyForInput : out STD_LOGIC;
+ aDacSync : out STD_LOGIC;
+ aAdcSync : out STD_LOGIC);
+ end component;
+
+ function to_Boolean (s : std_ulogic) return boolean is
+ begin
+ return (To_X01(s)='1');
+ end to_Boolean;
+
+ function to_StdLogic(b : boolean) return std_ulogic is
+ begin
+ if b then
+ return '1';
+ else
+ return '0';
+ end if;
+ end to_StdLogic;
+
+ --vhook_sigstart
+ signal aAdcSync: STD_LOGIC;
+ signal aDacSync: STD_LOGIC;
+ signal bClockingRegPortOut: RegPortOut_t;
+ signal bDbRegPortOut: RegPortOut_t;
+ signal bFpgaClksStable: STD_LOGIC;
+ signal bJesdCoreRegPortInFlat: STD_LOGIC_VECTOR(49 downto 0);
+ signal bJesdCoreRegPortOutFlat: STD_LOGIC_VECTOR(33 downto 0);
+ signal bJesdRefClkPresent: STD_LOGIC;
+ signal bRadioClk1xEnabled: std_logic;
+ signal bRadioClk2xEnabled: std_logic;
+ signal bRadioClk3xEnabled: std_logic;
+ signal bRadioClkMmcmReset: std_logic;
+ signal bRadioClksValid: std_logic;
+ signal pPsDone: std_logic;
+ signal pPsEn: std_logic;
+ signal pPsInc: std_logic;
+ signal PsClk: std_logic;
+ signal sAdcDataFlatter: STD_LOGIC_VECTOR(63 downto 0);
+ signal SampleClk1xOutLcl: std_logic;
+ signal sDacDataFlatter: STD_LOGIC_VECTOR(63 downto 0);
+ signal sDacReadyForInputAsyncReset: STD_LOGIC;
+ signal sRegPps: std_logic;
+ signal sSysRefAsyncReset: STD_LOGIC;
+ signal sWrPps: std_logic;
+ --vhook_sigend
+
+ signal bJesdRegPortInGrp, bSyncRegPortIn, bWrSyncRegPortIn, bRegPortIn : RegPortIn_t;
+ signal bJesdRegPortOut, bSyncRegPortOut, bWrSyncRegPortOut, bRegPortOut : RegPortOut_t;
+
+ signal sDacReadyForInput_ms, sDacReadyForInputLcl,
+ sDacSync_ms, sDacSyncLcl,
+ sAdcSync_ms, sAdcSyncLcl,
+ sSysRef_ms, sSysRefLcl : std_logic := '0';
+
+ signal sAdcDataAry : AdcDataAry_t;
+ signal sDacDataAry : DacDataAry_t;
+
+ signal sPpsSfpSel_ms, sPpsSfpSel : std_logic_vector(1 downto 0) := (others => '0');
+ signal sUseWrTdcPps : boolean := false;
+ signal sPpsInt, sPpsMuxed : std_logic := '0';
+
+ attribute ASYNC_REG : string;
+ attribute ASYNC_REG of sDacReadyForInput_ms : signal is "true";
+ attribute ASYNC_REG of sDacReadyForInputLcl : signal is "true";
+ attribute ASYNC_REG of sDacSync_ms : signal is "true";
+ attribute ASYNC_REG of sDacSyncLcl : signal is "true";
+ attribute ASYNC_REG of sAdcSync_ms : signal is "true";
+ attribute ASYNC_REG of sAdcSyncLcl : signal is "true";
+ attribute ASYNC_REG of sSysRef_ms : signal is "true";
+ attribute ASYNC_REG of sSysRefLcl : signal is "true";
+ attribute ASYNC_REG of sPpsSfpSel_ms : signal is "true";
+ attribute ASYNC_REG of sPpsSfpSel : signal is "true";
+
+begin
+
+ bRegPortOutFlat <= Flatten(bRegPortOut);
+ bRegPortIn <= Unflatten(bRegPortInFlat);
+
+
+ -- Combine return RegPorts.
+ bRegPortOut <= bJesdRegPortOut
+ + bClockingRegPortOut
+ + bSyncRegPortOut + bWrSyncRegPortOut
+ + bDbRegPortOut;
+
+
+ -- Clocking : -------------------------------------------------------------------------
+ -- Automatically export the Sample Clocks and only use the incoming clocks in the
+ -- remainder of the logic. For a single module, the clocks must be looped back
+ -- in at a higher level!
+ -- ------------------------------------------------------------------------------------
+
+ --vhook_e RadioClocking
+ --vhook_a aReset false
+ --vhook_a bReset to_boolean(bBusReset)
+ --vhook_a RadioClk1x SampleClk1xOutLcl
+ --vhook_a RadioClk2x SampleClk2xOut
+ --vhook_a RadioClk3x open
+ RadioClockingx: entity work.RadioClocking (rtl)
+ port map (
+ aReset => false, --in boolean
+ bReset => to_boolean(bBusReset), --in boolean
+ BusClk => BusClk, --in std_logic
+ bRadioClkMmcmReset => bRadioClkMmcmReset, --in std_logic
+ bRadioClksValid => bRadioClksValid, --out std_logic
+ bRadioClk1xEnabled => bRadioClk1xEnabled, --in std_logic
+ bRadioClk2xEnabled => bRadioClk2xEnabled, --in std_logic
+ bRadioClk3xEnabled => bRadioClk3xEnabled, --in std_logic
+ pPsInc => pPsInc, --in std_logic
+ pPsEn => pPsEn, --in std_logic
+ PsClk => PsClk, --in std_logic
+ pPsDone => pPsDone, --out std_logic
+ FpgaClk_n => FpgaClk_n, --in std_logic
+ FpgaClk_p => FpgaClk_p, --in std_logic
+ RadioClk1x => SampleClk1xOutLcl, --out std_logic
+ RadioClk2x => SampleClk2xOut, --out std_logic
+ RadioClk3x => open); --out std_logic
+
+ -- We need an internal copy of SampleClk1x for the TDC, since we don't want to try
+ -- and align the other DB's clock accidentally.
+ SampleClk1xOut <= SampleClk1xOutLcl;
+
+ --vhook_e ClockingRegs
+ --vhook_a aReset false
+ --vhook_a bReset to_boolean(bBusReset)
+ --vhook_a bRegPortOut bClockingRegPortOut
+ --vhook_a aRadioClksValid bRadioClksValid
+ ClockingRegsx: entity work.ClockingRegs (RTL)
+ port map (
+ aReset => false, --in boolean
+ bReset => to_boolean(bBusReset), --in boolean
+ BusClk => BusClk, --in std_logic
+ bRegPortOut => bClockingRegPortOut, --out RegPortOut_t
+ bRegPortIn => bRegPortIn, --in RegPortIn_t
+ pPsInc => pPsInc, --out std_logic
+ pPsEn => pPsEn, --out std_logic
+ pPsDone => pPsDone, --in std_logic
+ PsClk => PsClk, --out std_logic
+ bRadioClkMmcmReset => bRadioClkMmcmReset, --out std_logic
+ aRadioClksValid => bRadioClksValid, --in std_logic
+ bRadioClk1xEnabled => bRadioClk1xEnabled, --out std_logic
+ bRadioClk2xEnabled => bRadioClk2xEnabled, --out std_logic
+ bRadioClk3xEnabled => bRadioClk3xEnabled, --out std_logic
+ bJesdRefClkPresent => bJesdRefClkPresent); --in std_logic
+
+
+
+ -- JESD204B : -------------------------------------------------------------------------
+ -- ------------------------------------------------------------------------------------
+
+ bJesdRegPortInGrp <= Mask(RegPortIn => bRegPortIn,
+ kRegisterOffset => kJesdRegGroupInDbRegs); -- 0x2000 to 0x3FFC
+
+ -- Expand/compress the RegPort for moving through the netlist boundary.
+ bJesdRegPortOut <= Unflatten(bJesdCoreRegPortOutFlat);
+ bJesdCoreRegPortInFlat <= Flatten(bJesdRegPortInGrp);
+
+
+ --vhook Jesd204bXcvrCore
+ --vhook_a bRegPortInFlat bJesdCoreRegPortInFlat
+ --vhook_a bRegPortOutFlat bJesdCoreRegPortOutFlat
+ --vhook_a FpgaClk1x SampleClk1x
+ --vhook_a FpgaClk2x SampleClk2x
+ --vhook_a ReliableClk40 Clk40
+ --vhook_a CaptureSysRefClk SampleClk1xOutLcl
+ --vhook_a cSysRefFpgaLvds_p sSysRefFpgaLvds_p
+ --vhook_a cSysRefFpgaLvds_n sSysRefFpgaLvds_n
+ --vhook_a fSysRef sSysRefAsyncReset
+ --vhook_a fDacReadyForInput sDacReadyForInputAsyncReset
+ --vhook_a {^f(.*)} s$1
+ Jesd204bXcvrCorex: Jesd204bXcvrCore
+ port map (
+ bBusReset => bBusReset, --in STD_LOGIC
+ BusClk => BusClk, --in STD_LOGIC
+ ReliableClk40 => Clk40, --in STD_LOGIC
+ FpgaClk1x => SampleClk1x, --in STD_LOGIC
+ FpgaClk2x => SampleClk2x, --in STD_LOGIC
+ bFpgaClksStable => bFpgaClksStable, --in STD_LOGIC
+ JesdRefClk_p => JesdRefClk_p, --in STD_LOGIC
+ JesdRefClk_n => JesdRefClk_n, --in STD_LOGIC
+ bJesdRefClkPresent => bJesdRefClkPresent, --out STD_LOGIC
+ aLmkSync => aLmkSync, --out STD_LOGIC
+ bRegPortInFlat => bJesdCoreRegPortInFlat, --in STD_LOGIC_VECTOR(49:0)
+ bRegPortOutFlat => bJesdCoreRegPortOutFlat, --out STD_LOGIC_VECTOR(33:0)
+ CaptureSysRefClk => SampleClk1xOutLcl, --in STD_LOGIC
+ cSysRefFpgaLvds_p => sSysRefFpgaLvds_p, --in STD_LOGIC
+ cSysRefFpgaLvds_n => sSysRefFpgaLvds_n, --in STD_LOGIC
+ fSysRef => sSysRefAsyncReset, --out STD_LOGIC
+ aAdcRx_p => aAdcRx_p, --in STD_LOGIC_VECTOR(3:0)
+ aAdcRx_n => aAdcRx_n, --in STD_LOGIC_VECTOR(3:0)
+ aSyncAdcOut_n => aSyncAdcOut_n, --out STD_LOGIC
+ aDacTx_p => aDacTx_p, --out STD_LOGIC_VECTOR(3:0)
+ aDacTx_n => aDacTx_n, --out STD_LOGIC_VECTOR(3:0)
+ aSyncDacIn_n => aSyncDacIn_n, --in STD_LOGIC
+ fAdcDataFlatter => sAdcDataFlatter, --out STD_LOGIC_VECTOR(63:0)
+ fDacDataFlatter => sDacDataFlatter, --in STD_LOGIC_VECTOR(63:0)
+ fAdcDataValid => sAdcDataValid, --out STD_LOGIC
+ fDacReadyForInput => sDacReadyForInputAsyncReset, --out STD_LOGIC
+ aDacSync => aDacSync, --out STD_LOGIC
+ aAdcSync => aAdcSync); --out STD_LOGIC
+
+
+ JesdDoubleSyncToNoResetSampleClk : process (SampleClk1x)
+ begin
+ if rising_edge(SampleClk1x) then
+ sDacReadyForInput_ms <= sDacReadyForInputAsyncReset;
+ sDacReadyForInputLcl <= sDacReadyForInput_ms;
+ -- No clock crossing here -- just reset, although the prefix declares otherwise...
+ sDacSync_ms <= aDacSync;
+ sDacSyncLcl <= sDacSync_ms;
+ sAdcSync_ms <= aAdcSync;
+ sAdcSyncLcl <= sAdcSync_ms;
+ sSysRef_ms <= sSysRefAsyncReset;
+ sSysRefLcl <= sSysRef_ms;
+ end if;
+ end process;
+
+ -- Locals to outputs.
+ sDacReadyForInput <= sDacReadyForInputLcl;
+ sDacSync <= sDacSyncLcl;
+ sAdcSync <= sAdcSyncLcl;
+ sSysRef <= sSysRefLcl;
+
+ -- Just combine the first two enables, since they're the ones that are used for JESD.
+ -- No reset crossing here, since bFpgaClksStable is only received by a no-reset domain
+ -- and the MGTs directly.
+ bFpgaClksStable <= bRadioClksValid and bRadioClk1xEnabled and bRadioClk2xEnabled;
+
+ -- Compress/expand the flat data types from the netlist and route to top level.
+ sAdcDataAry <= Unflatten(sAdcDataFlatter);
+ sDacDataFlatter <= Flatten(sDacDataAry);
+
+ -- Data mapping using the array types.
+ sAdcDataSample0I <= (sAdcDataAry(0).Data.I & sAdcDataAry(0).Over.I & sAdcDataAry(0).CBit1.I);
+ sAdcDataSample0Q <= (sAdcDataAry(0).Data.Q & sAdcDataAry(0).Over.Q & sAdcDataAry(0).CBit1.Q);
+ sAdcDataSample1I <= (sAdcDataAry(1).Data.I & sAdcDataAry(1).Over.I & sAdcDataAry(1).CBit1.I);
+ sAdcDataSample1Q <= (sAdcDataAry(1).Data.Q & sAdcDataAry(1).Over.Q & sAdcDataAry(1).CBit1.Q);
+ --
+ sDacDataAry(0).Data.I <= sDacDataSample0I;
+ sDacDataAry(0).Data.Q <= sDacDataSample0Q;
+ sDacDataAry(1).Data.I <= sDacDataSample1I;
+ sDacDataAry(1).Data.Q <= sDacDataSample1Q;
+
+
+ -- Timing and Sync : ------------------------------------------------------------------
+ -- ------------------------------------------------------------------------------------
+
+ bSyncRegPortIn <= Mask(RegPortIn => bRegPortIn,
+ kRegisterOffset => kTdc0OffsetsInEndpoint); -- 0x0200
+
+ --vhook_e TdcWrapper
+ --vhook_# Use the local copy of the SampleClock, since we want the TDC to measure the
+ --vhook_# clock offset for this daughterboard, not the global SampleClock.
+ --vhook_a SampleClk SampleClk1xOutLcl
+ --vhook_a sPpsPulse sRegPps
+ TdcWrapperx: entity work.TdcWrapper (struct)
+ port map (
+ BusClk => BusClk, --in std_logic
+ bBusReset => bBusReset, --in std_logic
+ RefClk => RefClk, --in std_logic
+ SampleClk => SampleClk1xOutLcl, --in std_logic
+ MeasClk => MeasClk, --in std_logic
+ bSyncRegPortOut => bSyncRegPortOut, --out RegPortOut_t
+ bSyncRegPortIn => bSyncRegPortIn, --in RegPortIn_t
+ rPpsPulse => rPpsPulse, --in std_logic
+ sPpsPulse => sRegPps, --out std_logic
+ rRpTransfer => rRpTransfer, --out std_logic
+ sSpTransfer => sSpTransfer, --out std_logic
+ rGatedPulseToPin => rGatedPulseToPin, --inout std_logic
+ sGatedPulseToPin => sGatedPulseToPin); --inout std_logic
+
+ WrTdcGen: if kInclWhiteRabbitTdc = '1' generate
+ bWrSyncRegPortIn <= Mask(RegPortIn => bRegPortIn,
+ kRegisterOffset => kTdc1OffsetsInEndpoint); -- 0x0400
+
+ --vhook_e TdcWrapper WrTdcWrapperx
+ --vhook_# Use the local copy of the SampleClock, since we want the TDC to measure the
+ --vhook_# clock offset for this daughterboard, not the global SampleClock.
+ --vhook_a bSyncRegPortIn bWrSyncRegPortIn
+ --vhook_a bSyncRegPortOut bWrSyncRegPortOut
+ --vhook_a SampleClk SampleClk1xOutLcl
+ --vhook_a RefClk WrRefClk
+ --vhook_a rPpsPulse rWrPpsPulse
+ --vhook_a sPpsPulse sWrPps
+ --vhook_a rRpTransfer rWrRpTransfer
+ --vhook_a sSpTransfer sWrSpTransfer
+ --vhook_a rGatedPulseToPin rWrGatedPulseToPin
+ --vhook_a sGatedPulseToPin sWrGatedPulseToPin
+ WrTdcWrapperx: entity work.TdcWrapper (struct)
+ port map (
+ BusClk => BusClk, --in std_logic
+ bBusReset => bBusReset, --in std_logic
+ RefClk => WrRefClk, --in std_logic
+ SampleClk => SampleClk1xOutLcl, --in std_logic
+ MeasClk => MeasClk, --in std_logic
+ bSyncRegPortOut => bWrSyncRegPortOut, --out RegPortOut_t
+ bSyncRegPortIn => bWrSyncRegPortIn, --in RegPortIn_t
+ rPpsPulse => rWrPpsPulse, --in std_logic
+ sPpsPulse => sWrPps, --out std_logic
+ rRpTransfer => rWrRpTransfer, --out std_logic
+ sSpTransfer => sWrSpTransfer, --out std_logic
+ rGatedPulseToPin => rWrGatedPulseToPin, --inout std_logic
+ sGatedPulseToPin => sWrGatedPulseToPin); --inout std_logic
+ end generate WrTdcGen;
+
+ WrTdcNotGen: if kInclWhiteRabbitTdc = '0' generate
+ bWrSyncRegPortOut <= kRegPortOutZero;
+ sWrPps <= '0';
+ rWrRpTransfer <= '0';
+ sWrSpTransfer <= '0';
+ rWrGatedPulseToPin <= '0';
+ sWrGatedPulseToPin <= '0';
+ end generate WrTdcNotGen;
+
+ -- Mux the output PPS based on the SFP selection bits. Encoding is one-hot, with zero
+ -- also a valid state. Regardless of whether the user selects SFP0 or SFP1 as the time
+ -- source, there is only one White Rabbit TDC, so '01' and '10' are equivalent.
+ -- '00': Use the PPS output from the "regular" TDC.
+ -- '01': Use the PPS output from the "white rabbit" TDC.
+ -- '10': Use the PPS output from the "white rabbit" TDC.
+ PpsOutputMux : process (SampleClk1xOutLcl)
+ begin
+ if rising_edge(SampleClk1xOutLcl) then
+ -- Double-sync the control bits to the Sample Clock domain.
+ sPpsSfpSel_ms <= aPpsSfpSel;
+ sPpsSfpSel <= sPpsSfpSel_ms;
+
+ -- OR the control bits together to produce a single override enable for the WR TDC.
+ sUseWrTdcPps <= to_boolean(sPpsSfpSel(0) or sPpsSfpSel(1));
+
+ -- Flop the outputs. One flop for the PPS output IOB, the other for use internally.
+ sPpsInt <= sPpsMuxed;
+ end if;
+ end process PpsOutputMux;
+
+ sPpsMuxed <= sWrPps when sUseWrTdcPps else sRegPps;
+ sPps <= sPpsInt;
+ sPpsToIob <= sPpsMuxed; -- No added flop here since there's an IOB outside this module.
+
+
+ -- Daughterboard Control : ------------------------------------------------------------
+ -- ------------------------------------------------------------------------------------
+
+ --vhook_e DaughterboardRegs
+ --vhook_# Tying this low is safe because the sync reset is used inside DaughterboardRegs.
+ --vhook_a aReset false
+ --vhook_a bReset to_boolean(bBusReset)
+ --vhook_a bRegPortOut bDbRegPortOut
+ --vhook_a kDbId std_logic_vector(to_unsigned(kDbId,kDbIdSize))
+ DaughterboardRegsx: entity work.DaughterboardRegs (RTL)
+ port map (
+ aReset => false, --in boolean
+ bReset => to_boolean(bBusReset), --in boolean
+ BusClk => BusClk, --in std_logic
+ bRegPortOut => bDbRegPortOut, --out RegPortOut_t
+ bRegPortIn => bRegPortIn, --in RegPortIn_t
+ kDbId => std_logic_vector(to_unsigned(kDbId,kDbIdSize)), --in std_logic_vector(15:0)
+ kSlotId => kSlotId); --in std_logic
+
+
+
+
+end RTL;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore.edf b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore.edf
new file mode 100644
index 000000000..c9df3749b
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore.edf
Binary files differ
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore_stub.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore_stub.vhd
new file mode 100644
index 000000000..bf75e9d0d
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/Jesd204bXcvrCore_stub.vhd
@@ -0,0 +1,54 @@
+-- Copyright 1986-2017 Xilinx, Inc. All Rights Reserved.
+-- --------------------------------------------------------------------------------
+-- Tool Version: Vivado v.2017.4 (win64) Build 2086221 Fri Dec 15 20:55:39 MST 2017
+-- Date : Fri Nov 9 16:19:51 2018
+-- Host : hjimenez running 64-bit major release (build 9200)
+-- Command : write_vhdl -mode synth_stub -force -file ./Jesd204bXcvrCore_stub.vhd
+-- Design : Jesd204bXcvrCore
+-- Purpose : Stub declaration of top-level module interface
+-- Device : xc7z100ffg900-2
+-- --------------------------------------------------------------------------------
+library IEEE;
+use IEEE.STD_LOGIC_1164.ALL;
+
+entity Jesd204bXcvrCore is
+ Port (
+ bBusReset : in STD_LOGIC;
+ BusClk : in STD_LOGIC;
+ ReliableClk40 : in STD_LOGIC;
+ FpgaClk1x : in STD_LOGIC;
+ FpgaClk2x : in STD_LOGIC;
+ bFpgaClksStable : in STD_LOGIC;
+ JesdRefClk_p : in STD_LOGIC;
+ JesdRefClk_n : in STD_LOGIC;
+ bJesdRefClkPresent : out STD_LOGIC;
+ aLmkSync : out STD_LOGIC;
+ bRegPortInFlat : in STD_LOGIC_VECTOR ( 49 downto 0 );
+ bRegPortOutFlat : out STD_LOGIC_VECTOR ( 33 downto 0 );
+ CaptureSysRefClk : in STD_LOGIC;
+ cSysRefFpgaLvds_p : in STD_LOGIC;
+ cSysRefFpgaLvds_n : in STD_LOGIC;
+ fSysRef : out STD_LOGIC;
+ aAdcRx_p : in STD_LOGIC_VECTOR ( 3 downto 0 );
+ aAdcRx_n : in STD_LOGIC_VECTOR ( 3 downto 0 );
+ aSyncAdcOut_n : out STD_LOGIC;
+ aDacTx_p : out STD_LOGIC_VECTOR ( 3 downto 0 );
+ aDacTx_n : out STD_LOGIC_VECTOR ( 3 downto 0 );
+ aSyncDacIn_n : in STD_LOGIC;
+ fAdcDataFlatter : out STD_LOGIC_VECTOR ( 63 downto 0 );
+ fDacDataFlatter : in STD_LOGIC_VECTOR ( 63 downto 0 );
+ fAdcDataValid : out STD_LOGIC;
+ fDacReadyForInput : out STD_LOGIC;
+ aDacSync : out STD_LOGIC;
+ aAdcSync : out STD_LOGIC
+ );
+
+end Jesd204bXcvrCore;
+
+architecture stub of Jesd204bXcvrCore is
+attribute syn_black_box : boolean;
+attribute black_box_pad_pin : string;
+attribute syn_black_box of stub : architecture is true;
+attribute black_box_pad_pin of stub : architecture is "bBusReset,BusClk,ReliableClk40,FpgaClk1x,FpgaClk2x,bFpgaClksStable,JesdRefClk_p,JesdRefClk_n,bJesdRefClkPresent,aLmkSync,bRegPortInFlat[49:0],bRegPortOutFlat[33:0],CaptureSysRefClk,cSysRefFpgaLvds_p,cSysRefFpgaLvds_n,fSysRef,aAdcRx_p[3:0],aAdcRx_n[3:0],aSyncAdcOut_n,aDacTx_p[3:0],aDacTx_n[3:0],aSyncDacIn_n,fAdcDataFlatter[63:0],fDacDataFlatter[63:0],fAdcDataValid,fDacReadyForInput,aDacSync,aAdcSync";
+begin
+end;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgAdcDacInterfaceTypes.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgAdcDacInterfaceTypes.vhd
new file mode 100644
index 000000000..8512d133a
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgAdcDacInterfaceTypes.vhd
@@ -0,0 +1,302 @@
+-------------------------------------------------------------------------------
+--
+-- File: PkgAdcDacInterfaceTypes.vhd
+-- Author: National Instruments
+-- Original Project: USRP N32x
+-- Date: 15 Dec 2017
+--
+-------------------------------------------------------------------------------
+-- (c) 2018 Copyright National Instruments Corporation
+-- All Rights Reserved
+-- National Instruments Internal Information
+-------------------------------------------------------------------------------
+--
+-- Purpose: Contains types for ADC and DAC data so they can more easily be
+-- passed through the design.
+--
+-- vreview_group JesdCoreN32x
+-- vreview_reviewers djepson wfife
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+ use ieee.numeric_std.all;
+
+library work;
+ use work.PkgJesdConfig.all;
+
+
+package PkgAdcDacInterfaceTypes is
+
+ -- Data type for the DACs.
+ type DacData_t is record
+ I : std_logic_vector(kDacDataWidth - 1 downto 0);
+ Q : std_logic_vector(kDacDataWidth - 1 downto 0);
+ end record;
+
+ -- Data type for the ADCs.
+ type AdcData_t is record
+ I : std_logic_vector(kAdcDataWidth - 1 downto 0);
+ Q : std_logic_vector(kAdcDataWidth - 1 downto 0);
+ end record;
+
+ -- Type has two bits that correspond to I and Q; example usage: overrange flags.
+ type IQFlags_t is record
+ I : std_logic;
+ Q : std_logic;
+ end record;
+
+ -- Single data type for all information from the ADCs.
+ type AdcSamples_t is record
+ Data : AdcData_t;
+ Over : IQFlags_t;
+ CBit1 : IQFlags_t;
+ end record;
+
+ -- Single data type for all information to the DACs.
+ type DacSamples_t is record
+ Data : DacData_t;
+ end record;
+
+ -- To support multiple data values per clock cycle, these types
+ -- are arrays of the ADC and DAC data types where the size of the array
+ -- corresponds to the number of samples per cycle.
+ type AdcDataAry_t is array (kSamplesPerCycle - 1 downto 0) of AdcSamples_t;
+ type DacDataAry_t is array (kSamplesPerCycle - 1 downto 0) of DacSamples_t;
+
+ -- Zero/default constant
+ constant kAdcDataAryZero : AdcDataAry_t :=
+ (others => (Data => (others => (others => '0')),
+ Over => (others => '0'),
+ CBit1 => (others => '0'))
+ );
+
+ -- Zero/default constant
+ constant kDacDataAryZero : DacDataAry_t :=
+ (others => (Data => (others => (others => '0')))
+ );
+
+ -- Flattened type that converts the ADC data into std_logic_vector types. This type is
+ -- not suitable for use in the port maps of components that are presynthesized (into EDF
+ -- or NGC files) but is useful for passing data to the top level.
+ type AdcDataAryFlat_t is record
+ DataI : std_logic_vector(kSamplesPerCycle*kAdcDataWidth - 1 downto 0);
+ DataQ : std_logic_vector(kSamplesPerCycle*kAdcDataWidth - 1 downto 0);
+ OverI : std_logic_vector(kSamplesPerCycle - 1 downto 0);
+ OverQ : std_logic_vector(kSamplesPerCycle - 1 downto 0);
+ CBit1I : std_logic_vector(kSamplesPerCycle - 1 downto 0);
+ CBit1Q : std_logic_vector(kSamplesPerCycle - 1 downto 0);
+ end record;
+
+ -- Fully flattened ADC data for passing into and out of presynthesized components.
+ subtype AdcDataAryFlatter_t is std_logic_vector(2*(kSamplesPerCycle*(kAdcDataWidth + 2)) - 1 downto 0);
+
+ -- Flattened type that converts the DAC data into std_logic_vector types. This type is
+ -- not suitable for use in the port maps of components that are presynthesized (into EDF
+ -- or NGC files) but is useful for passing data from the top level.
+ type DacDataAryFlat_t is record
+ DataI : std_logic_vector(kSamplesPerCycle*kDacDataWidth - 1 downto 0);
+ DataQ : std_logic_vector(kSamplesPerCycle*kDacDataWidth - 1 downto 0);
+ end record;
+
+ -- Fully flattened DAC data for passing into and out of presynthesized components.
+ subtype DacDataAryFlatter_t is std_logic_vector(2*(kSamplesPerCycle*kDacDataWidth) - 1 downto 0);
+
+ -- Function to convert types defined above for the ADC data
+ function Flatten (AdcData : AdcDataAry_t) return AdcDataAryFlat_t;
+ function Flatten (AdcData : AdcDataAryFlat_t) return AdcDataAryFlatter_t;
+ function Flatten (AdcData : AdcDataAry_t) return AdcDataAryFlatter_t;
+ function Unflatten(AdcData : AdcDataAryFlatter_t) return AdcDataAryFlat_t;
+ function Unflatten(AdcData : AdcDataAryFlat_t) return AdcDataAry_t;
+ function Unflatten(AdcData : AdcDataAryFlatter_t) return AdcDataAry_t;
+
+
+ -- Function to convert types defined above for the DAC data
+ function Flatten (DacData : DacDataAry_t) return DacDataAryFlat_t;
+ function Flatten (DacData : DacDataAryFlat_t) return DacDataAryFlatter_t;
+ function Flatten (DacData : DacDataAry_t) return DacDataAryFlatter_t;
+ function Unflatten(DacData : DacDataAryFlatter_t) return DacDataAryFlat_t;
+ function UnFlatten(DacData : DacDataAryFlat_t) return DacDataAry_t;
+ function Unflatten(DacData : DacDataAryFlatter_t) return DacDataAry_t;
+
+
+end package PkgAdcDacInterfaceTypes;
+
+
+package body PkgAdcDacInterfaceTypes is
+
+ -- Flattens AdcDataAry_t to AdcDataAryFlat_t
+ function Flatten(AdcData : AdcDataAry_t) return AdcDataAryFlat_t
+ is
+ variable ReturnVar : AdcDataAryFlat_t;
+ begin
+ ReturnVar := (DataI => (others => '0'), -- Note (others => (others => '0')) does not work here
+ DataQ => (others => '0'), -- since DataX and OverX/CBit1X are of different lengths (ModelSim error)
+ OverI => (others => '0'),
+ OverQ => (others => '0'),
+ CBit1I => (others => '0'),
+ CBit1Q => (others => '0'));
+
+ -- The upstream logic puts the 0th element of an array in the MSBs of its data word
+ for i in 0 to kSamplesPerCycle - 1 loop
+ ReturnVar.DataI((kSamplesPerCycle - i)*kAdcDataWidth - 1 downto (kSamplesPerCycle - 1 - i)*kAdcDataWidth) := AdcData(i).Data.I; -- Input Data 0 to MSB
+ ReturnVar.DataQ((kSamplesPerCycle - i)*kAdcDataWidth - 1 downto (kSamplesPerCycle - 1 - i)*kAdcDataWidth) := AdcData(i).Data.Q;
+ ReturnVar.OverI (kSamplesPerCycle - 1 - i) := AdcData(i).Over.I; -- Input Data 0 to MSB
+ ReturnVar.OverQ (kSamplesPerCycle - 1 - i) := AdcData(i).Over.Q;
+ ReturnVar.CBit1I(kSamplesPerCycle - 1 - i) := AdcData(i).CBit1.I;
+ ReturnVar.CBit1Q(kSamplesPerCycle - 1 - i) := AdcData(i).CBit1.Q;
+ end loop;
+
+ return ReturnVar;
+ end function Flatten;
+
+
+ -- UnFlattens AdcDataAryFlat_t to AdcDataAry_t
+ function Unflatten(AdcData : AdcDataAryFlat_t) return AdcDataAry_t
+ is
+ variable ReturnVar : AdcDataAry_t;
+ begin
+ ReturnVar := (others => (Data => (others => (others => '0')), Over => (others => '0'), CBit1 => (others => '0')));
+ for i in 0 to kSamplesPerCycle - 1 loop
+ -- MSB of flattened word = 0th element of ADC data array - this corresponds to how TheWindow
+ -- expects data arrays to be transferred.
+ ReturnVar(kSamplesPerCycle - 1 - i).Data.I := AdcData.DataI((i+1)*kAdcDataWidth - 1 downto i*kAdcDataWidth);
+ ReturnVar(kSamplesPerCycle - 1 - i).Data.Q := AdcData.DataQ((i+1)*kAdcDataWidth - 1 downto i*kAdcDataWidth);
+ ReturnVar(kSamplesPerCycle - 1 - i).Over.I := AdcData.OverI(i);
+ ReturnVar(kSamplesPerCycle - 1 - i).Over.Q := AdcData.OverQ(i);
+ ReturnVar(kSamplesPerCycle - 1 - i).CBit1.I := AdcData.CBit1I(i);
+ ReturnVar(kSamplesPerCycle - 1 - i).CBit1.Q := AdcData.CBit1Q(i);
+ end loop;
+ return ReturnVar;
+ end function Unflatten;
+
+
+
+
+ -- Flattens AdcDataAryFlat_t to AdcDataAryFlatter_t
+ function Flatten(AdcData : AdcDataAryFlat_t) return AdcDataAryFlatter_t
+ is
+ variable ReturnVar : AdcDataAryFlatter_t;
+ begin
+ ReturnVar := AdcData.OverQ & AdcData.CBit1Q & AdcData.OverI & AdcData.CBit1I & AdcData.DataQ & AdcData.DataI;
+ return ReturnVar;
+ end function Flatten;
+
+ -- UnFlattens AdcDataAryFlatter_t to AdcDataAryFlat_t
+ function Unflatten(AdcData : AdcDataAryFlatter_t) return AdcDataAryFlat_t
+ is
+ variable ReturnVar : AdcDataAryFlat_t;
+ begin
+ ReturnVar.DataI := AdcData(1*kSamplesPerCycle*kAdcDataWidth + 0*kSamplesPerCycle - 1 downto 0*kSamplesPerCycle*kAdcDataWidth + 0*kSamplesPerCycle);
+ ReturnVar.DataQ := AdcData(2*kSamplesPerCycle*kAdcDataWidth + 0*kSamplesPerCycle - 1 downto 1*kSamplesPerCycle*kAdcDataWidth + 0*kSamplesPerCycle);
+ ReturnVar.CBit1I := AdcData(2*kSamplesPerCycle*kAdcDataWidth + 1*kSamplesPerCycle - 1 downto 2*kSamplesPerCycle*kAdcDataWidth + 0*kSamplesPerCycle);
+ ReturnVar.OverI := AdcData(2*kSamplesPerCycle*kAdcDataWidth + 2*kSamplesPerCycle - 1 downto 2*kSamplesPerCycle*kAdcDataWidth + 1*kSamplesPerCycle);
+ ReturnVar.CBit1Q := AdcData(2*kSamplesPerCycle*kAdcDataWidth + 3*kSamplesPerCycle - 1 downto 2*kSamplesPerCycle*kAdcDataWidth + 2*kSamplesPerCycle);
+ ReturnVar.OverQ := AdcData(2*kSamplesPerCycle*kAdcDataWidth + 4*kSamplesPerCycle - 1 downto 2*kSamplesPerCycle*kAdcDataWidth + 3*kSamplesPerCycle);
+ return ReturnVar;
+ end function Unflatten;
+
+
+ -- Flattens AdcDataAry_t to AdcDataAryFlatter_t
+ function Flatten(AdcData : AdcDataAry_t) return AdcDataAryFlatter_t
+ is
+ variable TempVar : AdcDataAryFlat_t;
+ variable ReturnVar : AdcDataAryFlatter_t;
+ begin
+ TempVar := Flatten(AdcData);
+ ReturnVar := Flatten(TempVar);
+ return ReturnVar;
+ end function Flatten;
+
+ -- UnFlattens AdcDataAryFlatter_t to AdcDataAry_t
+ function Unflatten(AdcData : AdcDataAryFlatter_t) return AdcDataAry_t
+ is
+ variable TempVar : AdcDataAryFlat_t;
+ variable ReturnVar : AdcDataAry_t;
+ begin
+ TempVar := Unflatten(AdcData);
+ ReturnVar := Unflatten(TempVar);
+ return ReturnVar;
+ end function Unflatten;
+
+
+
+ -- Flattens DacDataAry_t to DacDataAryFlat_t
+ function Flatten(DacData : DacDataAry_t) return DacDataAryFlat_t
+ is
+ variable ReturnVar : DacDataAryFlat_t;
+ begin
+ ReturnVar := (others => (others => '0'));
+ for i in 0 to kSamplesPerCycle - 1 loop
+ -- MSB of flattened word = 0th element of ADC data array - this corresponds to how TheWindow
+ -- expects data arrays to be transferred.
+ ReturnVar.DataI((i+1)*kDacDataWidth - 1 downto i*kDacDataWidth) := DacData(kSamplesPerCycle - 1 - i).Data.I;
+ ReturnVar.DataQ((i+1)*kDacDataWidth - 1 downto i*kDacDataWidth) := DacData(kSamplesPerCycle - 1 - i).Data.Q;
+ end loop;
+ return ReturnVar;
+ end function Flatten;
+
+
+ -- UnFlattens DacDataAryFlat_t to DacDataAry_t
+ function UnFlatten(DacData : DacDataAryFlat_t) return DacDataAry_t
+ is
+ variable ReturnVar : DacDataAry_t;
+ begin
+ ReturnVar := (others => (Data => (others => (others => '0'))));
+
+ -- The upstream logic puts the 0th element of an array in the MSBs of its data word
+ for i in 0 to kSamplesPerCycle - 1 loop
+ ReturnVar(kSamplesPerCycle - 1 - i).Data.I := DacData.DataI(kDacDataWidth*(i+1) - 1 downto kDacDataWidth*i);
+ ReturnVar(kSamplesPerCycle - 1 - i).Data.Q := DacData.DataQ(kDacDataWidth*(i+1) - 1 downto kDacDataWidth*i);
+ end loop;
+
+ return ReturnVar;
+ end function UnFlatten;
+
+
+
+ -- Flattens DacDataAryFlat_t to DacDataAryFlatter_t
+ function Flatten(DacData : DacDataAryFlat_t) return DacDataAryFlatter_t
+ is
+ variable ReturnVar : DacDataAryFlatter_t;
+ begin
+ ReturnVar := DacData.DataQ & DacData.DataI;
+ return ReturnVar;
+ end function Flatten;
+
+
+ -- UnFlattens DacDataAryFlatter_t to DacDataAryFlat_t
+ function Unflatten(DacData : DacDataAryFlatter_t) return DacDataAryFlat_t
+ is
+ variable ReturnVar : DacDataAryFlat_t;
+ begin
+ ReturnVar.DataI := DacData(1*kSamplesPerCycle*kDacDataWidth - 1 downto 0*kSamplesPerCycle*kDacDataWidth);
+ ReturnVar.DataQ := DacData(2*kSamplesPerCycle*kDacDataWidth - 1 downto 1*kSamplesPerCycle*kDacDataWidth);
+ return ReturnVar;
+ end function Unflatten;
+
+
+ -- Flattens DacDataAry_t to DacDataAryFlatter_t
+ function Flatten(DacData : DacDataAry_t) return DacDataAryFlatter_t
+ is
+ variable TempVar : DacDataAryFlat_t;
+ variable ReturnVar : DacDataAryFlatter_t;
+ begin
+ TempVar := Flatten(DacData);
+ ReturnVar := Flatten(TempVar);
+ return ReturnVar;
+ end function Flatten;
+
+ -- UnFlattens DacDataAryFlatter_t to DacDataAry_t
+ function Unflatten(DacData : DacDataAryFlatter_t) return DacDataAry_t
+ is
+ variable TempVar : DacDataAryFlat_t;
+ variable ReturnVar : DacDataAry_t;
+ begin
+ TempVar := Unflatten(DacData);
+ ReturnVar := Unflatten(TempVar);
+ return ReturnVar;
+ end function Unflatten;
+
+
+end package body;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgClockingRegMap.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgClockingRegMap.vhd
new file mode 100644
index 000000000..03b95c100
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgClockingRegMap.vhd
@@ -0,0 +1,107 @@
+-------------------------------------------------------------------------------
+--
+-- File: PkgClockingRegMap.vhd
+-- Author: Autogenerated by XmlParse
+-- Original Project: --
+-- Date: --
+--
+-------------------------------------------------------------------------------
+-- Copyright 2017 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: LGPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose:
+-- The constants in this file are autogenerated by XmlParse and should
+-- be used by testbench code to access specific register fields.
+--
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+ use ieee.numeric_std.all;
+
+package PkgClockingRegMap is
+
+--===============================================================================
+-- A numerically ordered list of registers and their VHDL source files
+--===============================================================================
+
+ -- RadioClkMmcm : 0x20 (ClockingRegs.vhd)
+ -- PhaseShiftControl : 0x24 (ClockingRegs.vhd)
+ -- RadioClkEnables : 0x28 (ClockingRegs.vhd)
+ -- MgtRefClkStatus : 0x30 (ClockingRegs.vhd)
+
+--===============================================================================
+-- RegTypes
+--===============================================================================
+
+--===============================================================================
+-- Register Group ClockingRegs
+--===============================================================================
+
+ -- RadioClkMmcm Register (from ClockingRegs.vhd)
+ constant kRadioClkMmcm : integer := 16#20#; -- Register Offset
+ constant kRadioClkMmcmSize: integer := 32; -- register width in bits
+ constant kRadioClkMmcmMask : std_logic_vector(31 downto 0) := X"00000013";
+ constant kRadioClkMmcmResetSetSize : integer := 1; --RadioClkMmcm:RadioClkMmcmResetSet
+ constant kRadioClkMmcmResetSetMsb : integer := 0; --RadioClkMmcm:RadioClkMmcmResetSet
+ constant kRadioClkMmcmResetSet : integer := 0; --RadioClkMmcm:RadioClkMmcmResetSet
+ constant kRadioClkMmcmResetClearSize : integer := 1; --RadioClkMmcm:RadioClkMmcmResetClear
+ constant kRadioClkMmcmResetClearMsb : integer := 1; --RadioClkMmcm:RadioClkMmcmResetClear
+ constant kRadioClkMmcmResetClear : integer := 1; --RadioClkMmcm:RadioClkMmcmResetClear
+ constant kRadioClkMmcmLockedSize : integer := 1; --RadioClkMmcm:RadioClkMmcmLocked
+ constant kRadioClkMmcmLockedMsb : integer := 4; --RadioClkMmcm:RadioClkMmcmLocked
+ constant kRadioClkMmcmLocked : integer := 4; --RadioClkMmcm:RadioClkMmcmLocked
+
+ -- PhaseShiftControl Register (from ClockingRegs.vhd)
+ constant kPhaseShiftControl : integer := 16#24#; -- Register Offset
+ constant kPhaseShiftControlSize: integer := 32; -- register width in bits
+ constant kPhaseShiftControlMask : std_logic_vector(31 downto 0) := X"10010011";
+ constant kPsIncSize : integer := 1; --PhaseShiftControl:PsInc
+ constant kPsIncMsb : integer := 0; --PhaseShiftControl:PsInc
+ constant kPsInc : integer := 0; --PhaseShiftControl:PsInc
+ constant kPsDecSize : integer := 1; --PhaseShiftControl:PsDec
+ constant kPsDecMsb : integer := 4; --PhaseShiftControl:PsDec
+ constant kPsDec : integer := 4; --PhaseShiftControl:PsDec
+ constant kPsEnabledForFdbClkSize : integer := 1; --PhaseShiftControl:PsEnabledForFdbClk
+ constant kPsEnabledForFdbClkMsb : integer := 16; --PhaseShiftControl:PsEnabledForFdbClk
+ constant kPsEnabledForFdbClk : integer := 16; --PhaseShiftControl:PsEnabledForFdbClk
+ constant kPsDoneSize : integer := 1; --PhaseShiftControl:PsDone
+ constant kPsDoneMsb : integer := 28; --PhaseShiftControl:PsDone
+ constant kPsDone : integer := 28; --PhaseShiftControl:PsDone
+
+ -- RadioClkEnables Register (from ClockingRegs.vhd)
+ constant kRadioClkEnables : integer := 16#28#; -- Register Offset
+ constant kRadioClkEnablesSize: integer := 32; -- register width in bits
+ constant kRadioClkEnablesMask : std_logic_vector(31 downto 0) := X"00000111";
+ constant kRadioClk1xEnabledSize : integer := 1; --RadioClkEnables:RadioClk1xEnabled
+ constant kRadioClk1xEnabledMsb : integer := 0; --RadioClkEnables:RadioClk1xEnabled
+ constant kRadioClk1xEnabled : integer := 0; --RadioClkEnables:RadioClk1xEnabled
+ constant kRadioClk2xEnabledSize : integer := 1; --RadioClkEnables:RadioClk2xEnabled
+ constant kRadioClk2xEnabledMsb : integer := 4; --RadioClkEnables:RadioClk2xEnabled
+ constant kRadioClk2xEnabled : integer := 4; --RadioClkEnables:RadioClk2xEnabled
+ constant kRadioClk3xEnabledSize : integer := 1; --RadioClkEnables:RadioClk3xEnabled
+ constant kRadioClk3xEnabledMsb : integer := 8; --RadioClkEnables:RadioClk3xEnabled
+ constant kRadioClk3xEnabled : integer := 8; --RadioClkEnables:RadioClk3xEnabled
+
+ -- MgtRefClkStatus Register (from ClockingRegs.vhd)
+ constant kMgtRefClkStatus : integer := 16#30#; -- Register Offset
+ constant kMgtRefClkStatusSize: integer := 32; -- register width in bits
+ constant kMgtRefClkStatusMask : std_logic_vector(31 downto 0) := X"00000001";
+ constant kJesdRefClkPresentSize : integer := 1; --MgtRefClkStatus:JesdRefClkPresent
+ constant kJesdRefClkPresentMsb : integer := 0; --MgtRefClkStatus:JesdRefClkPresent
+ constant kJesdRefClkPresent : integer := 0; --MgtRefClkStatus:JesdRefClkPresent
+
+end package;
+
+package body PkgClockingRegMap is
+
+ -- function kRadioClkMmcmRec not implemented because PkgXReg in this project does not support XReg2_t.
+
+ -- function kPhaseShiftControlRec not implemented because PkgXReg in this project does not support XReg2_t.
+
+ -- function kRadioClkEnablesRec not implemented because PkgXReg in this project does not support XReg2_t.
+
+ -- function kMgtRefClkStatusRec not implemented because PkgXReg in this project does not support XReg2_t.
+
+end package body;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgDaughterboardRegMap.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgDaughterboardRegMap.vhd
new file mode 100644
index 000000000..06708cde3
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgDaughterboardRegMap.vhd
@@ -0,0 +1,56 @@
+-------------------------------------------------------------------------------
+--
+-- File: PkgDaughterboardRegMap.vhd
+-- Author: Autogenerated by XmlParse
+-- Original Project: --
+-- Date: --
+--
+-------------------------------------------------------------------------------
+-- Copyright 2017 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: LGPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose:
+-- The constants in this file are autogenerated by XmlParse and should
+-- be used by testbench code to access specific register fields.
+--
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+ use ieee.numeric_std.all;
+
+package PkgDaughterboardRegMap is
+
+--===============================================================================
+-- A numerically ordered list of registers and their VHDL source files
+--===============================================================================
+
+ -- DaughterboardId : 0x630 (DaughterboardRegs.vhd)
+
+--===============================================================================
+-- RegTypes
+--===============================================================================
+
+--===============================================================================
+-- Register Group StaticControl
+--===============================================================================
+
+ -- DaughterboardId Register (from DaughterboardRegs.vhd)
+ constant kDaughterboardId : integer := 16#630#; -- Register Offset
+ constant kDaughterboardIdSize: integer := 32; -- register width in bits
+ constant kDaughterboardIdMask : std_logic_vector(31 downto 0) := X"0001ffff";
+ constant kDbIdValSize : integer := 16; --DaughterboardId:DbIdVal
+ constant kDbIdValMsb : integer := 15; --DaughterboardId:DbIdVal
+ constant kDbIdVal : integer := 0; --DaughterboardId:DbIdVal
+ constant kSlotIdValSize : integer := 1; --DaughterboardId:SlotIdVal
+ constant kSlotIdValMsb : integer := 16; --DaughterboardId:SlotIdVal
+ constant kSlotIdVal : integer := 16; --DaughterboardId:SlotIdVal
+
+end package;
+
+package body PkgDaughterboardRegMap is
+
+ -- function kDaughterboardIdRec not implemented because PkgXReg in this project does not support XReg2_t.
+
+end package body;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgJesdConfig.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgJesdConfig.vhd
new file mode 100644
index 000000000..4913b03fc
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgJesdConfig.vhd
@@ -0,0 +1,165 @@
+-------------------------------------------------------------------------------
+--
+-- File: PkgJesdConfig.vhd
+-- Author: National Instruments
+-- Original Project: N32x
+-- Date: 15 Dec 2017
+--
+-------------------------------------------------------------------------------
+-- Copyright 2016-2018 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: LGPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose: JESD204B setup constants and functions. These constants are shared
+-- between RX and TX JESD cores.
+--
+-- vreview_group JesdCoreN32x
+-- vreview_reviewers djepson wfife
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+ use ieee.numeric_std.all;
+
+library work;
+ use work.PkgRegs.all;
+
+
+package PkgJesdConfig is
+
+ -- "JESD" in ASCII - with the core number 0 or 1 on the LSb.
+ constant kJesdSignature : std_logic_vector(31 downto 0) := x"4a455344";
+
+ -- Register endpoints
+ constant kJesdDrpRegsInEndpoint : RegOffset_t := (kOffset => 16#0800#, -- 0x2800 to
+ kWidth => 16#0800#); -- 0x2FFF
+
+ -- Selects the UsrClk2 for the transceivers. For 64-bit wide transceivers, the
+ -- UsrClk = 2*UserClk2 frequency. For 32-bit wide transceivers, UsrClk = UserClk2
+ -- frequency. This is a generalization, the clock ratio should be confirmed based on
+ -- the transceiver configuration.
+ -- The N310 transceivers use the single rate reference, hence = false.
+ constant kDoubleRateUsrClk : boolean := false;
+
+ -- For the N32x, all lanes are in one quad and we use the QPLL.
+ constant kJesdUseQpll : boolean := true;
+
+ constant kAdcDataWidth : integer := 14; -- ADC data width in bits
+ constant kDacDataWidth : integer := 16; -- DAC data width in bits
+ constant kSamplesPerCycle : integer := 2; -- Number of samples per SampleClk1x
+
+ constant kGtxDrpAddrWidth : natural := 9;
+ constant kGtxAddrLsbPosition : natural := 2;
+ constant kQpllDrpAddrWidth : natural := 8;
+ constant kGtxDrpDataWidth : natural := 16;
+
+ -- Max supported number of lanes
+ constant kMaxNumLanes : natural := 4;
+ -- Max supported number of quads (normally there is 1 quad per 4 lanes but disconnect
+ -- the definitions to allow quad sharing)
+ constant kMaxNumQuads : natural := 1;
+
+ -- Rhodium:
+ -- JESD shared setup - LMFS = 4211, HD = 1 (Samples are split across multiple lanes).
+ constant kNumLanes : natural := 4; -- L
+ constant kNumConvs : positive := 2; -- M
+ constant kOctetsPerFrame : natural := 1; -- F
+ constant kDacJesdSamplesPerCycle : integer := 1; -- S
+ constant kOctetsPerLane : natural := 2; -- MGT data is kOctetsPerLane*8 = 16 bits wide
+ constant kNumQuads : natural := kNumLanes / 4; -- 4 lanes per quad
+ constant kHighDensity : boolean := true; -- HD
+ constant kConvResBits : positive := kDacDataWidth; -- Converter resolution in bits
+ constant kConvSampleBits : positive := 16; -- Sample Length in bits
+ constant kInitLaneAlignCnt : positive := 4;
+ constant kFramesPerMulti : natural := 24; -- K
+
+ -- Rhodium:
+ -- The converters are running at 400/491.52/500 MSPS (DeviceClk), and the sampling
+ -- clock at the FPGA (UserClk) is 200/245.76/250 MHz; so UsrClk = (DeviceClk / 2).
+ -- The frame rate = DeviceClk, and the Multiframe rate = (frame rate / kFramesPerMulti)
+ -- Thus, kUserClksPerMulti = (UsrClk / Multiframe rate)
+ -- = (UsrClk / (DeviceClk / kFramesPerMulti))
+ -- since UsrClk = DeviceClk / 2 then,
+ -- kUserClksPerMulti = ((DeviceClk / 2) / (DeviceClk / kFramesPerMulti))
+ -- therefore,
+ -- kUserClksPerMulti = kFramesPerMulti / 2
+ constant kUserClksPerMulti : integer := kFramesPerMulti / 2;
+
+
+ type NaturalVector is array ( natural range <>) of natural;
+
+ -- The PCB connections are are passed trough, any swapping is handled somewhere else.
+ --
+ -- Transceiver MGT Channel ADC Lane DAC Lane
+ -- *********** *********** ******** ********
+ -- GT0: X0Y8 0 0 0
+ -- GT1: X0Y9 1 1 1
+ -- GT2: X0Y10 2 2 2
+ -- GT3: X0Y11 3 3 3
+ constant kRxLaneIndices : NaturalVector(kNumLanes - 1 downto 0) :=
+ (
+ -- MGT => ADC (in above table)
+ 0 => 0,
+ 1 => 1,
+ 2 => 2,
+ 3 => 3
+ );
+
+ constant kTxLaneIndices : NaturalVector(kNumLanes - 1 downto 0) :=
+ (
+ -- MGT => DAC lane
+ 0 => 0,
+ 1 => 1,
+ 2 => 2,
+ 3 => 3
+ );
+
+ constant kLaneToQuadMap : NaturalVector(kNumLanes - 1 downto 0) :=
+ (
+ -- All lanes are in one quad
+ 0 => 0,
+ 1 => 0,
+ 2 => 0,
+ 3 => 0
+ );
+
+
+ -- The master transceiver channel for channel bonding. E(kMasterBondingChannel)
+ -- must have the highest value decrementing to b"000" for that last channels to bond.
+ constant kMasterBondingChannel : integer := 1;
+
+ -- Channel bonding occurs when a master detects a K-char sequence and aligns its
+ -- internal FIFO to the start of this sequence. A signal is then generated to other
+ -- slave transceivers that cause them to bond to the sequence - this bonding signal is
+ -- cascaded from master to slave to slave to slave, etc where each slave must know how
+ -- many levels to the master there are. The last slave to bond must be at level b"000"
+ -- and the master is at the highest level; the number of levels in the sequence is
+ -- governed by the size of the transceiver FIFO (see the Xilinx user guides for more
+ -- information).
+ type BondLevels_t is array(0 to kNumLanes - 1) of std_logic_vector(2 downto 0);
+ constant kBondLevel : BondLevels_t := (
+ 0 => b"000", -- Control from 1
+ 1 => b"001", -- Master
+ 2 => b"000", -- Control from 1
+ 3 => b"000" -- Control from 1
+ );
+
+
+ -- User Rx Data
+ -- ADC Word data width: 14 sample bits + 2 tails bits
+ constant kAdcWordWidth : integer := 16;
+ subtype AdcWord_t is std_logic_vector(kAdcWordWidth - 1 downto 0);
+ type AdcWordArray_t is array(kSamplesPerCycle*2 - 1 downto 0) of AdcWord_t; -- The *2 is because there are two samples (I and Q) per "sample"
+
+ -- Constants to specify the contents of the AdcWord_t vector.
+ constant kAdcWordDataMsb : integer := 15;
+ constant kAdcWordDataLsb : integer := 2;
+ constant kAdcWordOver : integer := 1;
+ constant kAdcWordCBit1 : integer := 0;
+
+
+ -- Option to pipeline stages to improve timing, if needed
+ constant kPipelineDetectCharsStage : boolean := false;
+ constant kPipelineCharReplStage : boolean := false;
+
+end package;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgRhPersonality.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgRhPersonality.vhd
new file mode 100644
index 000000000..801a46d15
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/PkgRhPersonality.vhd
@@ -0,0 +1,62 @@
+-------------------------------------------------------------------------------
+--
+-- File: PkgRhPersonality.vhd
+-- Author: National Instruments
+-- Original Project: N32x
+-- Date: 15 Dec 2017
+--
+-------------------------------------------------------------------------------
+-- Copyright 2017 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: GPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose: This package contains constants and helpful functions that enable
+-- the FPGA to be compiled with different features.
+--
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+ use ieee.numeric_std.all;
+
+library work;
+ use work.PkgRegs.all;
+
+
+package PkgRhPersonality is
+
+ -- Rhodium daughterboard ID definition.
+ constant kDbId : integer := 16#152#;
+ constant kDbIdSize : integer := 16;
+
+
+ -- RegPort Address Definitions : ------------------------------------------------------
+ --
+ -- DB Regs ...
+ --
+ -- Clocking Offset: 0x 000 Width: 0x 200
+ -- Tdco0 Offset: 0x 200 Width: 0x 200
+ -- Tdco1 Offset: 0x 400 Width: 0x 200
+ -- Daughterboard Ctrl Offset: 0x 600 Width: 0x 200
+ -- Total: 0x2000
+ -- JESD 2x - A Offset: 0x2000 Width: 0x1000
+ -- JESD 2x - B Offset: 0x3000 Width: 0x1000
+ -- Total: 0x4000
+ -- Total: 0x8000 for two DBs
+ -- ------------------------------------------------------------------------------------
+
+ -- A single RegPort runs to the JESD204B Core.
+ constant kJesdRegGroupInDbRegs : RegOffset_t := (kOffset => 16#2000#, -- 0x2000 to
+ kWidth => 16#1000#); -- 0x2FFF
+
+ -- DB Regs : --------------------------------------------------------------------------
+ constant kClockingOffsetInEndpoint : RegOffset_t := (kOffset => 16#0000#, -- 0x0000 to
+ kWidth => 16#0200#); -- 0x01FF
+ constant kTdc0OffsetsInEndpoint : RegOffset_t := (kOffset => 16#0200#, -- 0x0200 to
+ kWidth => 16#0200#); -- 0x03FF
+ constant kTdc1OffsetsInEndpoint : RegOffset_t := (kOffset => 16#0400#, -- 0x0400 to
+ kWidth => 16#0200#); -- 0x05FF
+ constant kDaughterboardOffsetInEndpoint : RegOffset_t := (kOffset => 16#0600#, -- 0x0600 to
+ kWidth => 16#0200#); -- 0x07FF
+
+end package PkgRhPersonality;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/RadioClocking.vhd b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/RadioClocking.vhd
new file mode 100644
index 000000000..69a15d49a
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_ifc/RadioClocking.vhd
@@ -0,0 +1,305 @@
+-------------------------------------------------------------------------------
+--
+-- File: RadioClocking.vhd
+-- Author: Daniel Jepson
+-- Original Project: N310
+-- Date: 22 February 2016
+--
+-------------------------------------------------------------------------------
+-- Copyright 2016-2018 Ettus Research, A National Instruments Company
+-- SPDX-License-Identifier: LGPL-3.0
+-------------------------------------------------------------------------------
+--
+-- Purpose:
+--
+-- Instantiates a MMCM to produce 1x, 2x, and 3x versions of the Radio Clock
+-- coming from the FPGA input pin. Handles all the buffering for the input clock.
+-- Additionally allows the clocks to be turned on and off, and phase shifted.
+--
+-- NOTE: This module hard-codes the MMCM settings for a SPECIFIC clock rate!
+--
+-------------------------------------------------------------------------------
+
+library ieee;
+ use ieee.std_logic_1164.all;
+
+library unisim;
+ use unisim.vcomponents.all;
+
+
+entity RadioClocking is
+ port (
+ -- Async reset. Can be tied low if desired.
+ aReset : in boolean;
+ -- Sync reset... used in the same places as the async one.
+ bReset : in boolean;
+
+ -- Should be a always-on clock
+ BusClk : in std_logic;
+
+ -- Sync reset to the RadioClkMmcm.
+ bRadioClkMmcmReset : in std_logic;
+
+ -- Locked indication from the RadioClkMmcm in BusClk and aReset domains.
+ bRadioClksValid : out std_logic;
+
+ bRadioClk1xEnabled : in std_logic;
+ bRadioClk2xEnabled : in std_logic;
+ bRadioClk3xEnabled : in std_logic;
+
+ -- Phase shift interface for the RadioClkMmcm. PsClk must be <= 200 MHz.
+ pPsInc : in std_logic;
+ pPsEn : in std_logic;
+ PsClk : in std_logic;
+ pPsDone : out std_logic;
+
+ -- Straight from pins. Buffer included in here.
+ FpgaClk_n : in std_logic;
+ FpgaClk_p : in std_logic;
+
+ RadioClk1x : out std_logic;
+ RadioClk2x : out std_logic;
+ RadioClk3x : out std_logic
+
+ );
+end RadioClocking;
+
+
+architecture rtl of RadioClocking is
+
+ --vhook_sigstart
+ signal RadioClk1xLcl: std_logic;
+ signal RadioClk1xPll: std_logic;
+ signal RadioClk2xLcl: std_logic;
+ signal RadioClk2xPll: std_logic;
+ signal RadioClk3xLcl: std_logic;
+ signal RadioClk3xPll: std_logic;
+ --vhook_sigend
+
+ signal RadioClkMmcmFeedbackIn,
+ RadioClkMmcmFeedbackOut,
+ FpgaClkSE,
+ aRadioClkMmcmLocked : std_logic;
+
+ signal bRadioClkMmcmLocked_ms,
+ bRadioClkMmcmLocked,
+ bEnableRadioClkBufgOutputs,
+ bEnableRadioClk1xBufgOutput,
+ bEnableRadioClk2xBufgOutput,
+ bEnableRadioClk3xBufgOutput : std_logic := '0';
+
+ signal aRadioClkMmcmResetInternal : std_logic := '1';
+
+ attribute ASYNC_REG : string;
+ attribute ASYNC_REG of bRadioClkMmcmLocked_ms : signal is "true";
+ attribute ASYNC_REG of bRadioClkMmcmLocked : signal is "true";
+
+begin
+
+ -- Radio Clock Buffering : ------------------------------------------------------------
+ --
+ -- ------------------------------------------------------------------------------------
+ --vhook_i IBUFDS FpgaClkIbufg hidegeneric=true
+ --vhook_a I FpgaClk_p
+ --vhook_a IB FpgaClk_n
+ --vhook_a O FpgaClkSE
+ FpgaClkIbufg: IBUFDS
+ port map (
+ O => FpgaClkSE, --out std_ulogic
+ I => FpgaClk_p, --in std_ulogic
+ IB => FpgaClk_n); --in std_ulogic
+
+
+ ResetDelay : process(aReset, BusClk)
+ begin
+ if aReset then
+ aRadioClkMmcmResetInternal <= '1';
+ elsif rising_edge(BusClk) then
+ if bReset then
+ aRadioClkMmcmResetInternal <= '1';
+ else
+ -- Delay by 1 to allow the BUFGs to turn off before the MMCM is reset.
+ aRadioClkMmcmResetInternal <= bRadioClkMmcmReset;
+ end if;
+ end if;
+ end process ResetDelay;
+
+
+ RadioClkMmcm: MMCME2_ADV
+ generic map(
+ COMPENSATION => "ZHOLD",
+ BANDWIDTH => "OPTIMIZED",
+ CLKFBOUT_MULT_F => 4.000, -- Feedback
+ CLKOUT0_DIVIDE_F => 4.000, -- Data Clock 1x, RadioClk1xPll
+ CLKOUT1_DIVIDE => 2, -- Data Clock 2x, RadioClk2xPll
+ CLKOUT2_DIVIDE => 2, -- Data Clock 3x, RadioClk3xPll
+ CLKOUT3_DIVIDE => 1, -- unused
+ CLKOUT4_DIVIDE => 1, -- unused
+ CLKOUT5_DIVIDE => 1, -- unused
+ CLKOUT6_DIVIDE => 1, -- unused
+ CLKFBOUT_PHASE => 0.000, -- Feedback
+ CLKOUT0_PHASE => 0.000, -- Data Clock 1x
+ CLKOUT1_PHASE => 0.000, -- Data Clock 2x
+ CLKOUT2_PHASE => 0.000, -- Data Clock 3x
+ CLKOUT3_PHASE => 0.000, -- unused
+ CLKOUT4_PHASE => 0.000, -- unused
+ CLKOUT5_PHASE => 0.000, -- unused
+ CLKOUT6_PHASE => 0.000, -- unused
+ CLKOUT0_DUTY_CYCLE => 0.500,
+ CLKOUT1_DUTY_CYCLE => 0.500,
+ CLKOUT2_DUTY_CYCLE => 0.500,
+ CLKOUT3_DUTY_CYCLE => 0.500,
+ CLKOUT4_DUTY_CYCLE => 0.500,
+ CLKOUT5_DUTY_CYCLE => 0.500,
+ CLKOUT6_DUTY_CYCLE => 0.500,
+ DIVCLK_DIVIDE => 1,
+ REF_JITTER1 => 0.010,
+ CLKIN1_PERIOD => 4.069, -- 245.76 MHz max
+ CLKFBOUT_USE_FINE_PS => true,
+ CLKOUT0_USE_FINE_PS => false,
+ CLKOUT1_USE_FINE_PS => false,
+ CLKOUT2_USE_FINE_PS => false,
+ CLKOUT3_USE_FINE_PS => false,
+ CLKOUT4_USE_FINE_PS => false,
+ CLKOUT5_USE_FINE_PS => false,
+ CLKOUT6_USE_FINE_PS => false,
+ STARTUP_WAIT => false,
+ CLKOUT4_CASCADE => false)
+ port map (
+ CLKINSEL => '1',
+ CLKIN1 => FpgaClkSE,
+ CLKIN2 => '0',
+ CLKFBIN => RadioClkMmcmFeedbackIn,
+ RST => aRadioClkMmcmResetInternal,
+ PWRDWN => '0',
+ DADDR => (others => '0'),
+ DI => (others => '0'),
+ DWE => '0',
+ DEN => '0',
+ DCLK => '0',
+ DO => open,
+ DRDY => open,
+ PSINCDEC => pPsInc,
+ PSEN => pPsEn,
+ PSCLK => PsClk,
+ PSDONE => pPsDone,
+ CLKOUT0 => RadioClk1xPll,
+ CLKOUT0B => open,
+ CLKOUT1 => RadioClk2xPll,
+ CLKOUT1B => open,
+ CLKOUT2 => RadioClk3xPll,
+ CLKOUT2B => open,
+ CLKOUT3 => open,
+ CLKOUT3B => open,
+ CLKOUT4 => open,
+ CLKOUT5 => open,
+ CLKOUT6 => open,
+ CLKFBOUT => RadioClkMmcmFeedbackOut,
+ CLKFBOUTB => open,
+ LOCKED => aRadioClkMmcmLocked,
+ CLKINSTOPPED => open,
+ CLKFBSTOPPED => open);
+
+ RadioClkMmcmFeedbackBufg: BUFG
+ port map (
+ I => RadioClkMmcmFeedbackOut,
+ O => RadioClkMmcmFeedbackIn
+ );
+
+
+ -- Only enable the WRAPBUFGs when the MMCM is locked. If the MMCM is ever placed in
+ -- reset, we turn off the clocks one cycle before the asynchronous version
+ -- (aRadioClkMmcmResetInternal) reaches the MMCM inputs in order to prevent
+ -- output glitches.
+ CombineEnablesForBuffers : process(aReset, BusClk)
+ begin
+ if aReset then
+ bRadioClkMmcmLocked_ms <= '0';
+ bRadioClkMmcmLocked <= '0';
+ bEnableRadioClk1xBufgOutput <= '0';
+ bEnableRadioClk2xBufgOutput <= '0';
+ bEnableRadioClk3xBufgOutput <= '0';
+ bEnableRadioClkBufgOutputs <= '0';
+ elsif rising_edge(BusClk) then
+ if bReset then
+ bRadioClkMmcmLocked_ms <= '0';
+ bRadioClkMmcmLocked <= '0';
+ bEnableRadioClk1xBufgOutput <= '0';
+ bEnableRadioClk2xBufgOutput <= '0';
+ bEnableRadioClk3xBufgOutput <= '0';
+ bEnableRadioClkBufgOutputs <= '0';
+ else
+ bRadioClkMmcmLocked_ms <= aRadioClkMmcmLocked;
+ bRadioClkMmcmLocked <= bRadioClkMmcmLocked_ms;
+
+ bEnableRadioClkBufgOutputs <= bRadioClkMmcmLocked and
+ not bRadioClkMmcmReset;
+ bEnableRadioClk1xBufgOutput <= bRadioClk1xEnabled and bEnableRadioClkBufgOutputs;
+ bEnableRadioClk2xBufgOutput <= bRadioClk2xEnabled and bEnableRadioClkBufgOutputs;
+ bEnableRadioClk3xBufgOutput <= bRadioClk3xEnabled and bEnableRadioClkBufgOutputs;
+ end if;
+ end if;
+ end process CombineEnablesForBuffers;
+
+ bRadioClksValid <= bEnableRadioClkBufgOutputs;
+
+ --vhook_e WrapBufg RadioClk1xBuf
+ --vhook_a kEnableByDefault false
+ --vhook_a kIgnore false
+ --vhook_a kEnableIsAsync true
+ --vhook_a ClkIn RadioClk1xPll
+ --vhook_a aCe bEnableRadioClk1xBufgOutput
+ --vhook_a ClkOut RadioClk1xLcl
+ RadioClk1xBuf: entity work.WrapBufg (rtl)
+ generic map (
+ kEnableByDefault => false, --boolean:=false
+ kIgnore => false, --boolean:=false
+ kEnableIsAsync => true) --boolean:=false
+ port map (
+ ClkIn => RadioClk1xPll, --in std_logic
+ aCe => bEnableRadioClk1xBufgOutput, --in std_logic
+ ClkOut => RadioClk1xLcl); --out std_logic
+
+ --vhook_e WrapBufg RadioClk2xBuf
+ --vhook_a kEnableByDefault false
+ --vhook_a kIgnore false
+ --vhook_a kEnableIsAsync true
+ --vhook_a ClkIn RadioClk2xPll
+ --vhook_a aCe bEnableRadioClk2xBufgOutput
+ --vhook_a ClkOut RadioClk2xLcl
+ RadioClk2xBuf: entity work.WrapBufg (rtl)
+ generic map (
+ kEnableByDefault => false, --boolean:=false
+ kIgnore => false, --boolean:=false
+ kEnableIsAsync => true) --boolean:=false
+ port map (
+ ClkIn => RadioClk2xPll, --in std_logic
+ aCe => bEnableRadioClk2xBufgOutput, --in std_logic
+ ClkOut => RadioClk2xLcl); --out std_logic
+
+ --vhook_e WrapBufg RadioClk3xBuf
+ --vhook_a kEnableByDefault false
+ --vhook_a kIgnore false
+ --vhook_a kEnableIsAsync true
+ --vhook_a ClkIn RadioClk3xPll
+ --vhook_a aCe bEnableRadioClk3xBufgOutput
+ --vhook_a ClkOut RadioClk3xLcl
+ RadioClk3xBuf: entity work.WrapBufg (rtl)
+ generic map (
+ kEnableByDefault => false, --boolean:=false
+ kIgnore => false, --boolean:=false
+ kEnableIsAsync => true) --boolean:=false
+ port map (
+ ClkIn => RadioClk3xPll, --in std_logic
+ aCe => bEnableRadioClk3xBufgOutput, --in std_logic
+ ClkOut => RadioClk3xLcl); --out std_logic
+
+
+ -- Assign outputs from locals.
+ RadioClk1x <= RadioClk1xLcl;
+ RadioClk2x <= RadioClk2xLcl;
+ RadioClk3x <= RadioClk3xLcl;
+
+
+
+end rtl;
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_pins.xdc b/fpga/usrp3/top/n3xx/dboards/rh/db_pins.xdc
new file mode 100644
index 000000000..b67269cd9
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_pins.xdc
@@ -0,0 +1,280 @@
+## TDC : ################################################################################
+## Bank 10, 2.5V (DB A)
+#########################################################################################
+
+set_property PACKAGE_PIN AB15 [get_ports {UNUSED_PIN_TDCA_0}]
+set_property PACKAGE_PIN AB14 [get_ports {UNUSED_PIN_TDCA_1}]
+set_property PACKAGE_PIN AB16 [get_ports {UNUSED_PIN_TDCA_2}]
+set_property PACKAGE_PIN AB17 [get_ports {UNUSED_PIN_TDCA_3}]
+set_property IOSTANDARD LVCMOS25 [get_ports {UNUSED_PIN_TDCA_*}]
+set_property IOB TRUE [get_ports {UNUSED_PIN_TDCA_*}]
+
+
+## TDC : ################################################################################
+## Bank 11, 2.5V (DB B)
+#########################################################################################
+
+set_property PACKAGE_PIN W21 [get_ports {UNUSED_PIN_TDCB_0}]
+set_property PACKAGE_PIN Y21 [get_ports {UNUSED_PIN_TDCB_1}]
+set_property PACKAGE_PIN Y22 [get_ports {UNUSED_PIN_TDCB_2}]
+set_property PACKAGE_PIN Y23 [get_ports {UNUSED_PIN_TDCB_3}]
+set_property IOSTANDARD LVCMOS25 [get_ports {UNUSED_PIN_TDCB_*}]
+set_property IOB TRUE [get_ports {UNUSED_PIN_TDCB_*}]
+
+
+## USRP IO A : ##########################################################################
+# DBA
+#########################################################################################
+
+set_property PACKAGE_PIN G1 [get_ports DBA_MODULE_PWR_ENABLE]
+set_property PACKAGE_PIN E5 [get_ports DBA_RF_PWR_ENABLE]
+
+set_property PACKAGE_PIN AF14 [get_ports DBA_FPGA_CLK_P]
+set_property PACKAGE_PIN AG14 [get_ports DBA_FPGA_CLK_N]
+
+set_property PACKAGE_PIN N8 [get_ports DBA_MGTCLK_P]
+set_property PACKAGE_PIN N7 [get_ports DBA_MGTCLK_N]
+
+set_property PACKAGE_PIN AG17 [get_ports DBA_FPGA_SYSREF_P]
+set_property PACKAGE_PIN AG16 [get_ports DBA_FPGA_SYSREF_N]
+set_property IOB TRUE [get_ports DBA_FPGA_SYSREF_*]
+
+
+# set_property PACKAGE_PIN AD10 [get_ports NET2CLK_P]
+# set_property PACKAGE_PIN AD9 [get_ports NET2CLK_N]
+
+set_property PACKAGE_PIN C2 [get_ports DBA_CPLD_PL_SPI_SCLK]
+set_property PACKAGE_PIN B1 [get_ports DBA_TXLO_SPI_CS_B]; # DBA_CPLD_PL_SPI_LE
+set_property PACKAGE_PIN B2 [get_ports DBA_CPLD_PL_SPI_CS_B]; # DBA_CPLD_PL_SPI_ADDR[0]
+set_property PACKAGE_PIN F4 [get_ports DBA_RXLO_SPI_CS_B]; # DBA_CPLD_PL_SPI_ADDR[1]
+set_property PACKAGE_PIN F3 [get_ports DBA_LODIS_SPI_CS_B]; # DBA_CPLD_PL_SPI_ADDR[2]
+set_property PACKAGE_PIN C1 [get_ports DBA_CPLD_PL_SPI_MISO]
+set_property PACKAGE_PIN A3 [get_ports DBA_CPLD_PL_SPI_MOSI]
+
+set_property PACKAGE_PIN AC16 [get_ports DBA_CPLD_PS_SPI_SCLK]; # DBA_CPLD_PS_SPI_ADDR[0]
+set_property PACKAGE_PIN AE15 [get_ports DBA_CPLD_PS_SPI_CS_B]; # DBA_CPLD_PS_SPI_ADDR[1]
+set_property PACKAGE_PIN AE16 [get_ports DBA_PHDAC_SPI_CS_B]; # DBA_CPLD_PS_SPI_LE
+set_property PACKAGE_PIN AF17 [get_ports DBA_CLKDIS_SPI_CS_B]
+set_property PACKAGE_PIN AK16 [get_ports DBA_ADC_SPI_CS_B]; # DBA_CPLD_UNUSED[12]
+set_property PACKAGE_PIN AJ16 [get_ports DBA_DAC_SPI_CS_B]; # DBA_CPLD_UNUSED[13]
+set_property PACKAGE_PIN AC17 [get_ports DBA_CPLD_PS_SPI_MISO]
+set_property PACKAGE_PIN AF18 [get_ports DBA_CPLD_PS_SPI_MOSI]
+
+set_property PACKAGE_PIN AH13 [get_ports DBA_CPLD_JTAG_TDI]
+set_property PACKAGE_PIN AH14 [get_ports DBA_CPLD_JTAG_TDO]
+set_property PACKAGE_PIN AE13 [get_ports DBA_CPLD_JTAG_TMS]
+set_property PACKAGE_PIN AF13 [get_ports DBA_CPLD_JTAG_TCK]
+
+set_property PACKAGE_PIN E1 [get_ports DBA_CLKDIST_SYNC]
+
+set_property PACKAGE_PIN A2 [get_ports DBA_ATR_TX]
+set_property PACKAGE_PIN E3 [get_ports DBA_ATR_RX]
+
+set_property PACKAGE_PIN E2 [get_ports DBA_TXRX_SW_CTRL_1]
+set_property PACKAGE_PIN F5 [get_ports DBA_TXRX_SW_CTRL_2]
+
+set_property PACKAGE_PIN AE12 [get_ports DBA_ADC_SYNCB_P]
+set_property PACKAGE_PIN AF12 [get_ports DBA_ADC_SYNCB_N]
+set_property PACKAGE_PIN AD14 [get_ports DBA_DAC_SYNCB_P]; # Layout swapped, RTL is negated.
+set_property PACKAGE_PIN AD13 [get_ports DBA_DAC_SYNCB_N]; # Layout swapped, RTL is negated.
+
+# This mapping uses the TX pins as the "master" and mimics RX off of them so Vivado
+# places the transceivers in the correct places. The mixup in lanes is accounted for
+# in the AD9695 and the DAC37J82 crossbar settings.
+set_property PACKAGE_PIN V6 [get_ports DBA_RX_P[0]]
+set_property PACKAGE_PIN V5 [get_ports DBA_RX_N[0]]
+set_property PACKAGE_PIN U4 [get_ports DBA_RX_P[1]]
+set_property PACKAGE_PIN U3 [get_ports DBA_RX_N[1]]
+set_property PACKAGE_PIN T6 [get_ports DBA_RX_P[2]]
+set_property PACKAGE_PIN T5 [get_ports DBA_RX_N[2]]
+set_property PACKAGE_PIN P6 [get_ports DBA_RX_P[3]]
+set_property PACKAGE_PIN P5 [get_ports DBA_RX_N[3]]
+
+set_property PACKAGE_PIN T2 [get_ports DBA_TX_P[0]]
+set_property PACKAGE_PIN T1 [get_ports DBA_TX_N[0]]
+set_property PACKAGE_PIN R4 [get_ports DBA_TX_P[1]]
+set_property PACKAGE_PIN R3 [get_ports DBA_TX_N[1]]
+set_property PACKAGE_PIN P2 [get_ports DBA_TX_P[2]]
+set_property PACKAGE_PIN P1 [get_ports DBA_TX_N[2]]
+set_property PACKAGE_PIN N4 [get_ports DBA_TX_P[3]]
+set_property PACKAGE_PIN N3 [get_ports DBA_TX_N[3]]
+
+set_property PACKAGE_PIN AG12 [get_ports DBA_LED_RX]
+set_property PACKAGE_PIN AH12 [get_ports DBA_LED_RX2]
+set_property PACKAGE_PIN AJ13 [get_ports DBA_LED_TX]
+
+# Possibly need to be used. Connected to CPLD.
+# set_property PACKAGE_PIN C4 [get_ports DBA_CPLD_UNUSED[0]]
+# set_property PACKAGE_PIN C3 [get_ports DBA_CPLD_UNUSED[1]]
+# set_property PACKAGE_PIN K1 [get_ports DBA_CPLD_UNUSED[2]]
+# set_property PACKAGE_PIN L1 [get_ports DBA_CPLD_UNUSED[3]]
+# set_property PACKAGE_PIN D1 [get_ports DBA_CPLD_UNUSED[4]]
+# set_property PACKAGE_PIN AE17 [get_ports DBA_CPLD_UNUSED[5]]
+# set_property PACKAGE_PIN AE18 [get_ports DBA_CPLD_UNUSED[6]]
+# set_property PACKAGE_PIN AB12 [get_ports DBA_CPLD_UNUSED[7]]
+# set_property PACKAGE_PIN AC12 [get_ports DBA_CPLD_UNUSED[8]]
+# set_property PACKAGE_PIN AG17 [get_ports DBA_CPLD_UNUSED[9]]
+# set_property PACKAGE_PIN AK12 [get_ports DBA_CPLD_UNUSED[10]]
+# set_property PACKAGE_PIN AK13 [get_ports DBA_CPLD_UNUSED[11]]
+
+set UsrpIoAHpPinsSe [get_ports {DBA_MODULE_PWR_ENABLE \
+ DBA_RF_PWR_ENABLE \
+ DBA_CPLD_PL_SPI_* \
+ DBA_TXLO_SPI_CS_B \
+ DBA_RXLO_SPI_CS_B \
+ DBA_LODIS_SPI_CS_B \
+ DBA_CLKDIST_SYNC \
+ DBA_TXRX_SW_CTRL_* \
+ DBA_ATR_*}]
+set_property IOSTANDARD LVCMOS18 $UsrpIoAHpPinsSe
+set_property DRIVE 6 $UsrpIoAHpPinsSe
+set_property SLEW SLOW $UsrpIoAHpPinsSe
+
+set UsrpIoAHrPinsSeDr4 [get_ports {DBA_LED_* \
+ DBA_CPLD_JTAG_*}]
+set_property IOSTANDARD LVCMOS25 $UsrpIoAHrPinsSeDr4
+set_property DRIVE 4 $UsrpIoAHrPinsSeDr4
+set_property SLEW SLOW $UsrpIoAHrPinsSeDr4
+
+set UsrpIoAHrPinsSeDr8 [get_ports {DBA_CPLD_PS_SPI_* \
+ DBA_PHDAC_SPI_CS_B \
+ DBA_CLKDIS_SPI_CS_B \
+ DBA_ADC_SPI_CS_B \
+ DBA_DAC_SPI_CS_B}]
+set_property IOSTANDARD LVCMOS25 $UsrpIoAHrPinsSeDr8
+set_property DRIVE 8 $UsrpIoAHrPinsSeDr8
+set_property SLEW SLOW $UsrpIoAHrPinsSeDr8
+
+set UsrpIoAHrPinsDiff [get_ports {DBA_ADC_SYNCB_* \
+ DBA_DAC_SYNCB_* \
+ DBA_FPGA_CLK_* \
+ DBA_FPGA_SYSREF_*}]
+set_property IOSTANDARD LVDS_25 $UsrpIoAHrPinsDiff
+set_property DIFF_TERM TRUE $UsrpIoAHrPinsDiff
+
+
+## USRP IO B : ##########################################################################
+# DBB
+#########################################################################################
+
+set_property PACKAGE_PIN J4 [get_ports DBB_MODULE_PWR_ENABLE]
+set_property PACKAGE_PIN G4 [get_ports DBB_RF_PWR_ENABLE]
+
+set_property PACKAGE_PIN AG21 [get_ports DBB_FPGA_CLK_P]
+set_property PACKAGE_PIN AH21 [get_ports DBB_FPGA_CLK_N]
+
+set_property PACKAGE_PIN W8 [get_ports DBB_MGTCLK_P]
+set_property PACKAGE_PIN W7 [get_ports DBB_MGTCLK_N]
+
+set_property PACKAGE_PIN AE22 [get_ports DBB_FPGA_SYSREF_P]
+set_property PACKAGE_PIN AF22 [get_ports DBB_FPGA_SYSREF_N]
+set_property IOB TRUE [get_ports DBB_FPGA_SYSREF_*]
+
+set_property PACKAGE_PIN K6 [get_ports DBB_CPLD_PL_SPI_SCLK]
+set_property PACKAGE_PIN F2 [get_ports DBB_TXLO_SPI_CS_B]; # DBB_CPLD_PL_SPI_LE
+set_property PACKAGE_PIN G2 [get_ports DBB_CPLD_PL_SPI_CS_B]; # DBB_CPLD_PL_SPI_ADDR[0]
+set_property PACKAGE_PIN H4 [get_ports DBB_RXLO_SPI_CS_B]; # DBB_CPLD_PL_SPI_ADDR[1]
+set_property PACKAGE_PIN H3 [get_ports DBB_LODIS_SPI_CS_B]; # DBB_CPLD_PL_SPI_ADDR[2]
+set_property PACKAGE_PIN J6 [get_ports DBB_CPLD_PL_SPI_MISO]
+set_property PACKAGE_PIN D5 [get_ports DBB_CPLD_PL_SPI_MOSI]
+
+set_property PACKAGE_PIN AG22 [get_ports DBB_CPLD_PS_SPI_SCLK]
+set_property PACKAGE_PIN AD23 [get_ports DBB_CPLD_PS_SPI_CS_B]; # DBB_CPLD_PS_SPI_ADDR[0]
+set_property PACKAGE_PIN AE23 [get_ports DBB_PHDAC_SPI_CS_B]; # DBB_CPLD_PS_SPI_ADDR[1]
+set_property PACKAGE_PIN AB24 [get_ports DBB_CLKDIS_SPI_CS_B]; # DBB_CPLD_PS_SPI_LE
+set_property PACKAGE_PIN AJ23 [get_ports DBB_ADC_SPI_CS_B]; # DBB_CPLD_UNUSED[12]]
+set_property PACKAGE_PIN AJ24 [get_ports DBB_DAC_SPI_CS_B]; # DBB_CPLD_UNUSED[13]]
+set_property PACKAGE_PIN AH22 [get_ports DBB_CPLD_PS_SPI_MISO]
+set_property PACKAGE_PIN AA24 [get_ports DBB_CPLD_PS_SPI_MOSI]
+
+set_property PACKAGE_PIN AH19 [get_ports DBB_CPLD_JTAG_TDI]
+set_property PACKAGE_PIN AJ19 [get_ports DBB_CPLD_JTAG_TDO]
+set_property PACKAGE_PIN AB21 [get_ports DBB_CPLD_JTAG_TMS]
+set_property PACKAGE_PIN AB22 [get_ports DBB_CPLD_JTAG_TCK]
+
+set_property PACKAGE_PIN D3 [get_ports DBB_CLKDIST_SYNC]
+
+set_property PACKAGE_PIN E6 [get_ports DBB_ATR_TX]
+set_property PACKAGE_PIN J5 [get_ports DBB_ATR_RX]
+
+set_property PACKAGE_PIN K5 [get_ports DBB_TXRX_SW_CTRL_1]
+set_property PACKAGE_PIN G5 [get_ports DBB_TXRX_SW_CTRL_2]
+
+set_property PACKAGE_PIN AF23 [get_ports DBB_ADC_SYNCB_P]
+set_property PACKAGE_PIN AF24 [get_ports DBB_ADC_SYNCB_N]
+set_property PACKAGE_PIN AD21 [get_ports DBB_DAC_SYNCB_P]
+set_property PACKAGE_PIN AE21 [get_ports DBB_DAC_SYNCB_N]
+
+# This mapping uses the TX pins as the "master" and mimics RX off of them so Vivado
+# places the transceivers in the correct places. The mixup in lanes is accounted for
+# in the AD9695 and the DAC37J82 crossbar settings.
+set_property PACKAGE_PIN AC4 [get_ports DBB_RX_P[0]]
+set_property PACKAGE_PIN AC3 [get_ports DBB_RX_N[0]]
+set_property PACKAGE_PIN AB6 [get_ports DBB_RX_P[1]]
+set_property PACKAGE_PIN AB5 [get_ports DBB_RX_N[1]]
+set_property PACKAGE_PIN Y6 [get_ports DBB_RX_P[2]]
+set_property PACKAGE_PIN Y5 [get_ports DBB_RX_N[2]]
+set_property PACKAGE_PIN AA4 [get_ports DBB_RX_P[3]]
+set_property PACKAGE_PIN AA3 [get_ports DBB_RX_N[3]]
+
+set_property PACKAGE_PIN AB2 [get_ports DBB_TX_P[0]]
+set_property PACKAGE_PIN AB1 [get_ports DBB_TX_N[0]]
+set_property PACKAGE_PIN Y2 [get_ports DBB_TX_P[1]]
+set_property PACKAGE_PIN Y1 [get_ports DBB_TX_N[1]]
+set_property PACKAGE_PIN W4 [get_ports DBB_TX_P[2]]
+set_property PACKAGE_PIN W3 [get_ports DBB_TX_N[2]]
+set_property PACKAGE_PIN V2 [get_ports DBB_TX_P[3]]
+set_property PACKAGE_PIN V1 [get_ports DBB_TX_N[3]]
+
+set_property PACKAGE_PIN AK17 [get_ports DBB_LED_RX]
+set_property PACKAGE_PIN AK18 [get_ports DBB_LED_RX2]
+set_property PACKAGE_PIN AK21 [get_ports DBB_LED_TX]
+
+# Possibly need to be used. Connected to CPLD.
+# set_property PACKAGE_PIN G6 [get_ports DBB_CPLD_UNUSED[0]]
+# set_property PACKAGE_PIN H6 [get_ports DBB_CPLD_UNUSED[1]]
+# set_property PACKAGE_PIN L3 [get_ports DBB_CPLD_UNUSED[2]]
+# set_property PACKAGE_PIN L2 [get_ports DBB_CPLD_UNUSED[3]]
+# set_property PACKAGE_PIN D4 [get_ports DBB_CPLD_UNUSED[4]]
+# set_property PACKAGE_PIN AC22 [get_ports DBB_CPLD_UNUSED[5]]
+# set_property PACKAGE_PIN AC23 [get_ports DBB_CPLD_UNUSED[6]]
+# set_property PACKAGE_PIN AC24 [get_ports DBB_CPLD_UNUSED[7]]
+# set_property PACKAGE_PIN AD24 [get_ports DBB_CPLD_UNUSED[8]]
+# set_property PACKAGE_PIN AE22 [get_ports DBB_CPLD_UNUSED[9]]
+# set_property PACKAGE_PIN AK20 [get_ports DBB_CPLD_UNUSED[10]]
+# set_property PACKAGE_PIN AJ20 [get_ports DBB_CPLD_UNUSED[11]]
+
+set UsrpIoBHpPinsSe [get_ports {DBB_MODULE_PWR_ENABLE \
+ DBB_RF_PWR_ENABLE \
+ DBB_CPLD_PL_SPI_* \
+ DBB_TXLO_SPI_CS_B \
+ DBB_RXLO_SPI_CS_B \
+ DBB_LODIS_SPI_CS_B \
+ DBB_CLKDIST_SYNC \
+ DBB_TXRX_SW_CTRL_* \
+ DBB_ATR_*}]
+set_property IOSTANDARD LVCMOS18 $UsrpIoBHpPinsSe
+set_property DRIVE 6 $UsrpIoBHpPinsSe
+set_property SLEW SLOW $UsrpIoBHpPinsSe
+
+set UsrpIoBHrPinsSeDr4 [get_ports {DBB_LED_* \
+ DBB_CPLD_JTAG_*}]
+set_property IOSTANDARD LVCMOS25 $UsrpIoBHrPinsSeDr4
+set_property DRIVE 4 $UsrpIoBHrPinsSeDr4
+set_property SLEW SLOW $UsrpIoBHrPinsSeDr4
+
+set UsrpIoBHrPinsSeDr8 [get_ports {DBB_CPLD_PS_SPI_* \
+ DBB_PHDAC_SPI_CS_B \
+ DBB_CLKDIS_SPI_CS_B \
+ DBB_ADC_SPI_CS_B \
+ DBB_DAC_SPI_CS_B}]
+set_property IOSTANDARD LVCMOS25 $UsrpIoBHrPinsSeDr8
+set_property DRIVE 8 $UsrpIoBHrPinsSeDr8
+set_property SLEW SLOW $UsrpIoBHrPinsSeDr8
+
+set UsrpIoBHrPinsDiff [get_ports {DBB_ADC_SYNCB_* \
+ DBB_DAC_SYNCB_* \
+ DBB_FPGA_CLK_* \
+ DBB_FPGA_SYSREF_*}]
+set_property IOSTANDARD LVDS_25 $UsrpIoBHrPinsDiff
+set_property DIFF_TERM TRUE $UsrpIoBHrPinsDiff
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc b/fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc
new file mode 100644
index 000000000..cffbd839a
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/db_timing.xdc
@@ -0,0 +1,264 @@
+#
+# Copyright 2017 Ettus Research, A National Instruments Company
+# SPDX-License-Identifier: LGPL-3.0
+#
+# Timing analysis is performed in "usrp3/top/n3xx/dboards/rh/doc/rh_timing.xlsx".
+# See this spreadsheet for more details and explanations.
+
+#*******************************************************************************
+## Asynchronous clock groups
+
+# MGT reference clocks are also async to everything.
+set_clock_groups -asynchronous -group [get_clocks mgt_clk_dba -include_generated_clocks]
+set_clock_groups -asynchronous -group [get_clocks mgt_clk_dbb -include_generated_clocks]
+
+# fpga_clk_a and fpga_clk_b are related to one another after synchronization.
+# However, we do need to declare that these clocks (both a and b) and their children
+# are async to the remainder of the design. Use the wildcard at the end to grab the
+# virtual clock as well as the real ones.
+set_clock_groups -asynchronous -group [get_clocks {fpga_clk_a* fpga_clk_b*} -include_generated_clocks]
+
+# The SPI readback and write clocks cannot be active at the same time, as they
+# originate from the same pin.
+set_clock_groups -physically_exclusive \
+ -group [get_clocks pl_spi_rb_clk_a] \
+ -group [get_clocks pl_spi_clk_a]
+set_clock_groups -physically_exclusive \
+ -group [get_clocks pl_spi_rb_clk_b] \
+ -group [get_clocks pl_spi_clk_b]
+
+#*******************************************************************************
+## PS SPI: since these lines all come from the PS and I don't have access to the
+# driving clock (or anything for that matter), I'm left with constraining the maximum
+# and minimum delay on these lines, per a Xilinx AR:
+# https://www.xilinx.com/support/answers/62122.html
+set CPLD_SPI_OUTS [get_ports {DB*_CPLD_PS_SPI_SCLK \
+ DB*_CPLD_PS_SPI_MOSI \
+ DB*_CPLD_PS_SPI_CS_B \
+ DB*_CLKDIS_SPI_CS_B \
+ DB*_PHDAC_SPI_CS_B \
+ DB*_ADC_SPI_CS_B \
+ DB*_DAC_SPI_CS_B}]
+
+# The actual min and max path delays before applying constraints were (from report_timing):
+# 3.332 ns (Min at Fast Process Corner)
+# 10.596 ns (Max at Slow Process Corner)
+# Therefore, we round those number to their immediate succesor respectively.
+# After implementation, the tools were unable to meet timing when leaving a 11 ns max
+# delay value, so it was incremented.
+set MIN_OUT_DELAY 3.0
+set MAX_OUT_DELAY 12.0
+
+set_max_delay $MAX_OUT_DELAY -to $CPLD_SPI_OUTS
+set_min_delay $MIN_OUT_DELAY -to $CPLD_SPI_OUTS
+
+# report_timing -to $CPLD_SPI_OUTS -max_paths 20 -delay_type min_max -name CpldSpiOutTiming
+
+# The actual min and max path delays before applying constraints were (from report_timing):
+# 2.733 ns (Min at Fast Process Corner)
+# 6.071 ns (Max at Slow Process Corner)
+# Therefore, we round those number to their immediate succesor respectively.
+set MIN_IN_DELAY 2.0
+set MAX_IN_DELAY 10.0
+
+set PS_SPI_INPUTS_0 [get_pins -hierarchical -filter {NAME =~ "*/PS7_i/EMIOSPI0MI"}]
+set PS_SPI_INPUTS_1 [get_pins -hierarchical -filter {NAME =~ "*/PS7_i/EMIOSPI1MI"}]
+
+set_max_delay $MAX_IN_DELAY -to $PS_SPI_INPUTS_0
+set_min_delay $MIN_IN_DELAY -to $PS_SPI_INPUTS_0
+set_max_delay $MAX_IN_DELAY -to $PS_SPI_INPUTS_1
+set_min_delay $MIN_IN_DELAY -to $PS_SPI_INPUTS_1
+
+# report_timing -to $PS_SPI_INPUTS_0 -max_paths 30 -delay_type min_max -nworst 30 -name Spi0InTiming
+# report_timing -to $PS_SPI_INPUTS_1 -max_paths 30 -delay_type min_max -nworst 30 -name Spi1InTiming
+
+
+
+#*******************************************************************************
+## PL SPI to the CPLD
+#
+# All of these lines are driven or received from flops in simple_spi_core. The CPLD
+# calculations assume the FPGA has less than 6 ns of skew between the SCK and
+# SDI/CS_n. Pretty easy constraint to write! See above for the clock definition.
+# Do this for DBA and DBB independently.
+set MAX_SKEW 6.0
+set SETUP_SKEW [expr {$MAX_SKEW / 2}]
+set HOLD_SKEW [expr {$MAX_SKEW / 2}]
+# Do not set the output delay constraint on the clock line!
+set PORT_LIST_A [get_ports {DBA_CPLD_PL_SPI_CS_B \
+ DBA_CPLD_PL_SPI_MOSI \
+ DBA_TXLO_SPI_CS_B \
+ DBA_RXLO_SPI_CS_B \
+ DBA_LODIS_SPI_CS_B }]
+set PORT_LIST_B [get_ports {DBB_CPLD_PL_SPI_CS_B \
+ DBB_CPLD_PL_SPI_MOSI \
+ DBB_TXLO_SPI_CS_B \
+ DBB_RXLO_SPI_CS_B \
+ DBB_LODIS_SPI_CS_B }]
+# Then add the output delay on each of the ports.
+set_output_delay -clock [get_clocks pl_spi_clk_a] -max -$SETUP_SKEW $PORT_LIST_A
+set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_a] -max -$SETUP_SKEW $PORT_LIST_A
+set_output_delay -clock [get_clocks pl_spi_clk_a] -min $HOLD_SKEW $PORT_LIST_A
+set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_a] -min $HOLD_SKEW $PORT_LIST_A
+set_output_delay -clock [get_clocks pl_spi_clk_b] -max -$SETUP_SKEW $PORT_LIST_B
+set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_b] -max -$SETUP_SKEW $PORT_LIST_B
+set_output_delay -clock [get_clocks pl_spi_clk_b] -min $HOLD_SKEW $PORT_LIST_B
+set_output_delay -add_delay -clock_fall -clock [get_clocks pl_spi_clk_b] -min $HOLD_SKEW $PORT_LIST_B
+# Finally, make both the setup and hold checks use the same launching and latching edges.
+set_multicycle_path -setup -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_a] -start 0
+set_multicycle_path -hold -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_a] -1
+set_multicycle_path -setup -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_b] -start 0
+set_multicycle_path -hold -from [get_clocks radio_clk] -to [get_clocks pl_spi_clk_b] -1
+
+# For SDO input timing (MISO), we need to look at the CPLD's constraints on turnaround
+# time plus any board propagation delay.
+# CPLD clk-to-q is 20 ns, then add 1.2 ns for board delay (once for clock, once for data)
+# For hold time, assume zero delay (likely overconstraining here, due to board delays)
+set MISO_INPUT_A [get_ports DBA_CPLD_PL_SPI_MISO]
+set MISO_INPUT_B [get_ports DBB_CPLD_PL_SPI_MISO]
+set_input_delay -clock [get_clocks pl_spi_rb_clk_a] -clock_fall -max 22.400 $MISO_INPUT_A
+set_input_delay -clock [get_clocks pl_spi_rb_clk_a] -clock_fall -min 0.000 $MISO_INPUT_A
+set_input_delay -clock [get_clocks pl_spi_rb_clk_b] -clock_fall -max 22.400 $MISO_INPUT_B
+set_input_delay -clock [get_clocks pl_spi_rb_clk_b] -clock_fall -min 0.000 $MISO_INPUT_B
+
+# Since the input delay span is clearly more than a period of the radio_clk, we need to
+# add a multicycle path here as well to define the clock divider ratio. The MISO data
+# is driven on the falling edge of the SPI clock and captured on the rising edge, so we
+# only have one half of a SPI clock cycle for our setup. Hold is left alone and is OK
+# as-is due to the delays in the CPLD and board.
+set SETUP_CYCLES [expr {$PL_SPI_RB_DIVIDE_VAL / 2}]
+set HOLD_CYCLES 0
+set_multicycle_path -setup -from [get_clocks pl_spi_rb_clk_a] -through $MISO_INPUT_A \
+ $SETUP_CYCLES
+set_multicycle_path -hold -from [get_clocks pl_spi_rb_clk_a] -through $MISO_INPUT_A -end \
+ [expr {$SETUP_CYCLES + $HOLD_CYCLES - 1}]
+set_multicycle_path -setup -from [get_clocks pl_spi_rb_clk_b] -through $MISO_INPUT_B \
+ $SETUP_CYCLES
+set_multicycle_path -hold -from [get_clocks pl_spi_rb_clk_b] -through $MISO_INPUT_B -end \
+ [expr {$SETUP_CYCLES + $HOLD_CYCLES - 1}]
+
+#*******************************************************************************
+## SYSREF/SYNC JESD Timing
+#
+# SYNC is async, SYSREF is tightly timed.
+
+# The SYNC output (to ADC) for both DBs is governed by the JESD cores, which are solely
+# driven by DB-A clock... but it is an asynchronous signal so we use the async_out_clk.
+set_output_delay -clock [get_clocks async_out_clk] 0.000 [get_ports DB*_ADC_SYNCB_P]
+set_max_delay -to [get_ports DB*_ADC_SYNCB_P] 50.000
+set_min_delay -to [get_ports DB*_ADC_SYNCB_P] 0.000
+
+# The SYNC input (from DAC) for both DBs is received by the DB-A clock inside the JESD
+# cores... but again, it is asynchronous and therefore uses the async_in_clk.
+set_input_delay -clock [get_clocks async_in_clk] 0.000 [get_ports DB*_DAC_SYNCB_P]
+set_max_delay -from [get_ports DB*_DAC_SYNCB_P] 50.000
+set_min_delay -from [get_ports DB*_DAC_SYNCB_P] 0.000
+
+# SYSREF is driven by the LMK directly to the FPGA. Timing analysis was performed once
+# for the worst-case numbers across both DBs to produce one set of numbers for both DBs.
+# Since we easily meet setup and hold in Vivado, then this is an acceptable approach.
+# SYSREF is captured by the local clock from each DB, so we have two sets of constraints.
+set_input_delay -clock fpga_clk_a_v -min -0.479 [get_ports DBA_FPGA_SYSREF_*]
+set_input_delay -clock fpga_clk_a_v -max 0.661 [get_ports DBA_FPGA_SYSREF_*]
+
+set_input_delay -clock fpga_clk_b_v -min -0.479 [get_ports DBB_FPGA_SYSREF_*]
+set_input_delay -clock fpga_clk_b_v -max 0.661 [get_ports DBB_FPGA_SYSREF_*]
+
+
+#*******************************************************************************
+## PPS Timing
+
+# Due to the N3xx synchronization and clocking structure, the PPS output is driven from
+# the Sample Clock domain instead of the input Reference Clock. Constrain the output as
+# tightly as possible to accurately mimic the internal Sample Clock timing.
+set SETUP_SKEW 2.0
+set HOLD_SKEW -0.5
+set_output_delay -clock [get_clocks fpga_clk_a_v] -max -$SETUP_SKEW [get_ports REF_1PPS_OUT]
+set_output_delay -clock [get_clocks fpga_clk_a_v] -min $HOLD_SKEW [get_ports REF_1PPS_OUT]
+set_multicycle_path -setup -to [get_ports REF_1PPS_OUT] -start 0
+set_multicycle_path -hold -to [get_ports REF_1PPS_OUT] -1
+
+#*******************************************************************************
+### Async I/Os
+set DB_ASYNC_OUTPUTS [get_ports {
+ DB*_MODULE_PWR_ENABLE
+ DB*_RF_PWR_ENABLE
+ DB*_CLKDIST_SYNC
+ DB*_ATR_TX
+ DB*_ATR_RX
+ DB*_TXRX_SW_CTRL_1
+ DB*_TXRX_SW_CTRL_2
+ DB*_LED_RX
+ DB*_LED_RX2
+ DB*_LED_TX
+ QSFP_I2C_*
+}]
+set_output_delay -clock [get_clocks async_out_clk] 0.000 $DB_ASYNC_OUTPUTS
+set_max_delay -to $DB_ASYNC_OUTPUTS 50.000
+set_min_delay -to $DB_ASYNC_OUTPUTS 0.000
+
+set_input_delay -clock [get_clocks async_in_clk] 0.000 [get_ports QSFP_I2C_*]
+set_max_delay -from [get_ports QSFP_I2C_*] 50.000
+set_min_delay -from [get_ports QSFP_I2C_*] 0.000
+
+#*******************************************************************************
+## JTAG
+
+## MAX 10 JTAG TDI setup: 2 ns
+## MAX 10 JTAG TMS setup: 3 ns
+## MAX 10 JTAG hold: 10 ns
+## MAX 10 JTAG clk-to-q: 18 ns
+## Board delay: < 1.5 ns
+##
+## Setup time = Board delay + TMS setup = 3 ns + 1.5 ns = 4.5 ns
+## Hold time = Board delay + TMS hold = 1.5 ns + 10 ns = 11.5 ns
+## Overconstrain output delay and keep skew to +/- 8 ns
+##
+## Input delay = 2x Board delay + clk-to-q = 3 ns + 18 ns = 21 ns
+
+# Constrain outputs for skew, with same latch/launch edge:
+set_output_delay -clock [get_clocks dba_jtag_tck] -max -4.0 \
+ [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}]
+set_output_delay -add_delay -clock_fall -clock [get_clocks dba_jtag_tck] -max -4.0 \
+ [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}]
+set_output_delay -clock [get_clocks dba_jtag_tck] -min 4.0 \
+ [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}]
+set_output_delay -add_delay -clock_fall -clock [get_clocks dba_jtag_tck] -min 4.0 \
+ [get_ports {DBA_CPLD_JTAG_TDI DBA_CPLD_JTAG_TMS}]
+set_output_delay -clock [get_clocks dbb_jtag_tck] -max -4.0 \
+ [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}]
+set_output_delay -add_delay -clock_fall -clock [get_clocks dbb_jtag_tck] -max -4.0 \
+ [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}]
+set_output_delay -clock [get_clocks dbb_jtag_tck] -min 4.0 \
+ [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}]
+set_output_delay -add_delay -clock_fall -clock [get_clocks dbb_jtag_tck] -min 4.0 \
+ [get_ports {DBB_CPLD_JTAG_TDI DBB_CPLD_JTAG_TMS}]
+# Finally, make both the setup and hold checks use the same launching and latching edges.
+set_multicycle_path -setup -from [get_clocks clk40] -to [get_clocks dba_jtag_tck] -start 0
+set_multicycle_path -hold -from [get_clocks clk40] -to [get_clocks dba_jtag_tck] -1
+set_multicycle_path -setup -from [get_clocks clk40] -to [get_clocks dbb_jtag_tck] -start 0
+set_multicycle_path -hold -from [get_clocks clk40] -to [get_clocks dbb_jtag_tck] -1
+
+set_input_delay -clock [get_clocks dba_jtag_tck] -clock_fall -max 21 \
+ [get_ports DBA_CPLD_JTAG_TDO]
+set_input_delay -clock [get_clocks dba_jtag_tck] -clock_fall -min 0 \
+ [get_ports DBA_CPLD_JTAG_TDO]
+set_input_delay -clock [get_clocks dbb_jtag_tck] -clock_fall -max 21 \
+ [get_ports DBB_CPLD_JTAG_TDO]
+set_input_delay -clock [get_clocks dbb_jtag_tck] -clock_fall -min 0 \
+ [get_ports DBB_CPLD_JTAG_TDO]
+# Inputs have setup checks relative to half a period of TCK (launch on fall,
+# latch on rise). Actual latch clock is faster, so push back setup and hold
+# checks to match.
+set_multicycle_path -setup -from [get_clocks dba_jtag_tck] \
+ -through [get_ports DBA_CPLD_JTAG_TDO] \
+ [expr {$DB_JTAG_DIVISOR / 2}]
+set_multicycle_path -end -hold -from [get_clocks dba_jtag_tck] \
+ -through [get_ports DBA_CPLD_JTAG_TDO] \
+ [expr {$DB_JTAG_DIVISOR - 1}]
+set_multicycle_path -setup -from [get_clocks dbb_jtag_tck] \
+ -through [get_ports DBB_CPLD_JTAG_TDO] \
+ [expr {$DB_JTAG_DIVISOR / 2}]
+set_multicycle_path -end -hold -from [get_clocks dbb_jtag_tck] \
+ -through [get_ports DBB_CPLD_JTAG_TDO] \
+ [expr {$DB_JTAG_DIVISOR - 1}]
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/doc/rh_timing.xlsx b/fpga/usrp3/top/n3xx/dboards/rh/doc/rh_timing.xlsx
new file mode 100755
index 000000000..7782ee33c
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/doc/rh_timing.xlsx
Binary files differ
diff --git a/fpga/usrp3/top/n3xx/dboards/rh/n3xx.v b/fpga/usrp3/top/n3xx/dboards/rh/n3xx.v
new file mode 100644
index 000000000..e697f00d4
--- /dev/null
+++ b/fpga/usrp3/top/n3xx/dboards/rh/n3xx.v
@@ -0,0 +1,3855 @@
+///////////////////////////////////////////////////////////////////
+///
+// Copyright 2018-2019 Ettus Research, A National Instruments Brand
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+// Module: n3xx
+// Description:
+// Top Level for N320, N321 devices
+//
+//////////////////////////////////////////////////////////////////////
+
+module n3xx (
+ inout [11:0] FPGA_GPIO,
+
+ input FPGA_REFCLK_P,
+ input FPGA_REFCLK_N,
+ input REF_1PPS_IN,
+ input NETCLK_REF_P,
+ input NETCLK_REF_N,
+ //input REF_1PPS_IN_MGMT,
+ output REF_1PPS_OUT,
+
+ //TDC
+ inout UNUSED_PIN_TDCA_0,
+ inout UNUSED_PIN_TDCA_1,
+ inout UNUSED_PIN_TDCA_2,
+ inout UNUSED_PIN_TDCA_3,
+ inout UNUSED_PIN_TDCB_0,
+ inout UNUSED_PIN_TDCB_1,
+ inout UNUSED_PIN_TDCB_2,
+ inout UNUSED_PIN_TDCB_3,
+
+`ifdef NPIO_LANES
+ input NPIO_RX0_P,
+ input NPIO_RX0_N,
+ output NPIO_TX0_P,
+ output NPIO_TX0_N,
+ input NPIO_RX1_P,
+ input NPIO_RX1_N,
+ output NPIO_TX1_P,
+ output NPIO_TX1_N,
+`endif
+`ifdef QSFP_LANES
+ input [`QSFP_LANES-1:0] QSFP_RX_P,
+ input [`QSFP_LANES-1:0] QSFP_RX_N,
+ output [`QSFP_LANES-1:0] QSFP_TX_P,
+ output [`QSFP_LANES-1:0] QSFP_TX_N,
+ output QSFP_RESET_B,
+ output QSFP_LED,
+ output QSFP_MODSEL_B,
+ output QSFP_LPMODE,
+ input QSFP_PRESENT_B,
+ input QSFP_INT_B,
+ inout QSFP_I2C_SCL,
+ inout QSFP_I2C_SDA,
+`endif
+ //TODO: Uncomment when connected here
+ //input NPIO_0_RXSYNC_0_P, NPIO_0_RXSYNC_1_P,
+ //input NPIO_0_RXSYNC_0_N, NPIO_0_RXSYNC_1_N,
+ //output NPIO_0_TXSYNC_0_P, NPIO_0_TXSYNC_1_P,
+ //output NPIO_0_TXSYNC_0_N, NPIO_0_TXSYNC_1_N,
+ //input NPIO_1_RXSYNC_0_P, NPIO_1_RXSYNC_1_P,
+ //input NPIO_1_RXSYNC_0_N, NPIO_1_RXSYNC_1_N,
+ //output NPIO_1_TXSYNC_0_P, NPIO_1_TXSYNC_1_P,
+ //output NPIO_1_TXSYNC_0_N, NPIO_1_TXSYNC_1_N,
+ //input NPIO_2_RXSYNC_0_P, NPIO_2_RXSYNC_1_P,
+ //input NPIO_2_RXSYNC_0_N, NPIO_2_RXSYNC_1_N,
+ //output NPIO_2_TXSYNC_0_P, NPIO_2_TXSYNC_1_P,
+ //output NPIO_2_TXSYNC_0_N, NPIO_2_TXSYNC_1_N,
+
+ //GPS
+ input GPS_1PPS,
+ //input GPS_1PPS_RAW,
+
+ //Misc
+ input ENET0_CLK125,
+ //inout ENET0_PTP,
+ //output ENET0_PTP_DIR,
+ //inout ATSHA204_SDA,
+ input FPGA_PL_RESETN, // TODO: Add to reset logic
+ // output reg [1:0] FPGA_TEST,
+ //input PWR_CLK_FPGA, // TODO: check direction
+ input FPGA_PUDC_B,
+
+ //White Rabbit
+ input WB_20MHZ_P,
+ input WB_20MHZ_N,
+ output WB_DAC_DIN,
+ output WB_DAC_NCLR,
+ output WB_DAC_NLDAC,
+ output WB_DAC_NSYNC,
+ output WB_DAC_SCLK,
+
+ //LEDS
+ output PANEL_LED_GPS,
+ output PANEL_LED_LINK,
+ output PANEL_LED_PPS,
+ output PANEL_LED_REF,
+
+ // ARM Connections (PS)
+ inout [53:0] MIO,
+ inout PS_SRSTB,
+ inout PS_CLK,
+ inout PS_PORB,
+ inout DDR_Clk,
+ inout DDR_Clk_n,
+ inout DDR_CKE,
+ inout DDR_CS_n,
+ inout DDR_RAS_n,
+ inout DDR_CAS_n,
+ inout DDR_WEB,
+ inout [2:0] DDR_BankAddr,
+ inout [14:0] DDR_Addr,
+ inout DDR_ODT,
+ inout DDR_DRSTB,
+ inout [31:0] DDR_DQ,
+ inout [3:0] DDR_DM,
+ inout [3:0] DDR_DQS,
+ inout [3:0] DDR_DQS_n,
+ inout DDR_VRP,
+ inout DDR_VRN,
+
+
+ ///////////////////////////////////
+ //
+ // High Speed SPF+ signals and clocking
+ //
+ ///////////////////////////////////
+
+ // These clock inputs must always be enabled with a buffer regardless of the build
+ // target to avoid damage to the FPGA.
+ input NETCLK_P,
+ input NETCLK_N,
+ input MGT156MHZ_CLK1_P,
+ input MGT156MHZ_CLK1_N,
+
+ input SFP_0_RX_P, input SFP_0_RX_N,
+ output SFP_0_TX_P, output SFP_0_TX_N,
+ input SFP_1_RX_P, input SFP_1_RX_N,
+ output SFP_1_TX_P, output SFP_1_TX_N,
+
+
+ ///////////////////////////////////
+ //
+ // DRAM Interface
+ //
+ ///////////////////////////////////
+ inout [31:0] ddr3_dq, // Data pins. Input for Reads, Output for Writes.
+ inout [3:0] ddr3_dqs_n, // Data Strobes. Input for Reads, Output for Writes.
+ inout [3:0] ddr3_dqs_p,
+ //
+ output [15:0] ddr3_addr, // Address
+ output [2:0] ddr3_ba, // Bank Address
+ output ddr3_ras_n, // Row Address Strobe.
+ output ddr3_cas_n, // Column address select
+ output ddr3_we_n, // Write Enable
+ output ddr3_reset_n, // SDRAM reset pin.
+ output [0:0] ddr3_ck_p, // Differential clock
+ output [0:0] ddr3_ck_n,
+ output [0:0] ddr3_cke, // Clock Enable
+ output [0:0] ddr3_cs_n, // Chip Select
+ output [3:0] ddr3_dm, // Data Mask [3] = UDM.U26, [2] = LDM.U26, ...
+ output [0:0] ddr3_odt, // On-Die termination enable.
+ //
+ input sys_clk_p, // Differential
+ input sys_clk_n, // 100MHz clock source to generate DDR3 clocking.
+
+
+ ///////////////////////////////////
+ //
+ // Supporting I/O for SPF+ interfaces
+ // (non high speed stuff)
+ //
+ ///////////////////////////////////
+
+ //SFP+ 0, Slow Speed, Bank 13 3.3V
+ input SFP_0_I2C_NPRESENT,
+ output SFP_0_LED_A,
+ output SFP_0_LED_B,
+ input SFP_0_LOS,
+ output SFP_0_RS0,
+ output SFP_0_RS1,
+ output SFP_0_TXDISABLE,
+ input SFP_0_TXFAULT,
+
+ //SFP+ 1, Slow Speed, Bank 13 3.3V
+ //input SFP_1_I2C_NPRESENT,
+ output SFP_1_LED_A,
+ output SFP_1_LED_B,
+ input SFP_1_LOS,
+ output SFP_1_RS0,
+ output SFP_1_RS1,
+ output SFP_1_TXDISABLE,
+ input SFP_1_TXFAULT,
+
+ //USRP IO A
+ output DBA_MODULE_PWR_ENABLE,
+ output DBA_RF_PWR_ENABLE,
+
+ output DBA_CPLD_PS_SPI_SCLK,
+ output DBA_CLKDIS_SPI_CS_B,
+ output DBA_CPLD_PS_SPI_CS_B,
+ output DBA_PHDAC_SPI_CS_B,
+ output DBA_CPLD_PS_SPI_MOSI,
+ input DBA_CPLD_PS_SPI_MISO,
+
+ output DBA_ATR_RX,
+ output DBA_ATR_TX,
+ output DBA_TXRX_SW_CTRL_1,
+ output DBA_TXRX_SW_CTRL_2,
+
+ output DBA_CPLD_PL_SPI_SCLK,
+ output DBA_ADC_SPI_CS_B,
+ output DBA_DAC_SPI_CS_B,
+ output DBA_TXLO_SPI_CS_B,
+ output DBA_RXLO_SPI_CS_B,
+ output DBA_LODIS_SPI_CS_B,
+ output DBA_CPLD_PL_SPI_CS_B,
+ output DBA_CPLD_PL_SPI_MOSI,
+ input DBA_CPLD_PL_SPI_MISO,
+
+ output DBA_ADC_SYNCB_P,
+ output DBA_ADC_SYNCB_N,
+ input DBA_DAC_SYNCB_P,
+ input DBA_DAC_SYNCB_N,
+
+ output DBA_CLKDIST_SYNC,
+
+ inout DBA_CPLD_JTAG_TCK,
+ inout DBA_CPLD_JTAG_TMS,
+ inout DBA_CPLD_JTAG_TDI,
+ input DBA_CPLD_JTAG_TDO,
+
+ input DBA_FPGA_CLK_P,
+ input DBA_FPGA_CLK_N,
+
+ input DBA_FPGA_SYSREF_P,
+ input DBA_FPGA_SYSREF_N,
+
+ input DBA_MGTCLK_P,
+ input DBA_MGTCLK_N,
+
+ input [3:0] DBA_RX_P,
+ input [3:0] DBA_RX_N,
+ output [3:0] DBA_TX_P,
+ output [3:0] DBA_TX_N,
+
+ output DBA_LED_RX,
+ output DBA_LED_RX2,
+ output DBA_LED_TX,
+
+ //USRP IO B
+ output DBB_MODULE_PWR_ENABLE,
+ output DBB_RF_PWR_ENABLE,
+
+ output DBB_CPLD_PS_SPI_SCLK,
+ output DBB_CLKDIS_SPI_CS_B,
+ output DBB_CPLD_PS_SPI_CS_B,
+ output DBB_PHDAC_SPI_CS_B,
+ output DBB_CPLD_PS_SPI_MOSI,
+ input DBB_CPLD_PS_SPI_MISO,
+
+ output DBB_ATR_RX,
+ output DBB_ATR_TX,
+ output DBB_TXRX_SW_CTRL_1,
+ output DBB_TXRX_SW_CTRL_2,
+
+ output DBB_CPLD_PL_SPI_SCLK,
+ output DBB_ADC_SPI_CS_B,
+ output DBB_DAC_SPI_CS_B,
+ output DBB_TXLO_SPI_CS_B,
+ output DBB_RXLO_SPI_CS_B,
+ output DBB_LODIS_SPI_CS_B,
+ output DBB_CPLD_PL_SPI_CS_B,
+ output DBB_CPLD_PL_SPI_MOSI,
+ input DBB_CPLD_PL_SPI_MISO,
+
+ output DBB_ADC_SYNCB_P,
+ output DBB_ADC_SYNCB_N,
+ input DBB_DAC_SYNCB_P,
+ input DBB_DAC_SYNCB_N,
+
+ output DBB_CLKDIST_SYNC,
+
+ inout DBB_CPLD_JTAG_TCK,
+ inout DBB_CPLD_JTAG_TMS,
+ inout DBB_CPLD_JTAG_TDI,
+ input DBB_CPLD_JTAG_TDO,
+
+ input DBB_FPGA_CLK_P,
+ input DBB_FPGA_CLK_N,
+
+ input DBB_FPGA_SYSREF_P,
+ input DBB_FPGA_SYSREF_N,
+
+ input DBB_MGTCLK_P,
+ input DBB_MGTCLK_N,
+
+ input [3:0] DBB_RX_P,
+ input [3:0] DBB_RX_N,
+ output [3:0] DBB_TX_P,
+ output [3:0] DBB_TX_N,
+
+ output DBB_LED_RX,
+ output DBB_LED_RX2,
+ output DBB_LED_TX
+);
+
+ localparam N_AXILITE_SLAVES = 4;
+ localparam REG_AWIDTH = 14; // log2(0x4000)
+ localparam QSFP_REG_AWIDTH = 17; // log2(0x20000)
+ localparam REG_DWIDTH = 32;
+ localparam FP_GPIO_OFFSET = 32;
+ localparam FP_GPIO_WIDTH = 12;
+
+ localparam NUM_RADIOS = 2;
+ localparam NUM_CHANNELS_PER_RADIO = 1;
+ localparam NUM_DBOARDS = 2;
+ localparam NUM_CHANNELS = NUM_RADIOS * NUM_CHANNELS_PER_RADIO;
+ localparam CHANNEL_WIDTH = 32;
+
+
+ // Internal connections to PS
+ // HP0 -- High Performance port 0, FPGA is the master
+ wire [5:0] S_AXI_HP0_AWID;
+ wire [31:0] S_AXI_HP0_AWADDR;
+ wire [2:0] S_AXI_HP0_AWPROT;
+ wire S_AXI_HP0_AWVALID;
+ wire S_AXI_HP0_AWREADY;
+ wire [63:0] S_AXI_HP0_WDATA;
+ wire [7:0] S_AXI_HP0_WSTRB;
+ wire S_AXI_HP0_WVALID;
+ wire S_AXI_HP0_WREADY;
+ wire [1:0] S_AXI_HP0_BRESP;
+ wire S_AXI_HP0_BVALID;
+ wire S_AXI_HP0_BREADY;
+ wire [5:0] S_AXI_HP0_ARID;
+ wire [31:0] S_AXI_HP0_ARADDR;
+ wire [2:0] S_AXI_HP0_ARPROT;
+ wire S_AXI_HP0_ARVALID;
+ wire S_AXI_HP0_ARREADY;
+ wire [63:0] S_AXI_HP0_RDATA;
+ wire [1:0] S_AXI_HP0_RRESP;
+ wire S_AXI_HP0_RVALID;
+ wire S_AXI_HP0_RREADY;
+ wire S_AXI_HP0_RLAST;
+ wire [3:0] S_AXI_HP0_ARCACHE;
+ wire [7:0] S_AXI_HP0_AWLEN;
+ wire [2:0] S_AXI_HP0_AWSIZE;
+ wire [1:0] S_AXI_HP0_AWBURST;
+ wire [3:0] S_AXI_HP0_AWCACHE;
+ wire S_AXI_HP0_WLAST;
+ wire [7:0] S_AXI_HP0_ARLEN;
+ wire [1:0] S_AXI_HP0_ARBURST;
+ wire [2:0] S_AXI_HP0_ARSIZE;
+
+ // GP0 -- General Purpose port 0, FPGA is the master
+ wire [4:0] S_AXI_GP0_AWID;
+ wire [31:0] S_AXI_GP0_AWADDR;
+ wire [2:0] S_AXI_GP0_AWPROT;
+ wire S_AXI_GP0_AWVALID;
+ wire S_AXI_GP0_AWREADY;
+ wire [31:0] S_AXI_GP0_WDATA;
+ wire [3:0] S_AXI_GP0_WSTRB;
+ wire S_AXI_GP0_WVALID;
+ wire S_AXI_GP0_WREADY;
+ wire [1:0] S_AXI_GP0_BRESP;
+ wire S_AXI_GP0_BVALID;
+ wire S_AXI_GP0_BREADY;
+ wire [4:0] S_AXI_GP0_ARID;
+ wire [31:0] S_AXI_GP0_ARADDR;
+ wire [2:0] S_AXI_GP0_ARPROT;
+ wire S_AXI_GP0_ARVALID;
+ wire S_AXI_GP0_ARREADY;
+ wire [31:0] S_AXI_GP0_RDATA;
+ wire [1:0] S_AXI_GP0_RRESP;
+ wire S_AXI_GP0_RVALID;
+ wire S_AXI_GP0_RREADY;
+ wire S_AXI_GP0_RLAST;
+ wire [3:0] S_AXI_GP0_ARCACHE;
+ wire [7:0] S_AXI_GP0_AWLEN;
+ wire [2:0] S_AXI_GP0_AWSIZE;
+ wire [1:0] S_AXI_GP0_AWBURST;
+ wire [3:0] S_AXI_GP0_AWCACHE;
+ wire S_AXI_GP0_WLAST;
+ wire [7:0] S_AXI_GP0_ARLEN;
+ wire [1:0] S_AXI_GP0_ARBURST;
+ wire [2:0] S_AXI_GP0_ARSIZE;
+
+ // HP1 -- High Performance port 1, FPGA is the master
+ wire [5:0] S_AXI_HP1_AWID;
+ wire [31:0] S_AXI_HP1_AWADDR;
+ wire [2:0] S_AXI_HP1_AWPROT;
+ wire S_AXI_HP1_AWVALID;
+ wire S_AXI_HP1_AWREADY;
+ wire [63:0] S_AXI_HP1_WDATA;
+ wire [7:0] S_AXI_HP1_WSTRB;
+ wire S_AXI_HP1_WVALID;
+ wire S_AXI_HP1_WREADY;
+ wire [1:0] S_AXI_HP1_BRESP;
+ wire S_AXI_HP1_BVALID;
+ wire S_AXI_HP1_BREADY;
+ wire [5:0] S_AXI_HP1_ARID;
+ wire [31:0] S_AXI_HP1_ARADDR;
+ wire [2:0] S_AXI_HP1_ARPROT;
+ wire S_AXI_HP1_ARVALID;
+ wire S_AXI_HP1_ARREADY;
+ wire [63:0] S_AXI_HP1_RDATA;
+ wire [1:0] S_AXI_HP1_RRESP;
+ wire S_AXI_HP1_RVALID;
+ wire S_AXI_HP1_RREADY;
+ wire S_AXI_HP1_RLAST;
+ wire [3:0] S_AXI_HP1_ARCACHE;
+ wire [7:0] S_AXI_HP1_AWLEN;
+ wire [2:0] S_AXI_HP1_AWSIZE;
+ wire [1:0] S_AXI_HP1_AWBURST;
+ wire [3:0] S_AXI_HP1_AWCACHE;
+ wire S_AXI_HP1_WLAST;
+ wire [7:0] S_AXI_HP1_ARLEN;
+ wire [1:0] S_AXI_HP1_ARBURST;
+ wire [2:0] S_AXI_HP1_ARSIZE;
+
+ // GP1 -- General Purpose port 1, FPGA is the master
+ wire [4:0] S_AXI_GP1_AWID;
+ wire [31:0] S_AXI_GP1_AWADDR;
+ wire [2:0] S_AXI_GP1_AWPROT;
+ wire S_AXI_GP1_AWVALID;
+ wire S_AXI_GP1_AWREADY;
+ wire [31:0] S_AXI_GP1_WDATA;
+ wire [3:0] S_AXI_GP1_WSTRB;
+ wire S_AXI_GP1_WVALID;
+ wire S_AXI_GP1_WREADY;
+ wire [1:0] S_AXI_GP1_BRESP;
+ wire S_AXI_GP1_BVALID;
+ wire S_AXI_GP1_BREADY;
+ wire [4:0] S_AXI_GP1_ARID;
+ wire [31:0] S_AXI_GP1_ARADDR;
+ wire [2:0] S_AXI_GP1_ARPROT;
+ wire S_AXI_GP1_ARVALID;
+ wire S_AXI_GP1_ARREADY;
+ wire [31:0] S_AXI_GP1_RDATA;
+ wire [1:0] S_AXI_GP1_RRESP;
+ wire S_AXI_GP1_RVALID;
+ wire S_AXI_GP1_RREADY;
+ wire S_AXI_GP1_RLAST;
+ wire [3:0] S_AXI_GP1_ARCACHE;
+ wire [7:0] S_AXI_GP1_AWLEN;
+ wire [2:0] S_AXI_GP1_AWSIZE;
+ wire [1:0] S_AXI_GP1_AWBURST;
+ wire [3:0] S_AXI_GP1_AWCACHE;
+ wire S_AXI_GP1_WLAST;
+ wire [7:0] S_AXI_GP1_ARLEN;
+ wire [1:0] S_AXI_GP1_ARBURST;
+ wire [2:0] S_AXI_GP1_ARSIZE;
+
+ // GP0 -- General Purpose port 0, FPGA is the slave
+ wire M_AXI_GP0_ARVALID;
+ wire M_AXI_GP0_AWVALID;
+ wire M_AXI_GP0_BREADY;
+ wire M_AXI_GP0_RREADY;
+ wire M_AXI_GP0_WVALID;
+ wire [11:0] M_AXI_GP0_ARID;
+ wire [11:0] M_AXI_GP0_AWID;
+ wire [11:0] M_AXI_GP0_WID;
+ wire [31:0] M_AXI_GP0_ARADDR;
+ wire [31:0] M_AXI_GP0_AWADDR;
+ wire [31:0] M_AXI_GP0_WDATA;
+ wire [3:0] M_AXI_GP0_WSTRB;
+ wire M_AXI_GP0_ARREADY;
+ wire M_AXI_GP0_AWREADY;
+ wire M_AXI_GP0_BVALID;
+ wire M_AXI_GP0_RLAST;
+ wire M_AXI_GP0_RVALID;
+ wire M_AXI_GP0_WREADY;
+ wire [1:0] M_AXI_GP0_BRESP;
+ wire [1:0] M_AXI_GP0_RRESP;
+ wire [31:0] M_AXI_GP0_RDATA;
+
+ wire M_AXI_ETH_DMA0_ARVALID;
+ wire M_AXI_ETH_DMA0_AWVALID;
+ wire M_AXI_ETH_DMA0_BREADY;
+ wire M_AXI_ETH_DMA0_RREADY;
+ wire M_AXI_ETH_DMA0_WVALID;
+ wire [11:0] M_AXI_ETH_DMA0_ARID;
+ wire [11:0] M_AXI_ETH_DMA0_AWID;
+ wire [11:0] M_AXI_ETH_DMA0_WID;
+ wire [31:0] M_AXI_ETH_DMA0_ARADDR;
+ wire [31:0] M_AXI_ETH_DMA0_AWADDR;
+ wire [31:0] M_AXI_ETH_DMA0_WDATA;
+ wire [3:0] M_AXI_ETH_DMA0_WSTRB;
+ wire M_AXI_ETH_DMA0_ARREADY;
+ wire M_AXI_ETH_DMA0_AWREADY;
+ wire M_AXI_ETH_DMA0_BVALID;
+ wire M_AXI_ETH_DMA0_RLAST;
+ wire M_AXI_ETH_DMA0_RVALID;
+ wire M_AXI_ETH_DMA0_WREADY;
+ wire [1:0] M_AXI_ETH_DMA0_BRESP;
+ wire [1:0] M_AXI_ETH_DMA0_RRESP;
+ wire [31:0] M_AXI_ETH_DMA0_RDATA;
+
+ wire M_AXI_NET0_ARVALID;
+ wire M_AXI_NET0_AWVALID;
+ wire M_AXI_NET0_BREADY;
+ wire M_AXI_NET0_RREADY;
+ wire M_AXI_NET0_WVALID;
+ wire [11:0] M_AXI_NET0_ARID;
+ wire [11:0] M_AXI_NET0_AWID;
+ wire [11:0] M_AXI_NET0_WID;
+ wire [31:0] M_AXI_NET0_ARADDR;
+ wire [31:0] M_AXI_NET0_AWADDR;
+ wire [31:0] M_AXI_NET0_WDATA;
+ wire [3:0] M_AXI_NET0_WSTRB;
+ wire M_AXI_NET0_ARREADY;
+ wire M_AXI_NET0_AWREADY;
+ wire M_AXI_NET0_BVALID;
+ wire M_AXI_NET0_RLAST;
+ wire M_AXI_NET0_RVALID;
+ wire M_AXI_NET0_WREADY;
+ wire [1:0] M_AXI_NET0_BRESP;
+ wire [1:0] M_AXI_NET0_RRESP;
+ wire [31:0] M_AXI_NET0_RDATA;
+
+ wire M_AXI_ETH_DMA1_ARVALID;
+ wire M_AXI_ETH_DMA1_AWVALID;
+ wire M_AXI_ETH_DMA1_BREADY;
+ wire M_AXI_ETH_DMA1_RREADY;
+ wire M_AXI_ETH_DMA1_WVALID;
+ wire [11:0] M_AXI_ETH_DMA1_ARID;
+ wire [11:0] M_AXI_ETH_DMA1_AWID;
+ wire [11:0] M_AXI_ETH_DMA1_WID;
+ wire [31:0] M_AXI_ETH_DMA1_ARADDR;
+ wire [31:0] M_AXI_ETH_DMA1_AWADDR;
+ wire [31:0] M_AXI_ETH_DMA1_WDATA;
+ wire [3:0] M_AXI_ETH_DMA1_WSTRB;
+ wire M_AXI_ETH_DMA1_ARREADY;
+ wire M_AXI_ETH_DMA1_AWREADY;
+ wire M_AXI_ETH_DMA1_BVALID;
+ wire M_AXI_ETH_DMA1_RLAST;
+ wire M_AXI_ETH_DMA1_RVALID;
+ wire M_AXI_ETH_DMA1_WREADY;
+ wire [1:0] M_AXI_ETH_DMA1_BRESP;
+ wire [1:0] M_AXI_ETH_DMA1_RRESP;
+ wire [31:0] M_AXI_ETH_DMA1_RDATA;
+
+ wire M_AXI_NET1_ARVALID;
+ wire M_AXI_NET1_AWVALID;
+ wire M_AXI_NET1_BREADY;
+ wire M_AXI_NET1_RREADY;
+ wire M_AXI_NET1_WVALID;
+ wire [11:0] M_AXI_NET1_ARID;
+ wire [11:0] M_AXI_NET1_AWID;
+ wire [11:0] M_AXI_NET1_WID;
+ wire [31:0] M_AXI_NET1_ARADDR;
+ wire [31:0] M_AXI_NET1_AWADDR;
+ wire [31:0] M_AXI_NET1_WDATA;
+ wire [3:0] M_AXI_NET1_WSTRB;
+ wire M_AXI_NET1_ARREADY;
+ wire M_AXI_NET1_AWREADY;
+ wire M_AXI_NET1_BVALID;
+ wire M_AXI_NET1_RLAST;
+ wire M_AXI_NET1_RVALID;
+ wire M_AXI_NET1_WREADY;
+ wire [1:0] M_AXI_NET1_BRESP;
+ wire [1:0] M_AXI_NET1_RRESP;
+ wire [31:0] M_AXI_NET1_RDATA;
+
+ wire M_AXI_NET2_ARVALID;
+ wire M_AXI_NET2_AWVALID;
+ wire M_AXI_NET2_BREADY;
+ wire M_AXI_NET2_RREADY;
+ wire M_AXI_NET2_WVALID;
+ wire [11:0] M_AXI_NET2_ARID;
+ wire [11:0] M_AXI_NET2_AWID;
+ wire [11:0] M_AXI_NET2_WID;
+ wire [31:0] M_AXI_NET2_ARADDR;
+ wire [31:0] M_AXI_NET2_AWADDR;
+ wire [31:0] M_AXI_NET2_WDATA;
+ wire [3:0] M_AXI_NET2_WSTRB;
+ wire M_AXI_NET2_ARREADY;
+ wire M_AXI_NET2_AWREADY;
+ wire M_AXI_NET2_BVALID;
+ wire M_AXI_NET2_RLAST;
+ wire M_AXI_NET2_RVALID;
+ wire M_AXI_NET2_WREADY;
+ wire [1:0] M_AXI_NET2_BRESP;
+ wire [1:0] M_AXI_NET2_RRESP;
+ wire [31:0] M_AXI_NET2_RDATA;
+
+ wire M_AXI_XBAR_ARVALID;
+ wire M_AXI_XBAR_AWVALID;
+ wire M_AXI_XBAR_BREADY;
+ wire M_AXI_XBAR_RREADY;
+ wire M_AXI_XBAR_WVALID;
+ wire [11:0] M_AXI_XBAR_ARID;
+ wire [11:0] M_AXI_XBAR_AWID;
+ wire [11:0] M_AXI_XBAR_WID;
+ wire [31:0] M_AXI_XBAR_ARADDR;
+ wire [31:0] M_AXI_XBAR_AWADDR;
+ wire [31:0] M_AXI_XBAR_WDATA;
+ wire [3:0] M_AXI_XBAR_WSTRB;
+ wire M_AXI_XBAR_ARREADY;
+ wire M_AXI_XBAR_AWREADY;
+ wire M_AXI_XBAR_BVALID;
+ wire M_AXI_XBAR_RLAST;
+ wire M_AXI_XBAR_RVALID;
+ wire M_AXI_XBAR_WREADY;
+ wire [1:0] M_AXI_XBAR_BRESP;
+ wire [1:0] M_AXI_XBAR_RRESP;
+ wire [31:0] M_AXI_XBAR_RDATA;
+
+ wire M_AXI_JESD0_ARVALID;
+ wire M_AXI_JESD0_AWVALID;
+ wire M_AXI_JESD0_BREADY;
+ wire M_AXI_JESD0_RREADY;
+ wire M_AXI_JESD0_WVALID;
+ wire [11:0] M_AXI_JESD0_ARID;
+ wire [11:0] M_AXI_JESD0_AWID;
+ wire [11:0] M_AXI_JESD0_WID;
+ wire [31:0] M_AXI_JESD0_ARADDR;
+ wire [31:0] M_AXI_JESD0_AWADDR;
+ wire [31:0] M_AXI_JESD0_WDATA;
+ wire [3:0] M_AXI_JESD0_WSTRB;
+ wire M_AXI_JESD0_ARREADY;
+ wire M_AXI_JESD0_AWREADY;
+ wire M_AXI_JESD0_BVALID;
+ wire M_AXI_JESD0_RLAST;
+ wire M_AXI_JESD0_RVALID;
+ wire M_AXI_JESD0_WREADY;
+ wire [1:0] M_AXI_JESD0_BRESP;
+ wire [1:0] M_AXI_JESD0_RRESP;
+ wire [31:0] M_AXI_JESD0_RDATA;
+
+ wire M_AXI_JESD1_ARVALID;
+ wire M_AXI_JESD1_AWVALID;
+ wire M_AXI_JESD1_BREADY;
+ wire M_AXI_JESD1_RREADY;
+ wire M_AXI_JESD1_WVALID;
+ wire [11:0] M_AXI_JESD1_ARID;
+ wire [11:0] M_AXI_JESD1_AWID;
+ wire [11:0] M_AXI_JESD1_WID;
+ wire [31:0] M_AXI_JESD1_ARADDR;
+ wire [31:0] M_AXI_JESD1_AWADDR;
+ wire [31:0] M_AXI_JESD1_WDATA;
+ wire [3:0] M_AXI_JESD1_WSTRB;
+ wire M_AXI_JESD1_ARREADY;
+ wire M_AXI_JESD1_AWREADY;
+ wire M_AXI_JESD1_BVALID;
+ wire M_AXI_JESD1_RLAST;
+ wire M_AXI_JESD1_RVALID;
+ wire M_AXI_JESD1_WREADY;
+ wire [1:0] M_AXI_JESD1_BRESP;
+ wire [1:0] M_AXI_JESD1_RRESP;
+ wire [31:0] M_AXI_JESD1_RDATA;
+
+ // White Rabbit
+ wire wr_uart_txd;
+ wire wr_uart_rxd;
+ wire pps_wr_refclk;
+ wire wr_ref_clk;
+
+ // AXI bus from PS to WR Core
+ wire m_axi_wr_clk;
+ wire [31:0] m_axi_wr_araddr;
+ wire [0:0] m_axi_wr_arready;
+ wire [0:0] m_axi_wr_arvalid;
+ wire [31:0] m_axi_wr_awaddr;
+ wire [0:0] m_axi_wr_awready;
+ wire [0:0] m_axi_wr_awvalid;
+ wire [0:0] m_axi_wr_bready;
+ wire [1:0] m_axi_wr_bresp;
+ wire [0:0] m_axi_wr_bvalid;
+ wire [31:0] m_axi_wr_rdata;
+ wire [0:0] m_axi_wr_rready;
+ wire [1:0] m_axi_wr_rresp;
+ wire [0:0] m_axi_wr_rvalid;
+ wire [31:0] m_axi_wr_wdata;
+ wire [0:0] m_axi_wr_wready;
+ wire [3:0] m_axi_wr_wstrb;
+ wire [0:0] m_axi_wr_wvalid;
+
+ wire [63:0] ps_gpio_out;
+ wire [63:0] ps_gpio_in;
+ wire [63:0] ps_gpio_tri;
+
+ wire [15:0] IRQ_F2P;
+ wire FCLK_CLK0;
+ wire FCLK_CLK1;
+ wire FCLK_CLK2;
+ wire FCLK_CLK3;
+ wire clk100;
+ wire clk40;
+ wire meas_clk_ref;
+ wire bus_clk;
+ wire gige_refclk;
+ wire gige_refclk_bufg;
+ wire xgige_refclk;
+ wire xgige_clk156;
+ wire xgige_dclk;
+
+ wire global_rst;
+ wire radio_rst;
+ wire bus_rst;
+ wire FCLK_RESET0_N;
+ wire clk40_rst;
+ wire clk40_rstn;
+
+ wire [1:0] USB0_PORT_INDCTL;
+ wire USB0_VBUS_PWRSELECT;
+ wire USB0_VBUS_PWRFAULT;
+
+ wire ref_clk;
+ wire wr_refclk_buf;
+ wire netclk_buf;
+ wire meas_clk;
+ wire ddr3_dma_clk;
+ wire meas_clk_reset;
+ wire meas_clk_locked;
+ wire enable_ref_clk_async;
+ wire pps_radioclk1x_iob;
+ wire pps_radioclk1x;
+ wire [3:0] pps_select;
+ wire pps_out_enb;
+ wire [1:0] pps_select_sfp;
+ wire pps_refclk;
+ wire export_pps_radioclk;
+ wire radio_clk;
+ wire radio_clkB;
+ wire radio_clk_2x;
+ wire radio_clk_2xB;
+
+ wire qsfp_sda_i;
+ wire qsfp_sda_o;
+ wire qsfp_sda_t;
+ wire qsfp_scl_i;
+ wire qsfp_scl_o;
+ wire qsfp_scl_t;
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // Resets
+ //
+ //////////////////////////////////////////////////////////////////////
+
+ // Global synchronous reset, on the bus_clk domain. De-asserts after 85
+ // bus_clk cycles. Asserted by default.
+ por_gen por_gen(.clk(bus_clk), .reset_out(global_rst));
+
+ // Synchronous reset for the radio_clk domain, based on the global_rst.
+ reset_sync radio_reset_gen (
+ .clk(radio_clk),
+ .reset_in(global_rst),
+ .reset_out(radio_rst)
+ );
+
+ // Synchronous reset for the bus_clk domain, based on the global_rst.
+ reset_sync bus_reset_gen (
+ .clk(bus_clk),
+ .reset_in(global_rst),
+ .reset_out(bus_rst)
+ );
+
+
+ // PS-based Resets //
+ //
+ // Synchronous reset for the clk40 domain. This is derived from the PS reset 0.
+ reset_sync clk40_reset_gen (
+ .clk(clk40),
+ .reset_in(~FCLK_RESET0_N),
+ .reset_out(clk40_rst)
+ );
+ // Invert for various modules.
+ assign clk40_rstn = ~clk40_rst;
+
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // Timing
+ //
+ //////////////////////////////////////////////////////////////////////
+
+ // Clocks from the PS
+ //
+ // These clocks appear to have BUFGs already instantiated by the ip generator.
+ // Simply rename them here for clarity.
+ // FCLK_CLK0 : 100 MHz
+ // FCLK_CLK1 : 40 MHz
+ // FCLK_CLK2 : 166.6667 MHz
+ // FCLK_CLK3 : 200 MHz
+ assign clk100 = FCLK_CLK0;
+ assign clk40 = FCLK_CLK1;
+ assign meas_clk_ref = FCLK_CLK2;
+ assign bus_clk = FCLK_CLK3;
+
+ //If bus_clk freq ever changes, update this paramter accordingly.
+ localparam BUS_CLK_RATE = 32'd200000000; //200 MHz bus_clk rate.
+
+ n3xx_clocking n3xx_clocking_i (
+ .enable_ref_clk_async(enable_ref_clk_async),
+ .FPGA_REFCLK_P(FPGA_REFCLK_P),
+ .FPGA_REFCLK_N(FPGA_REFCLK_N),
+ .ref_clk(ref_clk),
+ .WB_20MHz_P(WB_20MHZ_P),
+ .WB_20MHz_N(WB_20MHZ_N),
+ .wr_refclk_buf(wr_refclk_buf),
+ .NETCLK_REF_P(NETCLK_REF_P),
+ .NETCLK_REF_N(NETCLK_REF_N),
+ .netclk_buf(netclk_buf),
+ .NETCLK_P(NETCLK_P),
+ .NETCLK_N(NETCLK_N),
+ .gige_refclk_buf(gige_refclk),
+ .MGT156MHZ_CLK1_P(MGT156MHZ_CLK1_P),
+ .MGT156MHZ_CLK1_N(MGT156MHZ_CLK1_N),
+ .xgige_refclk_buf(xgige_refclk),
+ .misc_clks_ref(meas_clk_ref),
+ .meas_clk(meas_clk),
+ .ddr3_dma_clk(ddr3_dma_clk),
+ .misc_clks_reset(meas_clk_reset),
+ .misc_clks_locked(meas_clk_locked),
+ .ext_pps_from_pin(REF_1PPS_IN),
+ .gps_pps_from_pin(GPS_1PPS),
+ .pps_select(pps_select),
+ .pps_refclk(pps_refclk)
+ );
+
+ // Drive the rear panel connector with another controllable copy of the post-TDC PPS
+ // that SW can enable/disable. The user is free to hack this to be whatever
+ // they desire. Flop the PPS signal one more time in order that it can be packed into
+ // an IOB. This extra flop stage matches the additional flop inside DbCore to allow
+ // pps_radioclk1x and pps_out_radioclk to be in sync with one another.
+ synchronizer #(
+ .FALSE_PATH_TO_IN(0)
+ ) pps_export_dsync (
+ .clk(radio_clk), .rst(1'b0), .in(pps_out_enb), .out(export_pps_radioclk)
+ );
+
+ // The radio_clk rate is between [122.88M, 250M] for all known N3xx variants,
+ // resulting in approximately [8ns, 4ns] periods. To pulse-extend the PPS output,
+ // we create a 25 bit-wide counter, creating ~[.262s, .131s] long output high pulses,
+ // variable depending on our radio_clk rate. Create two of the same output signal
+ // in order that the PPS_OUT gets packed into an IOB for tight timing.
+ reg [24:0] pps_out_count = 'b0;
+ reg pps_out_radioclk = 1'b0;
+ reg pps_led_radioclk = 1'b0;
+
+ always @(posedge radio_clk) begin
+ if (export_pps_radioclk) begin
+ if (pps_radioclk1x_iob) begin
+ pps_out_radioclk <= 1'b1;
+ pps_led_radioclk <= 1'b1;
+ pps_out_count <= {25{1'b1}};
+ end else begin
+ if (pps_out_count > 0) begin
+ pps_out_count <= pps_out_count - 1'b1;
+ end else begin
+ pps_out_radioclk <= 1'b0;
+ pps_led_radioclk <= 1'b0;
+ end
+ end
+ end else begin
+ pps_out_radioclk <= 1'b0;
+ pps_led_radioclk <= 1'b0;
+ end
+ end
+ // Local to output.
+ assign REF_1PPS_OUT = pps_out_radioclk;
+ assign PANEL_LED_PPS = pps_led_radioclk;
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // SFP, QSFP and NPIO MGT Connections
+ //
+ //////////////////////////////////////////////////////////////////////
+ wire reg_wr_req_npio;
+ wire [REG_AWIDTH-1:0] reg_wr_addr_npio;
+ wire [REG_DWIDTH-1:0] reg_wr_data_npio;
+ wire reg_rd_req_npio;
+ wire [REG_AWIDTH-1:0] reg_rd_addr_npio;
+ wire reg_rd_resp_npio, reg_rd_resp_npio0, reg_rd_resp_npio1;
+ wire [REG_DWIDTH-1:0] reg_rd_data_npio, reg_rd_data_npio0, reg_rd_data_npio1;
+
+ localparam NPIO_REG_BASE = 14'h0200;
+
+ regport_resp_mux #(
+ .WIDTH (REG_DWIDTH),
+ .NUM_SLAVES (2)
+ ) npio_resp_mux_i(
+ .clk(bus_clk), .reset(bus_rst),
+ .sla_rd_resp({reg_rd_resp_npio0, reg_rd_resp_npio1}),
+ .sla_rd_data({reg_rd_data_npio0, reg_rd_data_npio1}),
+ .mst_rd_resp(reg_rd_resp_npio), .mst_rd_data(reg_rd_data_npio)
+ );
+
+ //--------------------------------------------------------------
+ // SFP/MGT Reference Clocks
+ //--------------------------------------------------------------
+
+ // We support the HG, XG, XA, AA targets, all of which require
+ // the 156.25MHz reference clock. Instantiate it here.
+ ten_gige_phy_clk_gen xgige_clk_gen_i (
+ .refclk_ibuf(xgige_refclk),
+ .clk156(xgige_clk156),
+ .dclk(xgige_dclk)
+ );
+
+ wire qpllreset;
+ wire qpllreset_sfp0, qpllreset_sfp1, qpllreset_npio0, qpllreset_npio1;
+ wire qplllock;
+ wire qplloutclk;
+ wire qplloutrefclk;
+
+ // We reuse this GT_COMMON wrapper for both ethernet and Aurora because
+ // the behavior is identical
+ ten_gig_eth_pcs_pma_gt_common # (
+ .WRAPPER_SIM_GTRESET_SPEEDUP("TRUE") //Does not affect hardware
+ ) ten_gig_eth_pcs_pma_gt_common_block (
+ .refclk(xgige_refclk),
+ .qpllreset(qpllreset), //from 2nd sfp
+ .qplllock(qplllock),
+ .qplloutclk(qplloutclk),
+ .qplloutrefclk(qplloutrefclk),
+ .qpllrefclksel(3'b101 /*GTSOUTHREFCLK0*/)
+ );
+
+ // The quad's QPLL should reset if any of the channels request it
+ // This should never really happen because we are not changing the reference clock
+ // source for the QPLL.
+ assign qpllreset = qpllreset_sfp0 | qpllreset_sfp1 | qpllreset_npio0 | qpllreset_npio1;
+
+ // Use the 156.25MHz reference clock for Aurora
+ wire aurora_refclk = xgige_refclk;
+ wire aurora_clk156 = xgige_clk156;
+ wire aurora_init_clk = xgige_dclk;
+
+ // White Rabbit and 1GbE both use the same clocking
+`ifdef SFP0_1GBE
+ `define SFP0_WR_1GBE
+`endif
+`ifdef SFP0_WR
+ `define SFP0_WR_1GBE
+`endif
+
+`ifdef SFP0_WR_1GBE
+ // HG and WX targets require the 1GbE clock support
+ BUFG bufg_gige_refclk_i (
+ .I(gige_refclk),
+ .O(gige_refclk_bufg)
+ );
+ assign SFP_0_RS0 = 1'b0;
+ assign SFP_0_RS1 = 1'b0;
+`else
+ assign SFP_0_RS0 = 1'b1;
+ assign SFP_0_RS1 = 1'b1;
+`endif
+
+ // SFP 1 is always set to run at ~10Gbps rates.
+ assign SFP_1_RS0 = 1'b1;
+ assign SFP_1_RS1 = 1'b1;
+
+ // SFP port specific reference clocks
+ wire sfp0_gt_refclk, sfp1_gt_refclk;
+ wire sfp0_gb_refclk, sfp1_gb_refclk;
+ wire sfp0_misc_clk, sfp1_misc_clk;
+
+`ifdef SFP0_10GBE
+ assign sfp0_gt_refclk = xgige_refclk;
+ assign sfp0_gb_refclk = xgige_clk156;
+ assign sfp0_misc_clk = xgige_dclk;
+`endif
+`ifdef SFP0_WR_1GBE
+ assign sfp0_gt_refclk = gige_refclk;
+ assign sfp0_gb_refclk = gige_refclk_bufg;
+ assign sfp0_misc_clk = gige_refclk_bufg;
+`endif
+`ifdef SFP0_AURORA
+ assign sfp0_gt_refclk = aurora_refclk;
+ assign sfp0_gb_refclk = aurora_clk156;
+ assign sfp0_misc_clk = aurora_init_clk;
+`endif
+
+`ifdef SFP1_10GBE
+ assign sfp1_gt_refclk = xgige_refclk;
+ assign sfp1_gb_refclk = xgige_clk156;
+ assign sfp1_misc_clk = xgige_dclk;
+`endif
+`ifdef SFP1_1GBE
+ assign sfp1_gt_refclk = gige_refclk;
+ assign sfp1_gb_refclk = gige_refclk_bufg;
+ assign sfp1_misc_clk = gige_refclk_bufg;
+`endif
+`ifdef SFP1_AURORA
+ assign sfp1_gt_refclk = aurora_refclk;
+ assign sfp1_gb_refclk = aurora_clk156;
+ assign sfp1_misc_clk = aurora_init_clk;
+`endif
+
+ // Instantiate Aurora MMCM if either of the SFPs
+ // or NPIOs are Aurora
+ wire au_tx_clk;
+ wire au_mmcm_reset;
+ wire au_user_clk;
+ wire au_sync_clk;
+ wire au_mmcm_locked;
+ wire sfp0_tx_out_clk, sfp1_tx_out_clk;
+ wire sfp0_gt_pll_lock, sfp1_gt_pll_lock;
+ wire npio0_tx_out_clk, npio1_tx_out_clk;
+ wire npio0_gt_pll_lock, npio1_gt_pll_lock;
+
+ //NOTE: need to declare one of these defines in order to enable Aurora on
+ //any SFP or NPIO lane.
+`ifdef SFP1_AURORA
+ `define SFP_AU_MMCM
+ assign au_tx_clk = sfp1_tx_out_clk;
+ assign au_mmcm_reset = ~sfp1_gt_pll_lock;
+`elsif NPIO0
+ `define SFP_AU_MMCM
+ assign au_tx_clk = npio0_tx_out_clk;
+ assign au_mmcm_reset = ~npio0_gt_pll_lock;
+`elsif NPIO1
+ `define SFP_AU_MMCM
+ assign au_tx_clk = npio1_tx_out_clk;
+ assign au_mmcm_reset = ~npio1_gt_pll_lock;
+`endif
+
+
+`ifdef SFP_AU_MMCM
+ aurora_phy_mmcm au_phy_mmcm_i (
+ .aurora_tx_clk_unbuf(au_tx_clk),
+ .mmcm_reset(au_mmcm_reset),
+ .user_clk(au_user_clk),
+ .sync_clk(au_sync_clk),
+ .mmcm_locked(au_mmcm_locked)
+ );
+`else
+ assign au_user_clk = 1'b0;
+ assign au_sync_clk = 1'b0;
+ assign au_mmcm_locked = 1'b0;
+`endif
+
+ //--------------------------------------------------------------
+ // NPIO-QSFP MGT Lanes (Example loopback config)
+ //--------------------------------------------------------------
+
+`ifdef QSFP_LANES
+ localparam NUM_QSFP_LANES = `QSFP_LANES;
+
+ // QSFP wires to the ARM core and the crossbar
+ // These will only be connected if QSFP is 2x10 GbE
+ wire [NUM_QSFP_LANES*64-1:0] arm_eth_qsfp_tx_tdata_b;
+ wire [NUM_QSFP_LANES-1:0] arm_eth_qsfp_tx_tvalid_b;
+ wire [NUM_QSFP_LANES-1:0] arm_eth_qsfp_tx_tlast_b;
+ wire [NUM_QSFP_LANES-1:0] arm_eth_qsfp_tx_tready_b;
+ wire [NUM_QSFP_LANES*4-1:0] arm_eth_qsfp_tx_tuser_b;
+ wire [NUM_QSFP_LANES*8-1:0] arm_eth_qsfp_tx_tkeep_b;
+
+ wire [NUM_QSFP_LANES*64-1:0] arm_eth_qsfp_rx_tdata_b;
+ wire [NUM_QSFP_LANES-1:0] arm_eth_qsfp_rx_tvalid_b;
+ wire [NUM_QSFP_LANES-1:0] arm_eth_qsfp_rx_tlast_b;
+ wire [NUM_QSFP_LANES-1:0] arm_eth_qsfp_rx_tready_b;
+ wire [NUM_QSFP_LANES*4-1:0] arm_eth_qsfp_rx_tuser_b;
+ wire [NUM_QSFP_LANES*8-1:0] arm_eth_qsfp_rx_tkeep_b;
+
+ wire [NUM_QSFP_LANES*64-1:0] v2e_qsfp_tdata;
+ wire [NUM_QSFP_LANES-1:0] v2e_qsfp_tlast;
+ wire [NUM_QSFP_LANES-1:0] v2e_qsfp_tvalid;
+ wire [NUM_QSFP_LANES-1:0] v2e_qsfp_tready;
+
+ wire [NUM_QSFP_LANES*64-1:0] e2v_qsfp_tdata;
+ wire [NUM_QSFP_LANES-1:0] e2v_qsfp_tlast;
+ wire [NUM_QSFP_LANES-1:0] e2v_qsfp_tvalid;
+ wire [NUM_QSFP_LANES-1:0] e2v_qsfp_tready;
+
+ wire [NUM_QSFP_LANES-1:0] qsfp_link_up;
+
+ // QSFP quad's specific reference clocks
+ wire qsfp_gt_refclk;
+ wire qsfp_gb_refclk;
+ wire qsfp_misc_clk;
+
+ wire qsfp_qplloutclk;
+ wire qsfp_qplloutrefclk;
+ wire qsfp_qplllock;
+ wire qsfp_qpllreset;
+
+ wire qsfp_gt_tx_out_clk;
+ wire qsfp_gt_pll_lock;
+
+ wire qsfp_au_user_clk;
+ wire qsfp_au_sync_clk;
+ wire qsfp_au_mmcm_locked;
+
+
+`ifdef QSFP_10GBE
+ assign qsfp_gt_refclk = xgige_refclk;
+ assign qsfp_gb_refclk = xgige_clk156;
+ assign qsfp_misc_clk = xgige_dclk;
+`endif
+`ifdef QSFP_AURORA
+ assign qsfp_gt_refclk = aurora_refclk;
+ assign qsfp_gb_refclk = aurora_clk156;
+ assign qsfp_misc_clk = aurora_init_clk;
+`endif
+
+ // We reuse this GT_COMMON wrapper for both ethernet and Aurora because
+ // the behavior is identical
+ ten_gig_eth_pcs_pma_gt_common # (
+ .WRAPPER_SIM_GTRESET_SPEEDUP("TRUE") //Does not affect hardware
+ ) qsfp_gt_common_block (
+ .refclk(xgige_refclk),
+ .qpllreset(qsfp_qpllreset),
+ .qplllock(qsfp_qplllock),
+ .qplloutclk(qsfp_qplloutclk),
+ .qplloutrefclk(qsfp_qplloutrefclk),
+ .qpllrefclksel(3'b001 /*GTREFCLK0*/)
+ );
+
+ `ifdef QSFP_AURORA
+ aurora_phy_mmcm aurora_phy_mmcm (
+ .aurora_tx_clk_unbuf(qsfp_gt_tx_out_clk),
+ .mmcm_reset(~qsfp_gt_pll_lock),
+ .user_clk(qsfp_au_user_clk),
+ .sync_clk(qsfp_au_sync_clk),
+ .mmcm_locked(qsfp_au_mmcm_locked)
+ );
+ `else
+ assign qsfp_au_user_clk = 1'b0;
+ assign qsfp_au_sync_clk = 1'b0;
+ assign qsfp_au_mmcm_locked = 1'b0;
+ `endif
+
+ n3xx_mgt_channel_wrapper #(
+ `ifdef QSFP_10GBE
+ .PROTOCOL ("10GbE"),
+ .MDIO_EN (1'b1),
+ .MDIO_PHYADDR (5'd4),
+ `elsif QSFP_AURORA
+ .PROTOCOL ("Aurora"),
+ .MDIO_EN (1'b0),
+ `endif
+ .LANES (NUM_QSFP_LANES),
+ .GT_COMMON (1),
+ .PORTNUM_BASE (4),
+ .REG_DWIDTH (REG_DWIDTH),
+ .REG_AWIDTH (QSFP_REG_AWIDTH)
+ ) qsfp_wrapper_i (
+ .areset (global_rst),
+ .gt_refclk (qsfp_gt_refclk),
+ .gb_refclk (qsfp_gb_refclk),
+ .misc_clk (qsfp_misc_clk),
+ .user_clk (qsfp_au_user_clk),
+ .sync_clk (qsfp_au_sync_clk),
+ .gt_tx_out_clk_unbuf(qsfp_gt_tx_out_clk),
+
+ .bus_clk (bus_clk),
+ .bus_rst (bus_rst),
+
+ // GT Common
+ .qpllrefclklost (),
+ .qplllock (qsfp_qplllock),
+ .qplloutclk (qsfp_qplloutclk),
+ .qplloutrefclk (qsfp_qplloutrefclk),
+ .qpllreset (qsfp_qpllreset),
+
+ // Aurora MMCM
+ .mmcm_locked (qsfp_au_mmcm_locked),
+ .gt_pll_lock (qsfp_gt_pll_lock),
+
+ .txp (QSFP_TX_P),
+ .txn (QSFP_TX_N),
+ .rxp (QSFP_RX_P),
+ .rxn (QSFP_RX_N),
+
+ .mod_present_n (QSFP_PRESENT_B),
+ .mod_rxlos (1'b0),
+ .mod_tx_fault (1'b0),
+ .mod_tx_disable (),
+ .mod_int_n (QSFP_INT_B),
+ .mod_reset_n (QSFP_RESET_B),
+ .mod_lpmode (QSFP_LPMODE),
+ .mod_sel_n (QSFP_MODSEL_B),
+
+ // Clock and reset
+ .s_axi_aclk (clk40),
+ .s_axi_aresetn (clk40_rstn),
+ // AXI4-Lite: Write address port (domain: s_axi_aclk)
+ .s_axi_awaddr (M_AXI_NET2_AWADDR[QSFP_REG_AWIDTH-1:0]),
+ .s_axi_awvalid (M_AXI_NET2_AWVALID),
+ .s_axi_awready (M_AXI_NET2_AWREADY),
+ // AXI4-Lite: Write data port (domain: s_axi_aclk)
+ .s_axi_wdata (M_AXI_NET2_WDATA),
+ .s_axi_wstrb (M_AXI_NET2_WSTRB),
+ .s_axi_wvalid (M_AXI_NET2_WVALID),
+ .s_axi_wready (M_AXI_NET2_WREADY),
+ // AXI4-Lite: Write response port (domain: s_axi_aclk)
+ .s_axi_bresp (M_AXI_NET2_BRESP),
+ .s_axi_bvalid (M_AXI_NET2_BVALID),
+ .s_axi_bready (M_AXI_NET2_BREADY),
+ // AXI4-Lite: Read address port (domain: s_axi_aclk)
+ .s_axi_araddr (M_AXI_NET2_ARADDR[QSFP_REG_AWIDTH-1:0]),
+ .s_axi_arvalid (M_AXI_NET2_ARVALID),
+ .s_axi_arready (M_AXI_NET2_ARREADY),
+ // AXI4-Lite: Read data port (domain: s_axi_aclk)
+ .s_axi_rdata (M_AXI_NET2_RDATA),
+ .s_axi_rresp (M_AXI_NET2_RRESP),
+ .s_axi_rvalid (M_AXI_NET2_RVALID),
+ .s_axi_rready (M_AXI_NET2_RREADY),
+
+ // Ethernet to Vita
+ .e2v_tdata (e2v_qsfp_tdata),
+ .e2v_tlast (e2v_qsfp_tlast),
+ .e2v_tvalid (e2v_qsfp_tvalid),
+ .e2v_tready (e2v_qsfp_tready),
+
+ // Vita to Ethernet
+ .v2e_tdata (v2e_qsfp_tdata),
+ .v2e_tlast (v2e_qsfp_tlast),
+ .v2e_tvalid (v2e_qsfp_tvalid),
+ .v2e_tready (v2e_qsfp_tready),
+
+ // Ethernet to CPU
+ .e2c_tdata (arm_eth_qsfp_rx_tdata_b),
+ .e2c_tkeep (arm_eth_qsfp_rx_tkeep_b),
+ .e2c_tlast (arm_eth_qsfp_rx_tlast_b),
+ .e2c_tvalid (arm_eth_qsfp_rx_tvalid_b),
+ .e2c_tready (arm_eth_qsfp_rx_tready_b),
+
+ // CPU to Ethernet
+ .c2e_tdata (arm_eth_qsfp_tx_tdata_b),
+ .c2e_tkeep (arm_eth_qsfp_tx_tkeep_b),
+ .c2e_tlast (arm_eth_qsfp_tx_tlast_b),
+ .c2e_tvalid (arm_eth_qsfp_tx_tvalid_b),
+ .c2e_tready (arm_eth_qsfp_tx_tready_b),
+
+ // Sideband White Rabbit Control
+ .wr_reset_n (1'b1),
+ .wr_refclk (1'b0),
+
+ .wr_dac_sclk (),
+ .wr_dac_din (),
+ .wr_dac_clr_n (),
+ .wr_dac_cs_n (),
+ .wr_dac_ldac_n (),
+
+ .wr_eeprom_scl_o(),
+ .wr_eeprom_scl_i(1'b0),
+ .wr_eeprom_sda_o(),
+ .wr_eeprom_sda_i(1'b0),
+
+ .wr_uart_rx (1'b0),
+ .wr_uart_tx (),
+
+ .mod_pps (),
+ .mod_refclk (),
+
+ // WR AXI Control
+ .wr_axi_aclk (),
+ .wr_axi_aresetn (1'b1),
+ .wr_axi_awaddr (),
+ .wr_axi_awvalid (),
+ .wr_axi_awready (),
+ .wr_axi_wdata (),
+ .wr_axi_wstrb (),
+ .wr_axi_wvalid (),
+ .wr_axi_wready (),
+ .wr_axi_bresp (),
+ .wr_axi_bvalid (),
+ .wr_axi_bready (),
+ .wr_axi_araddr (),
+ .wr_axi_arvalid (),
+ .wr_axi_arready (),
+ .wr_axi_rdata (),
+ .wr_axi_rresp (),
+ .wr_axi_rvalid (),
+ .wr_axi_rready (),
+ .wr_axi_rlast (),
+
+ .port_info (),
+ .device_id (device_id),
+
+ .link_up (qsfp_link_up),
+ .activity ()
+ );
+
+ assign QSFP_I2C_SCL = qsfp_scl_t ? 1'bz : qsfp_scl_o;
+ assign qsfp_scl_i = QSFP_I2C_SCL;
+ assign QSFP_I2C_SDA = qsfp_sda_t ? 1'bz : qsfp_sda_o;
+ assign qsfp_sda_i = QSFP_I2C_SDA;
+
+ assign QSFP_LED = |qsfp_link_up;
+`else
+
+ axi_dummy #(
+ .DEC_ERR(1'b0)
+ ) inst_axi_dummy_qsfp (
+ .s_axi_aclk(bus_clk),
+ .s_axi_areset(bus_rst),
+
+ .s_axi_awaddr(M_AXI_NET2_AWADDR),
+ .s_axi_awvalid(M_AXI_NET2_AWVALID),
+ .s_axi_awready(M_AXI_NET2_AWREADY),
+
+ .s_axi_wdata(M_AXI_NET2_WDATA),
+ .s_axi_wvalid(M_AXI_NET2_WVALID),
+ .s_axi_wready(M_AXI_NET2_WREADY),
+
+ .s_axi_bresp(M_AXI_NET2_BRESP),
+ .s_axi_bvalid(M_AXI_NET2_BVALID),
+ .s_axi_bready(M_AXI_NET2_BREADY),
+
+ .s_axi_araddr(M_AXI_NET2_ARADDR),
+ .s_axi_arvalid(M_AXI_NET2_ARVALID),
+ .s_axi_arready(M_AXI_NET2_ARREADY),
+
+ .s_axi_rdata(M_AXI_NET2_RDATA),
+ .s_axi_rresp(M_AXI_NET2_RRESP),
+ .s_axi_rvalid(M_AXI_NET2_RVALID),
+ .s_axi_rready(M_AXI_NET2_RREADY)
+
+ );
+
+ assign qsfp_scl_i = qsfp_scl_t ? 1'b1 : qsfp_scl_o;
+ assign qsfp_sda_i = qsfp_sda_t ? 1'b1 : qsfp_sda_o;
+
+`endif
+
+ //--------------------------------------------------------------
+ // NPIO MGT Lanes (Example loopback config)
+ //--------------------------------------------------------------
+
+`ifdef NPIO_LANES
+
+ wire [127:0] npio_loopback_tdata;
+ wire [1:0] npio_loopback_tvalid;
+ wire [1:0] npio_loopback_tready;
+ wire [1:0] npio_loopback_tlast;
+
+ n3xx_mgt_io_core #(
+ .PROTOCOL ("Aurora"),
+ .REG_BASE (NPIO_REG_BASE + 14'h00),
+ .REG_DWIDTH (REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
+ .REG_AWIDTH (REG_AWIDTH), // Width of the address bus
+ .PORTNUM (8'd2),
+ .MDIO_EN (0)
+ ) npio_ln_0_i (
+ .areset (global_rst),
+ .gt_refclk (aurora_refclk),
+ .gb_refclk (aurora_clk156),
+ .misc_clk (aurora_init_clk),
+ .user_clk (au_user_clk),
+ .sync_clk (au_sync_clk),
+ .gt_tx_out_clk_unbuf(npio0_tx_out_clk),
+
+ .bus_clk (bus_clk),//clk for status reg reads to mdio interface
+ .bus_rst (bus_rst),
+ .qpllreset (qpllreset_npio0),
+ .qplloutclk (qplloutclk),
+ .qplloutrefclk (qplloutrefclk),
+ .qplllock (qplllock),
+ .qpllrefclklost (),
+
+ .rxp (NPIO_RX0_P),
+ .rxn (NPIO_RX0_N),
+ .txp (NPIO_TX0_P),
+ .txn (NPIO_TX0_N),
+
+ .sfpp_rxlos (1'b0),
+ .sfpp_tx_fault (1'b0),
+
+ //RegPort
+ .reg_wr_req (reg_wr_req_npio),
+ .reg_wr_addr (reg_wr_addr_npio),
+ .reg_wr_data (reg_wr_data_npio),
+ .reg_rd_req (reg_rd_req_npio),
+ .reg_rd_addr (reg_rd_addr_npio),
+ .reg_rd_resp (reg_rd_resp_npio0),
+ .reg_rd_data (reg_rd_data_npio0),
+
+ //DATA (loopback mode)
+ .s_axis_tdata (npio_loopback_tdata[63:0]), //Data to aurora core
+ .s_axis_tuser (4'b0),
+ .s_axis_tvalid (npio_loopback_tvalid[0]),
+ .s_axis_tlast (npio_loopback_tlast[0]),
+ .s_axis_tready (npio_loopback_tready[0]),
+ .m_axis_tdata (npio_loopback_tdata[63:0]), //Data from aurora core
+ .m_axis_tuser (),
+ .m_axis_tvalid (npio_loopback_tvalid[0]),
+ .m_axis_tlast (npio_loopback_tlast[0]),
+ .m_axis_tready (npio_loopback_tready[0]),
+
+ .mmcm_locked (au_mmcm_locked),
+ .gt_pll_lock (npio0_gt_pll_lock)
+ );
+
+ n3xx_mgt_io_core #(
+ .PROTOCOL ("Aurora"),
+ .REG_BASE (NPIO_REG_BASE + 14'h40),
+ .REG_DWIDTH (REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
+ .REG_AWIDTH (REG_AWIDTH), // Width of the address bus
+ .PORTNUM (8'd3),
+ .MDIO_EN (0)
+ ) npio_ln_1_i (
+ .areset (global_rst),
+ .gt_refclk (aurora_refclk),
+ .gb_refclk (aurora_clk156),
+ .misc_clk (aurora_init_clk),
+ .user_clk (au_user_clk),
+ .sync_clk (au_sync_clk),
+ .gt_tx_out_clk_unbuf(npio1_tx_out_clk),
+
+ .bus_clk (bus_clk),//clk for status reg reads to mdio interface
+ .bus_rst (bus_rst),
+ .qpllreset (qpllreset_npio1),
+ .qplloutclk (qplloutclk),
+ .qplloutrefclk (qplloutrefclk),
+ .qplllock (qplllock),
+ .qpllrefclklost (),
+
+ .rxp (NPIO_RX1_P),
+ .rxn (NPIO_RX1_N),
+ .txp (NPIO_TX1_P),
+ .txn (NPIO_TX1_N),
+
+ .sfpp_rxlos (1'b0),
+ .sfpp_tx_fault (1'b0),
+
+ //RegPort
+ .reg_wr_req (reg_wr_req_npio),
+ .reg_wr_addr (reg_wr_addr_npio),
+ .reg_wr_data (reg_wr_data_npio),
+ .reg_rd_req (reg_rd_req_npio),
+ .reg_rd_addr (reg_rd_addr_npio),
+ .reg_rd_resp (reg_rd_resp_npio1),
+ .reg_rd_data (reg_rd_data_npio1),
+
+ //DATA (loopback mode)
+ .s_axis_tdata (npio_loopback_tdata[127:64]), //Data to aurora core
+ .s_axis_tuser (4'b0),
+ .s_axis_tvalid (npio_loopback_tvalid[1]),
+ .s_axis_tlast (npio_loopback_tlast[1]),
+ .s_axis_tready (npio_loopback_tready[1]),
+ .m_axis_tdata (npio_loopback_tdata[127:64]), //Data from aurora core
+ .m_axis_tuser (),
+ .m_axis_tvalid (npio_loopback_tvalid[1]),
+ .m_axis_tlast (npio_loopback_tlast[1]),
+ .m_axis_tready (npio_loopback_tready[1]),
+
+ .mmcm_locked (au_mmcm_locked),
+ .gt_pll_lock (npio1_gt_pll_lock)
+ );
+
+`else
+
+ assign reg_rd_resp_npio0 = 1'b0;
+ assign reg_rd_data_npio0 = 'h0;
+ assign reg_rd_resp_npio1 = 1'b0;
+ assign reg_rd_data_npio1 = 'h0;
+ assign npio0_gt_pll_lock = 1'b1;
+ assign npio1_gt_pll_lock = 1'b1;
+ assign qpllreset_npio0 = 1'b0;
+ assign qpllreset_npio1 = 1'b0;
+
+`endif
+
+
+ // ARM ethernet 0 bridge signals
+ wire [63:0] arm_eth0_tx_tdata;
+ wire arm_eth0_tx_tvalid;
+ wire arm_eth0_tx_tlast;
+ wire arm_eth0_tx_tready;
+ wire [3:0] arm_eth0_tx_tuser;
+ wire [7:0] arm_eth0_tx_tkeep;
+
+ wire [63:0] arm_eth0_tx_tdata_b;
+ wire arm_eth0_tx_tvalid_b;
+ wire arm_eth0_tx_tlast_b;
+ wire arm_eth0_tx_tready_b;
+ wire [3:0] arm_eth0_tx_tuser_b;
+ wire [7:0] arm_eth0_tx_tkeep_b;
+
+ wire [63:0] arm_eth_sfp0_tx_tdata_b;
+ wire arm_eth_sfp0_tx_tvalid_b;
+ wire arm_eth_sfp0_tx_tlast_b;
+ wire arm_eth_sfp0_tx_tready_b;
+ wire [3:0] arm_eth_sfp0_tx_tuser_b;
+ wire [7:0] arm_eth_sfp0_tx_tkeep_b;
+
+ wire [63:0] arm_eth0_rx_tdata;
+ wire arm_eth0_rx_tvalid;
+ wire arm_eth0_rx_tlast;
+ wire arm_eth0_rx_tready;
+ wire [3:0] arm_eth0_rx_tuser;
+ wire [7:0] arm_eth0_rx_tkeep;
+
+ wire [63:0] arm_eth0_rx_tdata_b;
+ wire arm_eth0_rx_tvalid_b;
+ wire arm_eth0_rx_tlast_b;
+ wire arm_eth0_rx_tready_b;
+ wire [3:0] arm_eth0_rx_tuser_b;
+ wire [7:0] arm_eth0_rx_tkeep_b;
+
+ wire [63:0] arm_eth_sfp0_rx_tdata_b;
+ wire arm_eth_sfp0_rx_tvalid_b;
+ wire arm_eth_sfp0_rx_tlast_b;
+ wire arm_eth_sfp0_rx_tready_b;
+ wire [3:0] arm_eth_sfp0_rx_tuser_b;
+ wire [7:0] arm_eth_sfp0_rx_tkeep_b;
+
+ wire arm_eth0_rx_irq;
+ wire arm_eth0_tx_irq;
+
+ // ARM ethernet 1 bridge signals
+ wire [63:0] arm_eth1_tx_tdata;
+ wire arm_eth1_tx_tvalid;
+ wire arm_eth1_tx_tlast;
+ wire arm_eth1_tx_tready;
+ wire [3:0] arm_eth1_tx_tuser;
+ wire [7:0] arm_eth1_tx_tkeep;
+
+ wire [63:0] arm_eth1_tx_tdata_b;
+ wire arm_eth1_tx_tvalid_b;
+ wire arm_eth1_tx_tlast_b;
+ wire arm_eth1_tx_tready_b;
+ wire [3:0] arm_eth1_tx_tuser_b;
+ wire [7:0] arm_eth1_tx_tkeep_b;
+
+ wire [63:0] arm_eth_sfp1_tx_tdata_b;
+ wire arm_eth_sfp1_tx_tvalid_b;
+ wire arm_eth_sfp1_tx_tlast_b;
+ wire arm_eth_sfp1_tx_tready_b;
+ wire [3:0] arm_eth_sfp1_tx_tuser_b;
+ wire [7:0] arm_eth_sfp1_tx_tkeep_b;
+
+ wire [63:0] arm_eth1_rx_tdata;
+ wire arm_eth1_rx_tvalid;
+ wire arm_eth1_rx_tlast;
+ wire arm_eth1_rx_tready;
+ wire [3:0] arm_eth1_rx_tuser;
+ wire [7:0] arm_eth1_rx_tkeep;
+
+ wire [63:0] arm_eth1_rx_tdata_b;
+ wire arm_eth1_rx_tvalid_b;
+ wire arm_eth1_rx_tlast_b;
+ wire arm_eth1_rx_tready_b;
+ wire [3:0] arm_eth1_rx_tuser_b;
+ wire [7:0] arm_eth1_rx_tkeep_b;
+
+ wire [63:0] arm_eth_sfp1_rx_tdata_b;
+ wire arm_eth_sfp1_rx_tvalid_b;
+ wire arm_eth_sfp1_rx_tlast_b;
+ wire arm_eth_sfp1_rx_tready_b;
+ wire [3:0] arm_eth_sfp1_rx_tuser_b;
+ wire [7:0] arm_eth_sfp1_rx_tkeep_b;
+
+ wire arm_eth1_tx_irq;
+ wire arm_eth1_rx_irq;
+
+ // Vita to Ethernet
+ wire [63:0] v2e0_tdata;
+ wire v2e0_tlast;
+ wire v2e0_tvalid;
+ wire v2e0_tready;
+
+ wire [63:0] v2e1_tdata;
+ wire v2e1_tlast;
+ wire v2e1_tvalid;
+ wire v2e1_tready;
+
+ wire [63:0] v2e_sfp0_tdata;
+ wire v2e_sfp0_tlast;
+ wire v2e_sfp0_tvalid;
+ wire v2e_sfp0_tready;
+
+ wire [63:0] v2e_sfp1_tdata;
+ wire v2e_sfp1_tlast;
+ wire v2e_sfp1_tvalid;
+ wire v2e_sfp1_tready;
+
+ // Ethernet to Vita
+ wire [63:0] e2v0_tdata;
+ wire e2v0_tlast;
+ wire e2v0_tvalid;
+ wire e2v0_tready;
+
+ wire [63:0] e2v1_tdata;
+ wire e2v1_tlast;
+ wire e2v1_tvalid;
+ wire e2v1_tready;
+
+ wire [63:0] e2v_sfp0_tdata;
+ wire e2v_sfp0_tlast;
+ wire e2v_sfp0_tvalid;
+ wire e2v_sfp0_tready;
+
+ wire [63:0] e2v_sfp1_tdata;
+ wire e2v_sfp1_tlast;
+ wire e2v_sfp1_tvalid;
+ wire e2v_sfp1_tready;
+
+ // Ethernet crossover
+ wire [63:0] e01_tdata, e10_tdata;
+ wire [3:0] e01_tuser, e10_tuser;
+ wire e01_tlast, e01_tvalid, e01_tready;
+ wire e10_tlast, e10_tvalid, e10_tready;
+
+
+ // DMA xport adapter to PS
+ wire [63:0] m_axis_dma_tdata;
+ wire [3:0] m_axis_dma_tuser;
+ wire m_axis_dma_tlast;
+ wire m_axis_dma_tready;
+ wire m_axis_dma_tvalid;
+
+ wire [63:0] s_axis_dma_tdata;
+ wire [3:0] s_axis_dma_tdest;
+ wire s_axis_dma_tlast;
+ wire s_axis_dma_tready;
+ wire s_axis_dma_tvalid;
+
+ // Misc
+ wire [31:0] sfp_port0_info;
+ wire [31:0] sfp_port1_info;
+ wire sfp0_link_up, sfp1_link_up;
+ wire [15:0] device_id;
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // SFP Wrapper 0: Network Interface (1/10G or Aurora)
+ //
+ //////////////////////////////////////////////////////////////////////
+
+ n3xx_mgt_channel_wrapper #(
+ .LANES(1),
+ `ifdef SFP0_10GBE
+ .PROTOCOL("10GbE"),
+ .MDIO_EN(1'b1),
+ .MDIO_PHYADDR(5'd4), // PHYADDR must match the "reg" property for PHY in DTS file
+ `elsif SFP0_AURORA
+ .PROTOCOL("Aurora"),
+ .MDIO_EN(1'b0),
+ `elsif SFP0_1GBE
+ .PROTOCOL("1GbE"),
+ .MDIO_EN(1'b1),
+ .MDIO_PHYADDR(5'd4), // PHYADDR must match the "reg" property for PHY in DTS file
+ `elsif SFP0_WR
+ .PROTOCOL("WhiteRabbit"),
+ .MDIO_EN(1'b0),
+ `endif
+ .REG_DWIDTH(REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
+ .REG_AWIDTH(REG_AWIDTH), // Width of the address bus
+ .GT_COMMON(1),
+ .PORTNUM_BASE(8'd0)
+ ) sfp_wrapper_0 (
+ .areset(global_rst),
+ .gt_refclk(sfp0_gt_refclk),
+ .gb_refclk(sfp0_gb_refclk),
+ .misc_clk(sfp0_misc_clk),
+ .user_clk(au_user_clk),
+ .sync_clk(au_sync_clk),
+ .gt_tx_out_clk_unbuf(sfp0_tx_out_clk),
+
+ .bus_rst(bus_rst),
+ .bus_clk(bus_clk),
+
+ .qpllreset(qpllreset_sfp0),
+ .qplllock(qplllock),
+ .qplloutclk(qplloutclk),
+ .qplloutrefclk(qplloutrefclk),
+ .qpllrefclklost(),
+
+ .mmcm_locked(au_mmcm_locked),
+ .gt_pll_lock(sfp0_gt_pll_lock),
+
+ .txp(SFP_0_TX_P),
+ .txn(SFP_0_TX_N),
+ .rxp(SFP_0_RX_P),
+ .rxn(SFP_0_RX_N),
+
+ .mod_present_n(SFP_0_I2C_NPRESENT),
+ .mod_rxlos(SFP_0_LOS),
+ .mod_tx_fault(SFP_0_TXFAULT),
+ .mod_tx_disable(SFP_0_TXDISABLE),
+
+ // Clock and reset
+ .s_axi_aclk(clk40),
+ .s_axi_aresetn(clk40_rstn),
+ // AXI4-Lite: Write address port (domain: s_axi_aclk)
+ .s_axi_awaddr(M_AXI_NET0_AWADDR[REG_AWIDTH-1:0]),
+ .s_axi_awvalid(M_AXI_NET0_AWVALID),
+ .s_axi_awready(M_AXI_NET0_AWREADY),
+ // AXI4-Lite: Write data port (domain: s_axi_aclk)
+ .s_axi_wdata(M_AXI_NET0_WDATA),
+ .s_axi_wstrb(M_AXI_NET0_WSTRB),
+ .s_axi_wvalid(M_AXI_NET0_WVALID),
+ .s_axi_wready(M_AXI_NET0_WREADY),
+ // AXI4-Lite: Write response port (domain: s_axi_aclk)
+ .s_axi_bresp(M_AXI_NET0_BRESP),
+ .s_axi_bvalid(M_AXI_NET0_BVALID),
+ .s_axi_bready(M_AXI_NET0_BREADY),
+ // AXI4-Lite: Read address port (domain: s_axi_aclk)
+ .s_axi_araddr(M_AXI_NET0_ARADDR[REG_AWIDTH-1:0]),
+ .s_axi_arvalid(M_AXI_NET0_ARVALID),
+ .s_axi_arready(M_AXI_NET0_ARREADY),
+ // AXI4-Lite: Read data port (domain: s_axi_aclk)
+ .s_axi_rdata(M_AXI_NET0_RDATA),
+ .s_axi_rresp(M_AXI_NET0_RRESP),
+ .s_axi_rvalid(M_AXI_NET0_RVALID),
+ .s_axi_rready(M_AXI_NET0_RREADY),
+
+ // Ethernet to Vita
+ .e2v_tdata(e2v_sfp0_tdata),
+ .e2v_tlast(e2v_sfp0_tlast),
+ .e2v_tvalid(e2v_sfp0_tvalid),
+ .e2v_tready(e2v_sfp0_tready),
+
+ // Vita to Ethernet
+ .v2e_tdata(v2e_sfp0_tdata),
+ .v2e_tlast(v2e_sfp0_tlast),
+ .v2e_tvalid(v2e_sfp0_tvalid),
+ .v2e_tready(v2e_sfp0_tready),
+
+ // Ethernet to CPU
+ .e2c_tdata(arm_eth_sfp0_rx_tdata_b),
+ .e2c_tkeep(arm_eth_sfp0_rx_tkeep_b),
+ .e2c_tlast(arm_eth_sfp0_rx_tlast_b),
+ .e2c_tvalid(arm_eth_sfp0_rx_tvalid_b),
+ .e2c_tready(arm_eth_sfp0_rx_tready_b),
+
+ // CPU to Ethernet
+ .c2e_tdata(arm_eth_sfp0_tx_tdata_b),
+ .c2e_tkeep(arm_eth_sfp0_tx_tkeep_b),
+ .c2e_tlast(arm_eth_sfp0_tx_tlast_b),
+ .c2e_tvalid(arm_eth_sfp0_tx_tvalid_b),
+ .c2e_tready(arm_eth_sfp0_tx_tready_b),
+
+ // White Rabbit Specific
+`ifdef SFP0_WR
+ .wr_reset_n (~ps_gpio_out[48]), // reset for WR only
+ .wr_refclk (wr_refclk_buf),
+ .wr_dac_sclk (WB_DAC_SCLK),
+ .wr_dac_din (WB_DAC_DIN),
+ .wr_dac_clr_n (WB_DAC_NCLR),
+ .wr_dac_cs_n (WB_DAC_NSYNC),
+ .wr_dac_ldac_n(WB_DAC_NLDAC),
+ .wr_eeprom_scl_o(), // storage for delay characterization
+ .wr_eeprom_scl_i(1'b0), // temp
+ .wr_eeprom_sda_o(),
+ .wr_eeprom_sda_i(1'b0), // temp
+ .wr_uart_rx(wr_uart_rxd), // to/from PS
+ .wr_uart_tx(wr_uart_txd),
+ .mod_pps(pps_wr_refclk), // out, reference clock and pps
+ .mod_refclk(wr_ref_clk),
+ // WR Slave Port to PS
+ .wr_axi_aclk(m_axi_wr_clk), // out to PS
+ .wr_axi_aresetn(1'b1), // in
+ .wr_axi_awaddr(m_axi_wr_awaddr),
+ .wr_axi_awvalid(m_axi_wr_awvalid),
+ .wr_axi_awready(m_axi_wr_awready),
+ .wr_axi_wdata(m_axi_wr_wdata),
+ .wr_axi_wstrb(m_axi_wr_wstrb),
+ .wr_axi_wvalid(m_axi_wr_wvalid),
+ .wr_axi_wready(m_axi_wr_wready),
+ .wr_axi_bresp(m_axi_wr_bresp),
+ .wr_axi_bvalid(m_axi_wr_bvalid),
+ .wr_axi_bready(m_axi_wr_bready),
+ .wr_axi_araddr(m_axi_wr_araddr),
+ .wr_axi_arvalid(m_axi_wr_arvalid),
+ .wr_axi_arready(m_axi_wr_arready),
+ .wr_axi_rdata(m_axi_wr_rdata),
+ .wr_axi_rresp(m_axi_wr_rresp),
+ .wr_axi_rvalid(m_axi_wr_rvalid),
+ .wr_axi_rready(m_axi_wr_rready),
+ .wr_axi_rlast(),
+`else
+ .wr_reset_n(1'b1),
+ .wr_refclk(1'b0),
+ .wr_eeprom_scl_i(1'b0),
+ .wr_eeprom_sda_i(1'b0),
+ .wr_uart_rx(1'b0),
+`endif
+
+ // Misc
+ .port_info(sfp_port0_info),
+ .device_id(device_id),
+
+ // LED
+ .link_up(sfp0_link_up),
+ .activity(SFP_0_LED_A)
+ );
+
+ assign ps_gpio_in[60] = ps_gpio_tri[60] ? sfp0_link_up : ps_gpio_out[60];
+ assign SFP_0_LED_B = sfp0_link_up;
+
+`ifndef SFP0_WR
+ assign WB_DAC_SCLK = 1'b0;
+ assign WB_DAC_DIN = 1'b0;
+ assign WB_DAC_NCLR = 1'b1;
+ assign WB_DAC_NSYNC = 1'b1;
+ assign WB_DAC_NLDAC = 1'b1;
+ assign pps_wr_refclk = 1'b0;
+ assign wr_ref_clk = 1'b0;
+`endif
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // SFP Wrapper 1: Network Interface (1/10G or Aurora)
+ //
+ //////////////////////////////////////////////////////////////////////
+
+ n3xx_mgt_channel_wrapper #(
+ .LANES(1),
+ `ifdef SFP1_10GBE
+ .PROTOCOL("10GbE"),
+ .MDIO_EN(1'b1),
+ .MDIO_PHYADDR(5'd4), // PHYADDR must match the "reg" property for PHY in DTS file
+ `elsif SFP1_AURORA
+ .PROTOCOL("Aurora"),
+ .MDIO_EN(1'b0),
+ `endif
+ .REG_DWIDTH(REG_DWIDTH), // Width of the AXI4-Lite data bus (must be 32 or 64)
+ .REG_AWIDTH(REG_AWIDTH), // Width of the address bus
+ .GT_COMMON(1),
+ .PORTNUM_BASE(8'd1)
+ ) sfp_wrapper_1 (
+ .areset(global_rst),
+
+ .gt_refclk(sfp1_gt_refclk),
+ .gb_refclk(sfp1_gb_refclk),
+ .misc_clk(sfp1_misc_clk),
+ .user_clk(au_user_clk),
+ .sync_clk(au_sync_clk),
+ .gt_tx_out_clk_unbuf(sfp1_tx_out_clk),
+
+ .bus_rst(bus_rst),
+ .bus_clk(bus_clk),
+
+ .qpllreset(qpllreset_sfp1),
+ .qplllock(qplllock),
+ .qplloutclk(qplloutclk),
+ .qplloutrefclk(qplloutrefclk),
+ .qpllrefclklost(),
+
+ .mmcm_locked(au_mmcm_locked),
+ .gt_pll_lock(sfp1_gt_pll_lock),
+
+ .txp(SFP_1_TX_P),
+ .txn(SFP_1_TX_N),
+ .rxp(SFP_1_RX_P),
+ .rxn(SFP_1_RX_N),
+
+ .mod_rxlos(SFP_1_LOS),
+ .mod_tx_fault(SFP_1_TXFAULT),
+ .mod_tx_disable(SFP_1_TXDISABLE),
+
+ // Clock and reset
+ .s_axi_aclk(clk40),
+ .s_axi_aresetn(clk40_rstn),
+ // AXI4-Lite: Write address port (domain: s_axi_aclk)
+ .s_axi_awaddr(M_AXI_NET1_AWADDR[REG_AWIDTH-1:0]),
+ .s_axi_awvalid(M_AXI_NET1_AWVALID),
+ .s_axi_awready(M_AXI_NET1_AWREADY),
+ // AXI4-Lite: Write data port (domain: s_axi_aclk)
+ .s_axi_wdata(M_AXI_NET1_WDATA),
+ .s_axi_wstrb(M_AXI_NET1_WSTRB),
+ .s_axi_wvalid(M_AXI_NET1_WVALID),
+ .s_axi_wready(M_AXI_NET1_WREADY),
+ // AXI4-Lite: Write response port (domain: s_axi_aclk)
+ .s_axi_bresp(M_AXI_NET1_BRESP),
+ .s_axi_bvalid(M_AXI_NET1_BVALID),
+ .s_axi_bready(M_AXI_NET1_BREADY),
+ // AXI4-Lite: Read address port (domain: s_axi_aclk)
+ .s_axi_araddr(M_AXI_NET1_ARADDR[REG_AWIDTH-1:0]),
+ .s_axi_arvalid(M_AXI_NET1_ARVALID),
+ .s_axi_arready(M_AXI_NET1_ARREADY),
+ // AXI4-Lite: Read data port (domain: s_axi_aclk)
+ .s_axi_rdata(M_AXI_NET1_RDATA),
+ .s_axi_rresp(M_AXI_NET1_RRESP),
+ .s_axi_rvalid(M_AXI_NET1_RVALID),
+ .s_axi_rready(M_AXI_NET1_RREADY),
+
+ // Ethernet to Vita
+ .e2v_tdata(e2v_sfp1_tdata),
+ .e2v_tlast(e2v_sfp1_tlast),
+ .e2v_tvalid(e2v_sfp1_tvalid),
+ .e2v_tready(e2v_sfp1_tready),
+
+ // Vita to Ethernet
+ .v2e_tdata(v2e_sfp1_tdata),
+ .v2e_tlast(v2e_sfp1_tlast),
+ .v2e_tvalid(v2e_sfp1_tvalid),
+ .v2e_tready(v2e_sfp1_tready),
+
+ // Ethernet to CPU
+ .e2c_tdata(arm_eth_sfp1_rx_tdata_b),
+ .e2c_tkeep(arm_eth_sfp1_rx_tkeep_b),
+ .e2c_tlast(arm_eth_sfp1_rx_tlast_b),
+ .e2c_tvalid(arm_eth_sfp1_rx_tvalid_b),
+ .e2c_tready(arm_eth_sfp1_rx_tready_b),
+
+ // CPU to Ethernet
+ .c2e_tdata(arm_eth_sfp1_tx_tdata_b),
+ .c2e_tkeep(arm_eth_sfp1_tx_tkeep_b),
+ .c2e_tlast(arm_eth_sfp1_tx_tlast_b),
+ .c2e_tvalid(arm_eth_sfp1_tx_tvalid_b),
+ .c2e_tready(arm_eth_sfp1_tx_tready_b),
+
+ // Misc
+ .port_info(sfp_port1_info),
+ .device_id(device_id),
+
+ // LED
+ .link_up(sfp1_link_up),
+ .activity(SFP_1_LED_A)
+ );
+
+ assign ps_gpio_in[61] = ps_gpio_tri[61] ? sfp1_link_up : ps_gpio_out[61];
+ assign SFP_1_LED_B = sfp1_link_up;
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // Ethernet DMA 0
+ //
+ //////////////////////////////////////////////////////////////////////
+
+ assign IRQ_F2P[0] = arm_eth0_rx_irq;
+ assign IRQ_F2P[1] = arm_eth0_tx_irq;
+
+ assign {S_AXI_HP0_AWID, S_AXI_HP0_ARID} = 12'd0;
+ assign {S_AXI_GP0_AWID, S_AXI_GP0_ARID} = 10'd0;
+
+`ifdef QSFP_10GBE
+ // QSFP+ lanes connect to DMA engines and crossbar
+ // Connect first QSFP+ 10 GbE port to a DMA engine (and the PS/ARM)
+ assign arm_eth_qsfp_tx_tdata_b[0*64 +: 64] = arm_eth0_tx_tdata_b;
+ assign arm_eth_qsfp_tx_tvalid_b[0] = arm_eth0_tx_tvalid_b;
+ assign arm_eth_qsfp_tx_tlast_b[0] = arm_eth0_tx_tlast_b;
+ assign arm_eth0_tx_tready_b = arm_eth_qsfp_tx_tready_b[0];
+ assign arm_eth_qsfp_tx_tuser_b[0*4 +: 4] = arm_eth0_tx_tuser_b;
+ assign arm_eth_qsfp_tx_tkeep_b[0*8 +: 8] = arm_eth0_tx_tkeep_b;
+
+ assign arm_eth0_rx_tdata_b = arm_eth_qsfp_rx_tdata_b[0*64 +: 64];
+ assign arm_eth0_rx_tvalid_b = arm_eth_qsfp_rx_tvalid_b[0];
+ assign arm_eth0_rx_tlast_b = arm_eth_qsfp_rx_tlast_b[0];
+ assign arm_eth_qsfp_rx_tready_b[0] = arm_eth0_rx_tready_b;
+ assign arm_eth0_rx_tuser_b = arm_eth_qsfp_rx_tuser_b[0*4 +: 4];
+ assign arm_eth0_rx_tkeep_b = arm_eth_qsfp_rx_tkeep_b[0*8 +: 8];
+
+ // Connect first QSFP+ 10 GbE port to the crossbar
+ assign v2e_qsfp_tdata[0*64 +: 64] = v2e0_tdata;
+ assign v2e_qsfp_tlast[0] = v2e0_tlast;
+ assign v2e_qsfp_tvalid[0] = v2e0_tvalid;
+ assign v2e0_tready = v2e_qsfp_tready[0];
+
+ assign e2v0_tdata = e2v_qsfp_tdata[0*64 +: 64];
+ assign e2v0_tlast = e2v_qsfp_tlast[0];
+ assign e2v0_tvalid = e2v_qsfp_tvalid[0];
+ assign e2v_qsfp_tready[0] = e2v0_tready;
+
+ // Connect second QSFP+ 10 GbE port to a DMA engine (and the PS/ARM)
+ assign arm_eth_qsfp_tx_tdata_b[1*64 +: 64] = arm_eth1_tx_tdata_b;
+ assign arm_eth_qsfp_tx_tvalid_b[1] = arm_eth1_tx_tvalid_b;
+ assign arm_eth_qsfp_tx_tlast_b[1] = arm_eth1_tx_tlast_b;
+ assign arm_eth1_tx_tready_b = arm_eth_qsfp_tx_tready_b[1];
+ assign arm_eth_qsfp_tx_tuser_b[1*4 +: 4] = arm_eth1_tx_tuser_b;
+ assign arm_eth_qsfp_tx_tkeep_b[1*8 +: 8] = arm_eth1_tx_tkeep_b;
+
+ assign arm_eth1_rx_tdata_b = arm_eth_qsfp_rx_tdata_b[1*64 +: 64];
+ assign arm_eth1_rx_tvalid_b = arm_eth_qsfp_rx_tvalid_b[1];
+ assign arm_eth1_rx_tlast_b = arm_eth_qsfp_rx_tlast_b[1];
+ assign arm_eth_qsfp_rx_tready_b[1] = arm_eth1_rx_tready_b;
+ assign arm_eth1_rx_tuser_b = arm_eth_qsfp_rx_tuser_b[1*4 +: 4];
+ assign arm_eth1_rx_tkeep_b = arm_eth_qsfp_rx_tkeep_b[1*8 +: 8];
+
+ // Connect second QSFP+ 10 GbE port to the crossbar
+ assign v2e_qsfp_tdata[1*64 +: 64] = v2e1_tdata;
+ assign v2e_qsfp_tlast[1] = v2e1_tlast;
+ assign v2e_qsfp_tvalid[1] = v2e1_tvalid;
+ assign v2e1_tready = v2e_qsfp_tready[1];
+
+ assign e2v1_tdata = e2v_qsfp_tdata[1*64 +: 64];
+ assign e2v1_tlast = e2v_qsfp_tlast[1];
+ assign e2v1_tvalid = e2v_qsfp_tvalid[1];
+ assign e2v_qsfp_tready[1] = e2v1_tready;
+`else
+ // SFP+ ports connects to DMA engines and crossbar
+ // Connect first SFP+ 10 GbE port to a DMA engine (and the PS/ARM)
+ assign arm_eth_sfp0_tx_tdata_b = arm_eth0_tx_tdata_b;
+ assign arm_eth_sfp0_tx_tvalid_b = arm_eth0_tx_tvalid_b;
+ assign arm_eth_sfp0_tx_tlast_b = arm_eth0_tx_tlast_b;
+ assign arm_eth0_tx_tready_b = arm_eth_sfp0_tx_tready_b;
+ assign arm_eth_sfp0_tx_tuser_b = arm_eth0_tx_tuser_b;
+ assign arm_eth_sfp0_tx_tkeep_b = arm_eth0_tx_tkeep_b;
+
+ assign arm_eth0_rx_tdata_b = arm_eth_sfp0_rx_tdata_b;
+ assign arm_eth0_rx_tvalid_b = arm_eth_sfp0_rx_tvalid_b;
+ assign arm_eth0_rx_tlast_b = arm_eth_sfp0_rx_tlast_b;
+ assign arm_eth_sfp0_rx_tready_b = arm_eth0_rx_tready_b;
+ assign arm_eth0_rx_tuser_b = arm_eth_sfp0_rx_tuser_b;
+ assign arm_eth0_rx_tkeep_b = arm_eth_sfp0_rx_tkeep_b;
+
+ // Connect first SFP+ 10 GbE port to the crossbar
+ assign v2e_sfp0_tdata = v2e0_tdata;
+ assign v2e_sfp0_tlast = v2e0_tlast;
+ assign v2e_sfp0_tvalid = v2e0_tvalid;
+ assign v2e0_tready = v2e_sfp0_tready;
+
+ assign e2v0_tdata = e2v_sfp0_tdata;
+ assign e2v0_tlast = e2v_sfp0_tlast;
+ assign e2v0_tvalid = e2v_sfp0_tvalid;
+ assign e2v_sfp0_tready = e2v0_tready;
+
+ // Connect second SFP+ 10 GbE port to a DMA engine (and the PS/ARM)
+ assign arm_eth_sfp1_tx_tdata_b = arm_eth1_tx_tdata_b;
+ assign arm_eth_sfp1_tx_tvalid_b = arm_eth1_tx_tvalid_b;
+ assign arm_eth_sfp1_tx_tlast_b = arm_eth1_tx_tlast_b;
+ assign arm_eth1_tx_tready_b = arm_eth_sfp1_tx_tready_b;
+ assign arm_eth_sfp1_tx_tuser_b = arm_eth1_tx_tuser_b;
+ assign arm_eth_sfp1_tx_tkeep_b = arm_eth1_tx_tkeep_b;
+
+ assign arm_eth1_rx_tdata_b = arm_eth_sfp1_rx_tdata_b;
+ assign arm_eth1_rx_tvalid_b = arm_eth_sfp1_rx_tvalid_b;
+ assign arm_eth1_rx_tlast_b = arm_eth_sfp1_rx_tlast_b;
+ assign arm_eth_sfp1_rx_tready_b = arm_eth1_rx_tready_b;
+ assign arm_eth1_rx_tuser_b = arm_eth_sfp1_rx_tuser_b;
+ assign arm_eth1_rx_tkeep_b = arm_eth_sfp1_rx_tkeep_b;
+
+ // Connect first SFP+ 10 GbE port to the crossbar
+ assign v2e_sfp1_tdata = v2e1_tdata;
+ assign v2e_sfp1_tlast = v2e1_tlast;
+ assign v2e_sfp1_tvalid = v2e1_tvalid;
+ assign v2e1_tready = v2e_sfp1_tready;
+
+ assign e2v1_tdata = e2v_sfp1_tdata;
+ assign e2v1_tlast = e2v_sfp1_tlast;
+ assign e2v1_tvalid = e2v_sfp1_tvalid;
+ assign e2v_sfp1_tready = e2v1_tready;
+
+ // Don't actually instantiate DMA engines if protocols can't use them
+ `ifdef SFP0_AURORA
+ `define NO_ETH_DMA_0
+ `elsif SFP0_WR
+ `define NO_ETH_DMA_0
+ `endif
+
+ `ifdef SFP1_AURORA
+ `define NO_ETH_DMA_1
+ `endif
+`endif
+
+`ifdef NO_ETH_DMA_0
+ //If inst Aurora, tie off each axi/axi-lite interface
+ axi_dummy #(
+ .DEC_ERR(1'b0)
+ ) inst_axi_dummy_sfp0_eth_dma (
+ .s_axi_aclk(bus_clk),
+ .s_axi_areset(bus_rst),
+
+ .s_axi_awaddr(M_AXI_ETH_DMA0_AWADDR),
+ .s_axi_awvalid(M_AXI_ETH_DMA0_AWVALID),
+ .s_axi_awready(M_AXI_ETH_DMA0_AWREADY),
+
+ .s_axi_wdata(M_AXI_ETH_DMA0_WDATA),
+ .s_axi_wvalid(M_AXI_ETH_DMA0_WVALID),
+ .s_axi_wready(M_AXI_ETH_DMA0_WREADY),
+
+ .s_axi_bresp(M_AXI_ETH_DMA0_BRESP),
+ .s_axi_bvalid(M_AXI_ETH_DMA0_BVALID),
+ .s_axi_bready(M_AXI_ETH_DMA0_BREADY),
+
+ .s_axi_araddr(M_AXI_ETH_DMA0_ARADDR),
+ .s_axi_arvalid(M_AXI_ETH_DMA0_ARVALID),
+ .s_axi_arready(M_AXI_ETH_DMA0_ARREADY),
+
+ .s_axi_rdata(M_AXI_ETH_DMA0_RDATA),
+ .s_axi_rresp(M_AXI_ETH_DMA0_RRESP),
+ .s_axi_rvalid(M_AXI_ETH_DMA0_RVALID),
+ .s_axi_rready(M_AXI_ETH_DMA0_RREADY)
+
+ );
+ //S_AXI_GP0 outputs from axi_eth_dma, so needs some sort of controller/tie off
+ assign S_AXI_GP0_AWADDR = 32'h0;
+ assign S_AXI_GP0_AWLEN = 8'h0;
+ assign S_AXI_GP0_AWSIZE = 4'h0;
+ assign S_AXI_GP0_AWBURST = 3'h0;
+ assign S_AXI_GP0_AWPROT = 3'h0;
+ assign S_AXI_GP0_AWCACHE = 4'h0;
+ assign S_AXI_GP0_AWVALID = 1'b0;
+ //S_AXI_GP0_AWREADY output from PS
+ assign S_AXI_GP0_WDATA = 32'h0;
+ assign S_AXI_GP0_WSTRB = 4'h0;
+ assign S_AXI_GP0_WLAST = 1'b0;
+ assign S_AXI_GP0_WVALID = 1'b0;
+ //S_AXI_GP0_WREADY output from PS
+ //S_AXI_GP0_BRESP
+ //S_AXI_GP0_BVALID
+ assign S_AXI_GP0_BREADY = 1'b1;
+ assign S_AXI_GP0_ARADDR = 32'h0;
+ assign S_AXI_GP0_ARLEN = 8'h0;
+ assign S_AXI_GP0_ARSIZE = 3'h0;
+ assign S_AXI_GP0_ARBURST = 2'h0;
+ assign S_AXI_GP0_ARPROT = 3'h0;
+ assign S_AXI_GP0_ARCACHE = 4'h0;
+ assign S_AXI_GP0_ARVALID = 1'b0;
+ //S_AXI_GP0_ARREADY
+ //S_AXI_GP0_RDATA
+ //S_AXI_GP0_RRESP
+ //S_AXI_GP0_RLAST
+ //S_AXI_GP0_RVALID
+ assign S_AXI_GP0_RREADY = 1'b1;
+
+ //S_AXI_HP0 from axi_eth_dma
+ assign S_AXI_HP0_ARADDR = 32'h0;
+ assign S_AXI_HP0_ARLEN = 8'h0;
+ assign S_AXI_HP0_ARSIZE = 3'h0;
+ assign S_AXI_HP0_ARBURST = 2'h0;
+ assign S_AXI_HP0_ARPROT = 3'h0;
+ assign S_AXI_HP0_ARCACHE = 4'h0;
+ assign S_AXI_HP0_ARVALID = 1'b0;
+ //S_AXI_HP0_ARREADY
+ //S_AXI_HP0_RDATA
+ //S_AXI_HP0_RRESP
+ //S_AXI_HP0_RLAST
+ //S_AXI_HP0_RVALID
+ assign S_AXI_HP0_RREADY = 1'b1;
+ assign S_AXI_HP0_AWADDR = 32'h0;
+ assign S_AXI_HP0_AWLEN = 8'h0;
+ assign S_AXI_HP0_AWSIZE = 3'h0;
+ assign S_AXI_HP0_AWBURST = 2'h0;
+ assign S_AXI_HP0_AWPROT = 3'h0;
+ assign S_AXI_HP0_AWCACHE = 4'h0;
+ assign S_AXI_HP0_AWVALID = 1'b0;
+ //S_AXI_HP0_AWREADY
+ assign S_AXI_HP0_WDATA = 64'h0;
+ assign S_AXI_HP0_WSTRB = 8'h0;
+ assign S_AXI_HP0_WLAST = 1'b0;
+ assign S_AXI_HP0_WVALID = 1'b0;
+ //S_AXI_HP0_WREADY
+ //S_AXI_HP0_BRESP
+ //S_AXI_HP0_BVALID
+ assign S_AXI_HP0_BREADY = 1'b1;
+
+`else
+
+ axi_eth_dma inst_axi_eth_dma0 (
+ .s_axi_lite_aclk(clk40),
+ .m_axi_sg_aclk(clk40),
+ .m_axi_mm2s_aclk(clk40),
+ .m_axi_s2mm_aclk(clk40),
+ .axi_resetn(clk40_rstn),
+
+ .s_axi_lite_awaddr(M_AXI_ETH_DMA0_AWADDR),
+ .s_axi_lite_awvalid(M_AXI_ETH_DMA0_AWVALID),
+ .s_axi_lite_awready(M_AXI_ETH_DMA0_AWREADY),
+
+ .s_axi_lite_wdata(M_AXI_ETH_DMA0_WDATA),
+ .s_axi_lite_wvalid(M_AXI_ETH_DMA0_WVALID),
+ .s_axi_lite_wready(M_AXI_ETH_DMA0_WREADY),
+
+ .s_axi_lite_bresp(M_AXI_ETH_DMA0_BRESP),
+ .s_axi_lite_bvalid(M_AXI_ETH_DMA0_BVALID),
+ .s_axi_lite_bready(M_AXI_ETH_DMA0_BREADY),
+
+ .s_axi_lite_araddr(M_AXI_ETH_DMA0_ARADDR),
+ .s_axi_lite_arvalid(M_AXI_ETH_DMA0_ARVALID),
+ .s_axi_lite_arready(M_AXI_ETH_DMA0_ARREADY),
+
+ .s_axi_lite_rdata(M_AXI_ETH_DMA0_RDATA),
+ .s_axi_lite_rresp(M_AXI_ETH_DMA0_RRESP),
+ .s_axi_lite_rvalid(M_AXI_ETH_DMA0_RVALID),
+ .s_axi_lite_rready(M_AXI_ETH_DMA0_RREADY),
+
+ .m_axi_sg_awaddr(S_AXI_GP0_AWADDR),
+ .m_axi_sg_awlen(S_AXI_GP0_AWLEN),
+ .m_axi_sg_awsize(S_AXI_GP0_AWSIZE),
+ .m_axi_sg_awburst(S_AXI_GP0_AWBURST),
+ .m_axi_sg_awprot(S_AXI_GP0_AWPROT),
+ .m_axi_sg_awcache(S_AXI_GP0_AWCACHE),
+ .m_axi_sg_awvalid(S_AXI_GP0_AWVALID),
+ .m_axi_sg_awready(S_AXI_GP0_AWREADY),
+ .m_axi_sg_wdata(S_AXI_GP0_WDATA),
+ .m_axi_sg_wstrb(S_AXI_GP0_WSTRB),
+ .m_axi_sg_wlast(S_AXI_GP0_WLAST),
+ .m_axi_sg_wvalid(S_AXI_GP0_WVALID),
+ .m_axi_sg_wready(S_AXI_GP0_WREADY),
+ .m_axi_sg_bresp(S_AXI_GP0_BRESP),
+ .m_axi_sg_bvalid(S_AXI_GP0_BVALID),
+ .m_axi_sg_bready(S_AXI_GP0_BREADY),
+ .m_axi_sg_araddr(S_AXI_GP0_ARADDR),
+ .m_axi_sg_arlen(S_AXI_GP0_ARLEN),
+ .m_axi_sg_arsize(S_AXI_GP0_ARSIZE),
+ .m_axi_sg_arburst(S_AXI_GP0_ARBURST),
+ .m_axi_sg_arprot(S_AXI_GP0_ARPROT),
+ .m_axi_sg_arcache(S_AXI_GP0_ARCACHE),
+ .m_axi_sg_arvalid(S_AXI_GP0_ARVALID),
+ .m_axi_sg_arready(S_AXI_GP0_ARREADY),
+ .m_axi_sg_rdata(S_AXI_GP0_RDATA),
+ .m_axi_sg_rresp(S_AXI_GP0_RRESP),
+ .m_axi_sg_rlast(S_AXI_GP0_RLAST),
+ .m_axi_sg_rvalid(S_AXI_GP0_RVALID),
+ .m_axi_sg_rready(S_AXI_GP0_RREADY),
+
+ .m_axi_mm2s_araddr(S_AXI_HP0_ARADDR),
+ .m_axi_mm2s_arlen(S_AXI_HP0_ARLEN),
+ .m_axi_mm2s_arsize(S_AXI_HP0_ARSIZE),
+ .m_axi_mm2s_arburst(S_AXI_HP0_ARBURST),
+ .m_axi_mm2s_arprot(S_AXI_HP0_ARPROT),
+ .m_axi_mm2s_arcache(S_AXI_HP0_ARCACHE),
+ .m_axi_mm2s_arvalid(S_AXI_HP0_ARVALID),
+ .m_axi_mm2s_arready(S_AXI_HP0_ARREADY),
+ .m_axi_mm2s_rdata(S_AXI_HP0_RDATA),
+ .m_axi_mm2s_rresp(S_AXI_HP0_RRESP),
+ .m_axi_mm2s_rlast(S_AXI_HP0_RLAST),
+ .m_axi_mm2s_rvalid(S_AXI_HP0_RVALID),
+ .m_axi_mm2s_rready(S_AXI_HP0_RREADY),
+
+ .mm2s_prmry_reset_out_n(),
+ .m_axis_mm2s_tdata(arm_eth0_tx_tdata),
+ .m_axis_mm2s_tkeep(arm_eth0_tx_tkeep),
+ .m_axis_mm2s_tvalid(arm_eth0_tx_tvalid),
+ .m_axis_mm2s_tready(arm_eth0_tx_tready),
+ .m_axis_mm2s_tlast(arm_eth0_tx_tlast),
+
+ .m_axi_s2mm_awaddr(S_AXI_HP0_AWADDR),
+ .m_axi_s2mm_awlen(S_AXI_HP0_AWLEN),
+ .m_axi_s2mm_awsize(S_AXI_HP0_AWSIZE),
+ .m_axi_s2mm_awburst(S_AXI_HP0_AWBURST),
+ .m_axi_s2mm_awprot(S_AXI_HP0_AWPROT),
+ .m_axi_s2mm_awcache(S_AXI_HP0_AWCACHE),
+ .m_axi_s2mm_awvalid(S_AXI_HP0_AWVALID),
+ .m_axi_s2mm_awready(S_AXI_HP0_AWREADY),
+ .m_axi_s2mm_wdata(S_AXI_HP0_WDATA),
+ .m_axi_s2mm_wstrb(S_AXI_HP0_WSTRB),
+ .m_axi_s2mm_wlast(S_AXI_HP0_WLAST),
+ .m_axi_s2mm_wvalid(S_AXI_HP0_WVALID),
+ .m_axi_s2mm_wready(S_AXI_HP0_WREADY),
+ .m_axi_s2mm_bresp(S_AXI_HP0_BRESP),
+ .m_axi_s2mm_bvalid(S_AXI_HP0_BVALID),
+ .m_axi_s2mm_bready(S_AXI_HP0_BREADY),
+
+ .s2mm_prmry_reset_out_n(),
+ .s_axis_s2mm_tdata(arm_eth0_rx_tdata),
+ .s_axis_s2mm_tkeep(arm_eth0_rx_tkeep),
+ .s_axis_s2mm_tvalid(arm_eth0_rx_tvalid),
+ .s_axis_s2mm_tready(arm_eth0_rx_tready),
+ .s_axis_s2mm_tlast(arm_eth0_rx_tlast),
+
+ .mm2s_introut(arm_eth0_tx_irq),
+ .s2mm_introut(arm_eth0_rx_irq),
+ .axi_dma_tstvec()
+ );
+
+ axi_fifo_2clk #(
+ .WIDTH(1+8+64),
+ .SIZE(5)
+ ) eth_tx_0_fifo_2clk_i (
+ .reset(clk40_rst),
+ .i_aclk(clk40),
+ .i_tdata({arm_eth0_tx_tlast, arm_eth0_tx_tkeep, arm_eth0_tx_tdata}),
+ .i_tvalid(arm_eth0_tx_tvalid),
+ .i_tready(arm_eth0_tx_tready),
+ .o_aclk(bus_clk),
+ .o_tdata({arm_eth0_tx_tlast_b, arm_eth0_tx_tkeep_b, arm_eth0_tx_tdata_b}),
+ .o_tvalid(arm_eth0_tx_tvalid_b),
+ .o_tready(arm_eth0_tx_tready_b)
+ );
+
+ axi_fifo_2clk #(
+ .WIDTH(1+8+64),
+ .SIZE(5)
+ ) eth_rx_0_fifo_2clk_i (
+ .reset(bus_rst),
+ .i_aclk(bus_clk),
+ .i_tdata({arm_eth0_rx_tlast_b, arm_eth0_rx_tkeep_b, arm_eth0_rx_tdata_b}),
+ .i_tvalid(arm_eth0_rx_tvalid_b),
+ .i_tready(arm_eth0_rx_tready_b),
+ .o_aclk(clk40),
+ .o_tdata({arm_eth0_rx_tlast, arm_eth0_rx_tkeep, arm_eth0_rx_tdata}),
+ .o_tvalid(arm_eth0_rx_tvalid),
+ .o_tready(arm_eth0_rx_tready)
+ );
+
+`endif
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // Ethernet DMA 1
+ //
+ //////////////////////////////////////////////////////////////////////
+
+ assign IRQ_F2P[2] = arm_eth1_rx_irq;
+ assign IRQ_F2P[3] = arm_eth1_tx_irq;
+
+ assign {S_AXI_HP1_AWID, S_AXI_HP1_ARID} = 12'd0;
+ assign {S_AXI_GP1_AWID, S_AXI_GP1_ARID} = 10'd0;
+
+`ifdef NO_ETH_DMA_1
+ //If inst Aurora, tie off each axi/axi-lite interface
+ axi_dummy #(.DEC_ERR(1'b0)) inst_axi_dummy_sfp1_eth_dma
+ (
+ .s_axi_aclk(bus_clk),
+ .s_axi_areset(bus_rst),
+
+ .s_axi_awaddr(M_AXI_ETH_DMA1_AWADDR),
+ .s_axi_awvalid(M_AXI_ETH_DMA1_AWVALID),
+ .s_axi_awready(M_AXI_ETH_DMA1_AWREADY),
+
+ .s_axi_wdata(M_AXI_ETH_DMA1_WDATA),
+ .s_axi_wvalid(M_AXI_ETH_DMA1_WVALID),
+ .s_axi_wready(M_AXI_ETH_DMA1_WREADY),
+
+ .s_axi_bresp(M_AXI_ETH_DMA1_BRESP),
+ .s_axi_bvalid(M_AXI_ETH_DMA1_BVALID),
+ .s_axi_bready(M_AXI_ETH_DMA1_BREADY),
+
+ .s_axi_araddr(M_AXI_ETH_DMA1_ARADDR),
+ .s_axi_arvalid(M_AXI_ETH_DMA1_ARVALID),
+ .s_axi_arready(M_AXI_ETH_DMA1_ARREADY),
+
+ .s_axi_rdata(M_AXI_ETH_DMA1_RDATA),
+ .s_axi_rresp(M_AXI_ETH_DMA1_RRESP),
+ .s_axi_rvalid(M_AXI_ETH_DMA1_RVALID),
+ .s_axi_rready(M_AXI_ETH_DMA1_RREADY)
+
+ );
+ //S_AXI_GP0 outputs from axi_eth_dma, so needs some sort of controller/tie off
+ assign S_AXI_GP1_AWADDR = 32'h0;
+ assign S_AXI_GP1_AWLEN = 8'h0;
+ assign S_AXI_GP1_AWSIZE = 4'h0;
+ assign S_AXI_GP1_AWBURST = 3'h0;
+ assign S_AXI_GP1_AWPROT = 3'h0;
+ assign S_AXI_GP1_AWCACHE = 4'h0;
+ assign S_AXI_GP1_AWVALID = 1'b0;
+ //S_AXI_GP1_AWREADY output from PS
+ assign S_AXI_GP1_WDATA = 32'h0;
+ assign S_AXI_GP1_WSTRB = 4'h0;
+ assign S_AXI_GP1_WLAST = 1'b0;
+ assign S_AXI_GP1_WVALID = 1'b0;
+ //S_AXI_GP1_WREADY output from PS
+ //S_AXI_GP1_BRESP
+ //S_AXI_GP1_BVALID
+ assign S_AXI_GP1_BREADY = 1'b1;
+ assign S_AXI_GP1_ARADDR = 32'h0;
+ assign S_AXI_GP1_ARLEN = 8'h0;
+ assign S_AXI_GP1_ARSIZE = 3'h0;
+ assign S_AXI_GP1_ARBURST = 2'h0;
+ assign S_AXI_GP1_ARPROT = 3'h0;
+ assign S_AXI_GP1_ARCACHE = 4'h0;
+ assign S_AXI_GP1_ARVALID = 1'b0;
+ //S_AXI_GP1_ARREADY
+ //S_AXI_GP1_RDATA
+ //S_AXI_GP1_RRESP
+ //S_AXI_GP1_RLAST
+ //S_AXI_GP1_RVALID
+ assign S_AXI_GP1_RREADY = 1'b1;
+
+ //S_AXI_HP0 from axi_eth_dma
+ assign S_AXI_HP1_ARADDR = 32'h0;
+ assign S_AXI_HP1_ARLEN = 8'h0;
+ assign S_AXI_HP1_ARSIZE = 3'h0;
+ assign S_AXI_HP1_ARBURST = 2'h0;
+ assign S_AXI_HP1_ARPROT = 3'h0;
+ assign S_AXI_HP1_ARCACHE = 4'h0;
+ assign S_AXI_HP1_ARVALID = 1'b0;
+ //S_AXI_HP1_ARREADY
+ //S_AXI_HP1_RDATA
+ //S_AXI_HP1_RRESP
+ //S_AXI_HP1_RLAST
+ //S_AXI_HP1_RVALID
+ assign S_AXI_HP1_RREADY = 1'b1;
+ assign S_AXI_HP1_AWADDR = 32'h0;
+ assign S_AXI_HP1_AWLEN = 8'h0;
+ assign S_AXI_HP1_AWSIZE = 3'h0;
+ assign S_AXI_HP1_AWBURST = 2'h0;
+ assign S_AXI_HP1_AWPROT = 3'h0;
+ assign S_AXI_HP1_AWCACHE = 4'h0;
+ assign S_AXI_HP1_AWVALID = 1'b0;
+ //S_AXI_HP1_AWREADY
+ assign S_AXI_HP1_WDATA = 64'h0;
+ assign S_AXI_HP1_WSTRB = 8'h0;
+ assign S_AXI_HP1_WLAST = 1'b0;
+ assign S_AXI_HP1_WVALID = 1'b0;
+ //S_AXI_HP1_WREADY
+ //S_AXI_HP1_BRESP
+ //S_AXI_HP1_BVALID
+ assign S_AXI_HP1_BREADY = 1'b1;
+
+`else
+
+ axi_eth_dma inst_axi_eth_dma1 (
+ .s_axi_lite_aclk(clk40),
+ .m_axi_sg_aclk(clk40),
+ .m_axi_mm2s_aclk(clk40),
+ .m_axi_s2mm_aclk(clk40),
+ .axi_resetn(clk40_rstn),
+
+ .s_axi_lite_awaddr(M_AXI_ETH_DMA1_AWADDR),
+ .s_axi_lite_awvalid(M_AXI_ETH_DMA1_AWVALID),
+ .s_axi_lite_awready(M_AXI_ETH_DMA1_AWREADY),
+
+ .s_axi_lite_wdata(M_AXI_ETH_DMA1_WDATA),
+ .s_axi_lite_wvalid(M_AXI_ETH_DMA1_WVALID),
+ .s_axi_lite_wready(M_AXI_ETH_DMA1_WREADY),
+
+ .s_axi_lite_bresp(M_AXI_ETH_DMA1_BRESP),
+ .s_axi_lite_bvalid(M_AXI_ETH_DMA1_BVALID),
+ .s_axi_lite_bready(M_AXI_ETH_DMA1_BREADY),
+
+ .s_axi_lite_araddr(M_AXI_ETH_DMA1_ARADDR),
+ .s_axi_lite_arvalid(M_AXI_ETH_DMA1_ARVALID),
+ .s_axi_lite_arready(M_AXI_ETH_DMA1_ARREADY),
+
+ .s_axi_lite_rdata(M_AXI_ETH_DMA1_RDATA),
+ .s_axi_lite_rresp(M_AXI_ETH_DMA1_RRESP),
+ .s_axi_lite_rvalid(M_AXI_ETH_DMA1_RVALID),
+ .s_axi_lite_rready(M_AXI_ETH_DMA1_RREADY),
+
+ .m_axi_sg_awaddr(S_AXI_GP1_AWADDR),
+ .m_axi_sg_awlen(S_AXI_GP1_AWLEN),
+ .m_axi_sg_awsize(S_AXI_GP1_AWSIZE),
+ .m_axi_sg_awburst(S_AXI_GP1_AWBURST),
+ .m_axi_sg_awprot(S_AXI_GP1_AWPROT),
+ .m_axi_sg_awcache(S_AXI_GP1_AWCACHE),
+ .m_axi_sg_awvalid(S_AXI_GP1_AWVALID),
+ .m_axi_sg_awready(S_AXI_GP1_AWREADY),
+ .m_axi_sg_wdata(S_AXI_GP1_WDATA),
+ .m_axi_sg_wstrb(S_AXI_GP1_WSTRB),
+ .m_axi_sg_wlast(S_AXI_GP1_WLAST),
+ .m_axi_sg_wvalid(S_AXI_GP1_WVALID),
+ .m_axi_sg_wready(S_AXI_GP1_WREADY),
+ .m_axi_sg_bresp(S_AXI_GP1_BRESP),
+ .m_axi_sg_bvalid(S_AXI_GP1_BVALID),
+ .m_axi_sg_bready(S_AXI_GP1_BREADY),
+ .m_axi_sg_araddr(S_AXI_GP1_ARADDR),
+ .m_axi_sg_arlen(S_AXI_GP1_ARLEN),
+ .m_axi_sg_arsize(S_AXI_GP1_ARSIZE),
+ .m_axi_sg_arburst(S_AXI_GP1_ARBURST),
+ .m_axi_sg_arprot(S_AXI_GP1_ARPROT),
+ .m_axi_sg_arcache(S_AXI_GP1_ARCACHE),
+ .m_axi_sg_arvalid(S_AXI_GP1_ARVALID),
+ .m_axi_sg_arready(S_AXI_GP1_ARREADY),
+ .m_axi_sg_rdata(S_AXI_GP1_RDATA),
+ .m_axi_sg_rresp(S_AXI_GP1_RRESP),
+ .m_axi_sg_rlast(S_AXI_GP1_RLAST),
+ .m_axi_sg_rvalid(S_AXI_GP1_RVALID),
+ .m_axi_sg_rready(S_AXI_GP1_RREADY),
+
+ .m_axi_mm2s_araddr(S_AXI_HP1_ARADDR),
+ .m_axi_mm2s_arlen(S_AXI_HP1_ARLEN),
+ .m_axi_mm2s_arsize(S_AXI_HP1_ARSIZE),
+ .m_axi_mm2s_arburst(S_AXI_HP1_ARBURST),
+ .m_axi_mm2s_arprot(S_AXI_HP1_ARPROT),
+ .m_axi_mm2s_arcache(S_AXI_HP1_ARCACHE),
+ .m_axi_mm2s_arvalid(S_AXI_HP1_ARVALID),
+ .m_axi_mm2s_arready(S_AXI_HP1_ARREADY),
+ .m_axi_mm2s_rdata(S_AXI_HP1_RDATA),
+ .m_axi_mm2s_rresp(S_AXI_HP1_RRESP),
+ .m_axi_mm2s_rlast(S_AXI_HP1_RLAST),
+ .m_axi_mm2s_rvalid(S_AXI_HP1_RVALID),
+ .m_axi_mm2s_rready(S_AXI_HP1_RREADY),
+
+ .mm2s_prmry_reset_out_n(),
+ .m_axis_mm2s_tdata(arm_eth1_tx_tdata),
+ .m_axis_mm2s_tkeep(arm_eth1_tx_tkeep),
+ .m_axis_mm2s_tvalid(arm_eth1_tx_tvalid),
+ .m_axis_mm2s_tready(arm_eth1_tx_tready),
+ .m_axis_mm2s_tlast(arm_eth1_tx_tlast),
+
+ .m_axi_s2mm_awaddr(S_AXI_HP1_AWADDR),
+ .m_axi_s2mm_awlen(S_AXI_HP1_AWLEN),
+ .m_axi_s2mm_awsize(S_AXI_HP1_AWSIZE),
+ .m_axi_s2mm_awburst(S_AXI_HP1_AWBURST),
+ .m_axi_s2mm_awprot(S_AXI_HP1_AWPROT),
+ .m_axi_s2mm_awcache(S_AXI_HP1_AWCACHE),
+ .m_axi_s2mm_awvalid(S_AXI_HP1_AWVALID),
+ .m_axi_s2mm_awready(S_AXI_HP1_AWREADY),
+ .m_axi_s2mm_wdata(S_AXI_HP1_WDATA),
+ .m_axi_s2mm_wstrb(S_AXI_HP1_WSTRB),
+ .m_axi_s2mm_wlast(S_AXI_HP1_WLAST),
+ .m_axi_s2mm_wvalid(S_AXI_HP1_WVALID),
+ .m_axi_s2mm_wready(S_AXI_HP1_WREADY),
+ .m_axi_s2mm_bresp(S_AXI_HP1_BRESP),
+ .m_axi_s2mm_bvalid(S_AXI_HP1_BVALID),
+ .m_axi_s2mm_bready(S_AXI_HP1_BREADY),
+
+ .s2mm_prmry_reset_out_n(),
+ .s_axis_s2mm_tdata(arm_eth1_rx_tdata),
+ .s_axis_s2mm_tkeep(arm_eth1_rx_tkeep),
+ .s_axis_s2mm_tvalid(arm_eth1_rx_tvalid),
+ .s_axis_s2mm_tready(arm_eth1_rx_tready),
+ .s_axis_s2mm_tlast(arm_eth1_rx_tlast),
+
+ .mm2s_introut(arm_eth1_tx_irq),
+ .s2mm_introut(arm_eth1_rx_irq),
+ .axi_dma_tstvec()
+ );
+
+ axi_fifo_2clk #(
+ .WIDTH(1+8+64),
+ .SIZE(5)
+ ) eth_tx_1_fifo_2clk_i (
+ .reset(clk40_rst),
+ .i_aclk(clk40),
+ .i_tdata({arm_eth1_tx_tlast, arm_eth1_tx_tkeep, arm_eth1_tx_tdata}),
+ .i_tvalid(arm_eth1_tx_tvalid),
+ .i_tready(arm_eth1_tx_tready),
+ .o_aclk(bus_clk),
+ .o_tdata({arm_eth1_tx_tlast_b, arm_eth1_tx_tkeep_b, arm_eth1_tx_tdata_b}),
+ .o_tvalid(arm_eth1_tx_tvalid_b),
+ .o_tready(arm_eth1_tx_tready_b)
+ );
+
+ axi_fifo_2clk #(
+ .WIDTH(1+8+64),
+ .SIZE(5)
+ ) eth_rx_1_fifo_2clk_i (
+ .reset(bus_rst),
+ .i_aclk(bus_clk),
+ .i_tdata({arm_eth1_rx_tlast_b, arm_eth1_rx_tkeep_b, arm_eth1_rx_tdata_b}),
+ .i_tvalid(arm_eth1_rx_tvalid_b),
+ .i_tready(arm_eth1_rx_tready_b),
+ .o_aclk(clk40),
+ .o_tdata({arm_eth1_rx_tlast, arm_eth1_rx_tkeep, arm_eth1_rx_tdata}),
+ .o_tvalid(arm_eth1_rx_tvalid),
+ .o_tready(arm_eth1_rx_tready)
+ );
+`endif
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // Processing System
+ //
+ //////////////////////////////////////////////////////////////////////
+
+ wire spi0_sclk;
+ wire spi0_mosi;
+ wire spi0_miso;
+ wire spi0_ss0;
+ wire spi0_ss1;
+ wire spi0_ss2;
+ wire spi1_sclk;
+ wire spi1_mosi;
+ wire spi1_miso;
+ wire spi1_ss0;
+ wire spi1_ss1;
+ wire spi1_ss2;
+
+ assign DBA_MODULE_PWR_ENABLE = ps_gpio_out[8];
+ assign DBA_RF_PWR_ENABLE = ps_gpio_out[9];
+ assign DBB_MODULE_PWR_ENABLE = ps_gpio_out[10];
+ assign DBB_RF_PWR_ENABLE = ps_gpio_out[11];
+ assign ps_gpio_in[8] = DBA_MODULE_PWR_ENABLE;
+ assign ps_gpio_in[9] = DBA_RF_PWR_ENABLE;
+ assign ps_gpio_in[10] = DBB_MODULE_PWR_ENABLE;
+ assign ps_gpio_in[11] = DBB_RF_PWR_ENABLE;
+
+ // Processing System
+ n310_ps_bd inst_n310_ps (
+ .SPI0_SCLK_I(1'b0),
+ .SPI0_SCLK_O(spi0_sclk),
+ .SPI0_SCLK_T(),
+ .SPI0_MOSI_I(1'b0),
+ .SPI0_MOSI_O(spi0_mosi),
+ .SPI0_MOSI_T(),
+ .SPI0_MISO_I(spi0_miso),
+ .SPI0_MISO_O(),
+ .SPI0_MISO_T(),
+ .SPI0_SS_I(1'b1),
+ .SPI0_SS_O(spi0_ss0),
+ .SPI0_SS1_O(spi0_ss1),
+ .SPI0_SS2_O(spi0_ss2),
+ .SPI0_SS_T(),
+
+ .SPI1_SCLK_I(1'b0),
+ .SPI1_SCLK_O(spi1_sclk),
+ .SPI1_SCLK_T(),
+ .SPI1_MOSI_I(1'b0),
+ .SPI1_MOSI_O(spi1_mosi),
+ .SPI1_MOSI_T(),
+ .SPI1_MISO_I(spi1_miso),
+ .SPI1_MISO_O(),
+ .SPI1_MISO_T(),
+ .SPI1_SS_I(1'b1),
+ .SPI1_SS_O(spi1_ss0),
+ .SPI1_SS1_O(spi1_ss1),
+ .SPI1_SS2_O(spi1_ss2),
+ .SPI1_SS_T(),
+
+ .bus_clk(bus_clk),
+ .bus_rstn(~bus_rst),
+ .clk40(clk40),
+ .clk40_rstn(clk40_rstn),
+
+ .M_AXI_ETH_DMA0_araddr(M_AXI_ETH_DMA0_ARADDR),
+ .M_AXI_ETH_DMA0_arprot(),
+ .M_AXI_ETH_DMA0_arready(M_AXI_ETH_DMA0_ARREADY),
+ .M_AXI_ETH_DMA0_arvalid(M_AXI_ETH_DMA0_ARVALID),
+
+ .M_AXI_ETH_DMA0_awaddr(M_AXI_ETH_DMA0_AWADDR),
+ .M_AXI_ETH_DMA0_awprot(),
+ .M_AXI_ETH_DMA0_awready(M_AXI_ETH_DMA0_AWREADY),
+ .M_AXI_ETH_DMA0_awvalid(M_AXI_ETH_DMA0_AWVALID),
+
+ .M_AXI_ETH_DMA0_wdata(M_AXI_ETH_DMA0_WDATA),
+ .M_AXI_ETH_DMA0_wready(M_AXI_ETH_DMA0_WREADY),
+ .M_AXI_ETH_DMA0_wstrb(M_AXI_ETH_DMA0_WSTRB),
+ .M_AXI_ETH_DMA0_wvalid(M_AXI_ETH_DMA0_WVALID),
+
+ .M_AXI_ETH_DMA0_rdata(M_AXI_ETH_DMA0_RDATA),
+ .M_AXI_ETH_DMA0_rready(M_AXI_ETH_DMA0_RREADY),
+ .M_AXI_ETH_DMA0_rresp(M_AXI_ETH_DMA0_RRESP),
+ .M_AXI_ETH_DMA0_rvalid(M_AXI_ETH_DMA0_RVALID),
+
+ .M_AXI_ETH_DMA0_bready(M_AXI_ETH_DMA0_BREADY),
+ .M_AXI_ETH_DMA0_bresp(M_AXI_ETH_DMA0_BRESP),
+ .M_AXI_ETH_DMA0_bvalid(M_AXI_ETH_DMA0_BVALID),
+
+ .M_AXI_ETH_DMA1_araddr(M_AXI_ETH_DMA1_ARADDR),
+ .M_AXI_ETH_DMA1_arprot(),
+ .M_AXI_ETH_DMA1_arready(M_AXI_ETH_DMA1_ARREADY),
+ .M_AXI_ETH_DMA1_arvalid(M_AXI_ETH_DMA1_ARVALID),
+
+ .M_AXI_ETH_DMA1_awaddr(M_AXI_ETH_DMA1_AWADDR),
+ .M_AXI_ETH_DMA1_awprot(),
+ .M_AXI_ETH_DMA1_awready(M_AXI_ETH_DMA1_AWREADY),
+ .M_AXI_ETH_DMA1_awvalid(M_AXI_ETH_DMA1_AWVALID),
+
+ .M_AXI_ETH_DMA1_bready(M_AXI_ETH_DMA1_BREADY),
+ .M_AXI_ETH_DMA1_bresp(M_AXI_ETH_DMA1_BRESP),
+ .M_AXI_ETH_DMA1_bvalid(M_AXI_ETH_DMA1_BVALID),
+
+ .M_AXI_ETH_DMA1_rdata(M_AXI_ETH_DMA1_RDATA),
+ .M_AXI_ETH_DMA1_rready(M_AXI_ETH_DMA1_RREADY),
+ .M_AXI_ETH_DMA1_rresp(M_AXI_ETH_DMA1_RRESP),
+ .M_AXI_ETH_DMA1_rvalid(M_AXI_ETH_DMA1_RVALID),
+
+ .M_AXI_ETH_DMA1_wdata(M_AXI_ETH_DMA1_WDATA),
+ .M_AXI_ETH_DMA1_wready(M_AXI_ETH_DMA1_WREADY),
+ .M_AXI_ETH_DMA1_wstrb(M_AXI_ETH_DMA1_WSTRB),
+ .M_AXI_ETH_DMA1_wvalid(M_AXI_ETH_DMA1_WVALID),
+
+ .M_AXI_JESD0_araddr(M_AXI_JESD0_ARADDR),
+ .M_AXI_JESD0_arprot(),
+ .M_AXI_JESD0_arready(M_AXI_JESD0_ARREADY),
+ .M_AXI_JESD0_arvalid(M_AXI_JESD0_ARVALID),
+
+ .M_AXI_JESD0_awaddr(M_AXI_JESD0_AWADDR),
+ .M_AXI_JESD0_awprot(),
+ .M_AXI_JESD0_awready(M_AXI_JESD0_AWREADY),
+ .M_AXI_JESD0_awvalid(M_AXI_JESD0_AWVALID),
+
+ .M_AXI_JESD0_bready(M_AXI_JESD0_BREADY),
+ .M_AXI_JESD0_bresp(M_AXI_JESD0_BRESP),
+ .M_AXI_JESD0_bvalid(M_AXI_JESD0_BVALID),
+
+ .M_AXI_JESD0_rdata(M_AXI_JESD0_RDATA),
+ .M_AXI_JESD0_rready(M_AXI_JESD0_RREADY),
+ .M_AXI_JESD0_rresp(M_AXI_JESD0_RRESP),
+ .M_AXI_JESD0_rvalid(M_AXI_JESD0_RVALID),
+
+ .M_AXI_JESD0_wdata(M_AXI_JESD0_WDATA),
+ .M_AXI_JESD0_wready(M_AXI_JESD0_WREADY),
+ .M_AXI_JESD0_wstrb(M_AXI_JESD0_WSTRB),
+ .M_AXI_JESD0_wvalid(M_AXI_JESD0_WVALID),
+
+ .M_AXI_JESD1_araddr(M_AXI_JESD1_ARADDR),
+ .M_AXI_JESD1_arprot(),
+ .M_AXI_JESD1_arready(M_AXI_JESD1_ARREADY),
+ .M_AXI_JESD1_arvalid(M_AXI_JESD1_ARVALID),
+
+ .M_AXI_JESD1_awaddr(M_AXI_JESD1_AWADDR),
+ .M_AXI_JESD1_awprot(),
+ .M_AXI_JESD1_awready(M_AXI_JESD1_AWREADY),
+ .M_AXI_JESD1_awvalid(M_AXI_JESD1_AWVALID),
+
+ .M_AXI_JESD1_bready(M_AXI_JESD1_BREADY),
+ .M_AXI_JESD1_bresp(M_AXI_JESD1_BRESP),
+ .M_AXI_JESD1_bvalid(M_AXI_JESD1_BVALID),
+
+ .M_AXI_JESD1_rdata(M_AXI_JESD1_RDATA),
+ .M_AXI_JESD1_rready(M_AXI_JESD1_RREADY),
+ .M_AXI_JESD1_rresp(M_AXI_JESD1_RRESP),
+ .M_AXI_JESD1_rvalid(M_AXI_JESD1_RVALID),
+
+ .M_AXI_JESD1_wdata(M_AXI_JESD1_WDATA),
+ .M_AXI_JESD1_wready(M_AXI_JESD1_WREADY),
+ .M_AXI_JESD1_wstrb(M_AXI_JESD1_WSTRB),
+ .M_AXI_JESD1_wvalid(M_AXI_JESD1_WVALID),
+
+ .M_AXI_NET0_araddr(M_AXI_NET0_ARADDR),
+ .M_AXI_NET0_arprot(),
+ .M_AXI_NET0_arready(M_AXI_NET0_ARREADY),
+ .M_AXI_NET0_arvalid(M_AXI_NET0_ARVALID),
+
+ .M_AXI_NET0_awaddr(M_AXI_NET0_AWADDR),
+ .M_AXI_NET0_awprot(),
+ .M_AXI_NET0_awready(M_AXI_NET0_AWREADY),
+ .M_AXI_NET0_awvalid(M_AXI_NET0_AWVALID),
+
+ .M_AXI_NET0_bready(M_AXI_NET0_BREADY),
+ .M_AXI_NET0_bresp(M_AXI_NET0_BRESP),
+ .M_AXI_NET0_bvalid(M_AXI_NET0_BVALID),
+
+ .M_AXI_NET0_rdata(M_AXI_NET0_RDATA),
+ .M_AXI_NET0_rready(M_AXI_NET0_RREADY),
+ .M_AXI_NET0_rresp(M_AXI_NET0_RRESP),
+ .M_AXI_NET0_rvalid(M_AXI_NET0_RVALID),
+
+ .M_AXI_NET0_wdata(M_AXI_NET0_WDATA),
+ .M_AXI_NET0_wready(M_AXI_NET0_WREADY),
+ .M_AXI_NET0_wstrb(M_AXI_NET0_WSTRB),
+ .M_AXI_NET0_wvalid(M_AXI_NET0_WVALID),
+
+ .M_AXI_NET1_araddr(M_AXI_NET1_ARADDR),
+ .M_AXI_NET1_arprot(),
+ .M_AXI_NET1_arready(M_AXI_NET1_ARREADY),
+ .M_AXI_NET1_arvalid(M_AXI_NET1_ARVALID),
+
+ .M_AXI_NET1_awaddr(M_AXI_NET1_AWADDR),
+ .M_AXI_NET1_awprot(),
+ .M_AXI_NET1_awready(M_AXI_NET1_AWREADY),
+ .M_AXI_NET1_awvalid(M_AXI_NET1_AWVALID),
+
+ .M_AXI_NET1_bready(M_AXI_NET1_BREADY),
+ .M_AXI_NET1_bresp(M_AXI_NET1_BRESP),
+ .M_AXI_NET1_bvalid(M_AXI_NET1_BVALID),
+
+ .M_AXI_NET1_rdata(M_AXI_NET1_RDATA),
+ .M_AXI_NET1_rready(M_AXI_NET1_RREADY),
+ .M_AXI_NET1_rresp(M_AXI_NET1_RRESP),
+ .M_AXI_NET1_rvalid(M_AXI_NET1_RVALID),
+
+ .M_AXI_NET1_wdata(M_AXI_NET1_WDATA),
+ .M_AXI_NET1_wready(M_AXI_NET1_WREADY),
+ .M_AXI_NET1_wstrb(M_AXI_NET1_WSTRB),
+ .M_AXI_NET1_wvalid(M_AXI_NET1_WVALID),
+
+ .M_AXI_NET2_araddr(M_AXI_NET2_ARADDR),
+ .M_AXI_NET2_arprot(),
+ .M_AXI_NET2_arready(M_AXI_NET2_ARREADY),
+ .M_AXI_NET2_arvalid(M_AXI_NET2_ARVALID),
+
+ .M_AXI_NET2_awaddr(M_AXI_NET2_AWADDR),
+ .M_AXI_NET2_awprot(),
+ .M_AXI_NET2_awready(M_AXI_NET2_AWREADY),
+ .M_AXI_NET2_awvalid(M_AXI_NET2_AWVALID),
+
+ .M_AXI_NET2_bready(M_AXI_NET2_BREADY),
+ .M_AXI_NET2_bresp(M_AXI_NET2_BRESP),
+ .M_AXI_NET2_bvalid(M_AXI_NET2_BVALID),
+
+ .M_AXI_NET2_rdata(M_AXI_NET2_RDATA),
+ .M_AXI_NET2_rready(M_AXI_NET2_RREADY),
+ .M_AXI_NET2_rresp(M_AXI_NET2_RRESP),
+ .M_AXI_NET2_rvalid(M_AXI_NET2_RVALID),
+
+ .M_AXI_NET2_wdata(M_AXI_NET2_WDATA),
+ .M_AXI_NET2_wready(M_AXI_NET2_WREADY),
+ .M_AXI_NET2_wstrb(M_AXI_NET2_WSTRB),
+ .M_AXI_NET2_wvalid(M_AXI_NET2_WVALID),
+
+ .M_AXI_WR_CLK(m_axi_wr_clk),
+ .M_AXI_WR_RSTn(1'b1),
+ .M_AXI_WR_araddr(m_axi_wr_araddr),
+ .M_AXI_WR_arready(m_axi_wr_arready),
+ .M_AXI_WR_arvalid(m_axi_wr_arvalid),
+ .M_AXI_WR_arprot(),
+ .M_AXI_WR_awaddr(m_axi_wr_awaddr),
+ .M_AXI_WR_awready(m_axi_wr_awready),
+ .M_AXI_WR_awvalid(m_axi_wr_awvalid),
+ .M_AXI_WR_awprot(),
+ .M_AXI_WR_bready(m_axi_wr_bready),
+ .M_AXI_WR_bresp(m_axi_wr_bresp),
+ .M_AXI_WR_bvalid(m_axi_wr_bvalid),
+ .M_AXI_WR_rdata(m_axi_wr_rdata),
+ .M_AXI_WR_rready(m_axi_wr_rready),
+ .M_AXI_WR_rresp(m_axi_wr_rresp),
+ .M_AXI_WR_rvalid(m_axi_wr_rvalid),
+ .M_AXI_WR_wdata(m_axi_wr_wdata),
+ .M_AXI_WR_wready(m_axi_wr_wready),
+ .M_AXI_WR_wstrb(m_axi_wr_wstrb),
+ .M_AXI_WR_wvalid(m_axi_wr_wvalid),
+
+ .M_AXI_XBAR_araddr(M_AXI_XBAR_ARADDR),
+ .M_AXI_XBAR_arprot(),
+ .M_AXI_XBAR_arready(M_AXI_XBAR_ARREADY),
+ .M_AXI_XBAR_arvalid(M_AXI_XBAR_ARVALID),
+
+ .M_AXI_XBAR_awaddr(M_AXI_XBAR_AWADDR),
+ .M_AXI_XBAR_awprot(),
+ .M_AXI_XBAR_awready(M_AXI_XBAR_AWREADY),
+ .M_AXI_XBAR_awvalid(M_AXI_XBAR_AWVALID),
+
+ .M_AXI_XBAR_bready(M_AXI_XBAR_BREADY),
+ .M_AXI_XBAR_bresp(M_AXI_XBAR_BRESP),
+ .M_AXI_XBAR_bvalid(M_AXI_XBAR_BVALID),
+
+ .M_AXI_XBAR_rdata(M_AXI_XBAR_RDATA),
+ .M_AXI_XBAR_rready(M_AXI_XBAR_RREADY),
+ .M_AXI_XBAR_rresp(M_AXI_XBAR_RRESP),
+ .M_AXI_XBAR_rvalid(M_AXI_XBAR_RVALID),
+
+ .M_AXI_XBAR_wdata(M_AXI_XBAR_WDATA),
+ .M_AXI_XBAR_wready(M_AXI_XBAR_WREADY),
+ .M_AXI_XBAR_wstrb(M_AXI_XBAR_WSTRB),
+ .M_AXI_XBAR_wvalid(M_AXI_XBAR_WVALID),
+
+ .S_AXI_GP0_ACLK(clk40),
+ .S_AXI_GP0_ARESETN(clk40_rstn),
+ .S_AXI_GP0_araddr(S_AXI_GP0_ARADDR),
+ .S_AXI_GP0_arburst(S_AXI_GP0_ARBURST),
+ .S_AXI_GP0_arcache(S_AXI_GP0_ARCACHE),
+ .S_AXI_GP0_arid(S_AXI_GP0_ARID),
+ .S_AXI_GP0_arlen(S_AXI_GP0_ARLEN),
+ .S_AXI_GP0_arlock(1'b0),
+ .S_AXI_GP0_arprot(S_AXI_GP0_ARPROT),
+ .S_AXI_GP0_arqos(4'b0000),
+ .S_AXI_GP0_arready(S_AXI_GP0_ARREADY),
+ .S_AXI_GP0_arregion(4'b0000),
+ .S_AXI_GP0_arsize(S_AXI_GP0_ARSIZE),
+ .S_AXI_GP0_arvalid(S_AXI_GP0_ARVALID),
+ .S_AXI_GP0_awaddr(S_AXI_GP0_AWADDR),
+ .S_AXI_GP0_awburst(S_AXI_GP0_AWBURST),
+ .S_AXI_GP0_awcache(S_AXI_GP0_AWCACHE),
+ .S_AXI_GP0_awid(S_AXI_GP0_AWID),
+ .S_AXI_GP0_awlen(S_AXI_GP0_AWLEN),
+ .S_AXI_GP0_awlock(1'b0),
+ .S_AXI_GP0_awprot(S_AXI_GP0_AWPROT),
+ .S_AXI_GP0_awqos(4'b0000),
+ .S_AXI_GP0_awregion(4'b0000),
+ .S_AXI_GP0_awready(S_AXI_GP0_AWREADY),
+ .S_AXI_GP0_awsize(S_AXI_GP0_AWSIZE),
+ .S_AXI_GP0_awvalid(S_AXI_GP0_AWVALID),
+ .S_AXI_GP0_bid(),
+ .S_AXI_GP0_bready(S_AXI_GP0_BREADY),
+ .S_AXI_GP0_bresp(S_AXI_GP0_BRESP),
+ .S_AXI_GP0_bvalid(S_AXI_GP0_BVALID),
+ .S_AXI_GP0_rdata(S_AXI_GP0_RDATA),
+ .S_AXI_GP0_rid(),
+ .S_AXI_GP0_rlast(S_AXI_GP0_RLAST),
+ .S_AXI_GP0_rready(S_AXI_GP0_RREADY),
+ .S_AXI_GP0_rresp(S_AXI_GP0_RRESP),
+ .S_AXI_GP0_rvalid(S_AXI_GP0_RVALID),
+ .S_AXI_GP0_wdata(S_AXI_GP0_WDATA),
+ .S_AXI_GP0_wlast(S_AXI_GP0_WLAST),
+ .S_AXI_GP0_wready(S_AXI_GP0_WREADY),
+ .S_AXI_GP0_wstrb(S_AXI_GP0_WSTRB),
+ .S_AXI_GP0_wvalid(S_AXI_GP0_WVALID),
+
+ .S_AXI_GP1_ACLK(clk40),
+ .S_AXI_GP1_ARESETN(clk40_rstn),
+ .S_AXI_GP1_araddr(S_AXI_GP1_ARADDR),
+ .S_AXI_GP1_arburst(S_AXI_GP1_ARBURST),
+ .S_AXI_GP1_arcache(S_AXI_GP1_ARCACHE),
+ .S_AXI_GP1_arid(S_AXI_GP1_ARID),
+ .S_AXI_GP1_arlen(S_AXI_GP1_ARLEN),
+ .S_AXI_GP1_arlock(1'b0),
+ .S_AXI_GP1_arprot(S_AXI_GP1_ARPROT),
+ .S_AXI_GP1_arqos(4'b000),
+ .S_AXI_GP1_arregion(4'b0000),
+ .S_AXI_GP1_arready(S_AXI_GP1_ARREADY),
+ .S_AXI_GP1_arsize(S_AXI_GP1_ARSIZE),
+ .S_AXI_GP1_arvalid(S_AXI_GP1_ARVALID),
+ .S_AXI_GP1_awaddr(S_AXI_GP1_AWADDR),
+ .S_AXI_GP1_awburst(S_AXI_GP1_AWBURST),
+ .S_AXI_GP1_awcache(S_AXI_GP1_AWCACHE),
+ .S_AXI_GP1_awid(S_AXI_GP1_AWID),
+ .S_AXI_GP1_awlen(S_AXI_GP1_AWLEN),
+ .S_AXI_GP1_awlock(1'b0),
+ .S_AXI_GP1_awprot(S_AXI_GP1_AWPROT),
+ .S_AXI_GP1_awqos(4'b0000),
+ .S_AXI_GP1_awregion(4'b0000),
+ .S_AXI_GP1_awready(S_AXI_GP1_AWREADY),
+ .S_AXI_GP1_awsize(S_AXI_GP1_AWSIZE),
+ .S_AXI_GP1_awvalid(S_AXI_GP1_AWVALID),
+ .S_AXI_GP1_bid(),
+ .S_AXI_GP1_bready(S_AXI_GP1_BREADY),
+ .S_AXI_GP1_bresp(S_AXI_GP1_BRESP),
+ .S_AXI_GP1_bvalid(S_AXI_GP1_BVALID),
+ .S_AXI_GP1_rdata(S_AXI_GP1_RDATA),
+ .S_AXI_GP1_rid(),
+ .S_AXI_GP1_rlast(S_AXI_GP1_RLAST),
+ .S_AXI_GP1_rready(S_AXI_GP1_RREADY),
+ .S_AXI_GP1_rresp(S_AXI_GP1_RRESP),
+ .S_AXI_GP1_rvalid(S_AXI_GP1_RVALID),
+ .S_AXI_GP1_wdata(S_AXI_GP1_WDATA),
+ .S_AXI_GP1_wlast(S_AXI_GP1_WLAST),
+ .S_AXI_GP1_wready(S_AXI_GP1_WREADY),
+ .S_AXI_GP1_wstrb(S_AXI_GP1_WSTRB),
+ .S_AXI_GP1_wvalid(S_AXI_GP1_WVALID),
+
+ .S_AXI_HP0_ACLK(clk40),
+ .S_AXI_HP0_ARESETN(clk40_rstn),
+ .S_AXI_HP0_araddr(S_AXI_HP0_ARADDR),
+ .S_AXI_HP0_arburst(S_AXI_HP0_ARBURST),
+ .S_AXI_HP0_arcache(S_AXI_HP0_ARCACHE),
+ .S_AXI_HP0_arid(S_AXI_HP0_ARID),
+ .S_AXI_HP0_arlen(S_AXI_HP0_ARLEN),
+ .S_AXI_HP0_arlock(1'b0),
+ .S_AXI_HP0_arprot(S_AXI_HP0_ARPROT),
+ .S_AXI_HP0_arqos(4'b0000),
+ .S_AXI_HP0_arready(S_AXI_HP0_ARREADY),
+ .S_AXI_HP0_arsize(S_AXI_HP0_ARSIZE),
+ .S_AXI_HP0_arvalid(S_AXI_HP0_ARVALID),
+ .S_AXI_HP0_awaddr(S_AXI_HP0_AWADDR),
+ .S_AXI_HP0_awburst(S_AXI_HP0_AWBURST),
+ .S_AXI_HP0_awcache(S_AXI_HP0_AWCACHE),
+ .S_AXI_HP0_awid(S_AXI_HP0_AWID),
+ .S_AXI_HP0_awlen(S_AXI_HP0_AWLEN),
+ .S_AXI_HP0_awlock(1'b0),
+ .S_AXI_HP0_awprot(S_AXI_HP0_AWPROT),
+ .S_AXI_HP0_awqos(4'b0000),
+ .S_AXI_HP0_awready(S_AXI_HP0_AWREADY),
+ .S_AXI_HP0_awsize(S_AXI_HP0_AWSIZE),
+ .S_AXI_HP0_awvalid(S_AXI_HP0_AWVALID),
+ .S_AXI_HP0_bid(),
+ .S_AXI_HP0_bready(S_AXI_HP0_BREADY),
+ .S_AXI_HP0_bresp(S_AXI_HP0_BRESP),
+ .S_AXI_HP0_bvalid(S_AXI_HP0_BVALID),
+ .S_AXI_HP0_rdata(S_AXI_HP0_RDATA),
+ .S_AXI_HP0_rid(),
+ .S_AXI_HP0_rlast(S_AXI_HP0_RLAST),
+ .S_AXI_HP0_rready(S_AXI_HP0_RREADY),
+ .S_AXI_HP0_rresp(S_AXI_HP0_RRESP),
+ .S_AXI_HP0_rvalid(S_AXI_HP0_RVALID),
+ .S_AXI_HP0_wdata(S_AXI_HP0_WDATA),
+ .S_AXI_HP0_wlast(S_AXI_HP0_WLAST),
+ .S_AXI_HP0_wready(S_AXI_HP0_WREADY),
+ .S_AXI_HP0_wstrb(S_AXI_HP0_WSTRB),
+ .S_AXI_HP0_wvalid(S_AXI_HP0_WVALID),
+
+ .S_AXI_HP1_ACLK(clk40),
+ .S_AXI_HP1_ARESETN(clk40_rstn),
+ .S_AXI_HP1_araddr(S_AXI_HP1_ARADDR),
+ .S_AXI_HP1_arburst(S_AXI_HP1_ARBURST),
+ .S_AXI_HP1_arcache(S_AXI_HP1_ARCACHE),
+ .S_AXI_HP1_arid(S_AXI_HP1_ARID),
+ .S_AXI_HP1_arlen(S_AXI_HP1_ARLEN),
+ .S_AXI_HP1_arlock(1'b0),
+ .S_AXI_HP1_arprot(S_AXI_HP1_ARPROT),
+ .S_AXI_HP1_arqos(4'b0000),
+ .S_AXI_HP1_arready(S_AXI_HP1_ARREADY),
+ .S_AXI_HP1_arsize(S_AXI_HP1_ARSIZE),
+ .S_AXI_HP1_arvalid(S_AXI_HP1_ARVALID),
+ .S_AXI_HP1_awaddr(S_AXI_HP1_AWADDR),
+ .S_AXI_HP1_awburst(S_AXI_HP1_AWBURST),
+ .S_AXI_HP1_awcache(S_AXI_HP1_AWCACHE),
+ .S_AXI_HP1_awid(S_AXI_HP1_AWID),
+ .S_AXI_HP1_awlen(S_AXI_HP1_AWLEN),
+ .S_AXI_HP1_awlock(1'b0),
+ .S_AXI_HP1_awprot(S_AXI_HP1_AWPROT),
+ .S_AXI_HP1_awqos(4'b0000),
+ .S_AXI_HP1_awready(S_AXI_HP1_AWREADY),
+ .S_AXI_HP1_awsize(S_AXI_HP1_AWSIZE),
+ .S_AXI_HP1_awvalid(S_AXI_HP1_AWVALID),
+ .S_AXI_HP1_bid(),
+ .S_AXI_HP1_bready(S_AXI_HP1_BREADY),
+ .S_AXI_HP1_bresp(S_AXI_HP1_BRESP),
+ .S_AXI_HP1_bvalid(S_AXI_HP1_BVALID),
+ .S_AXI_HP1_rdata(S_AXI_HP1_RDATA),
+ .S_AXI_HP1_rid(),
+ .S_AXI_HP1_rlast(S_AXI_HP1_RLAST),
+ .S_AXI_HP1_rready(S_AXI_HP1_RREADY),
+ .S_AXI_HP1_rresp(S_AXI_HP1_RRESP),
+ .S_AXI_HP1_rvalid(S_AXI_HP1_RVALID),
+ .S_AXI_HP1_wdata(S_AXI_HP1_WDATA),
+ .S_AXI_HP1_wlast(S_AXI_HP1_WLAST),
+ .S_AXI_HP1_wready(S_AXI_HP1_WREADY),
+ .S_AXI_HP1_wstrb(S_AXI_HP1_WSTRB),
+ .S_AXI_HP1_wvalid(S_AXI_HP1_WVALID),
+
+ // ARM DMA
+ .s_axis_dma_tdata(s_axis_dma_tdata),
+ .s_axis_dma_tdest(s_axis_dma_tdest),
+ .s_axis_dma_tlast(s_axis_dma_tlast),
+ .s_axis_dma_tready(s_axis_dma_tready),
+ .s_axis_dma_tvalid(s_axis_dma_tvalid),
+ .m_axis_dma_tdata(m_axis_dma_tdata),
+ .m_axis_dma_tuser(m_axis_dma_tuser),
+ .m_axis_dma_tlast(m_axis_dma_tlast),
+ .m_axis_dma_tready(m_axis_dma_tready),
+ .m_axis_dma_tvalid(m_axis_dma_tvalid),
+
+ // Misc Interrupts, GPIO, clk
+ .IRQ_F2P(IRQ_F2P),
+
+ .GPIO_0_tri_i(ps_gpio_in),
+ .GPIO_0_tri_o(ps_gpio_out),
+ .GPIO_0_tri_t(ps_gpio_tri),
+
+ .JTAG0_TCK(DBA_CPLD_JTAG_TCK),
+ .JTAG0_TMS(DBA_CPLD_JTAG_TMS),
+ .JTAG0_TDI(DBA_CPLD_JTAG_TDI),
+ .JTAG0_TDO(DBA_CPLD_JTAG_TDO),
+
+ .JTAG1_TCK(DBB_CPLD_JTAG_TCK),
+ .JTAG1_TMS(DBB_CPLD_JTAG_TMS),
+ .JTAG1_TDI(DBB_CPLD_JTAG_TDI),
+ .JTAG1_TDO(DBB_CPLD_JTAG_TDO),
+
+ .FCLK_CLK0(FCLK_CLK0),
+ .FCLK_RESET0_N(FCLK_RESET0_N),
+ .FCLK_CLK1(FCLK_CLK1),
+ .FCLK_RESET1_N(),
+ .FCLK_CLK2(FCLK_CLK2),
+ .FCLK_RESET2_N(),
+ .FCLK_CLK3(FCLK_CLK3),
+ .FCLK_RESET3_N(),
+
+ .WR_UART_txd(wr_uart_rxd), // rx <-> tx
+ .WR_UART_rxd(wr_uart_txd), // rx <-> tx
+
+ .qsfp_sda_i(qsfp_sda_i),
+ .qsfp_sda_o(qsfp_sda_o),
+ .qsfp_sda_t(qsfp_sda_t),
+ .qsfp_scl_i(qsfp_scl_i),
+ .qsfp_scl_o(qsfp_scl_o),
+ .qsfp_scl_t(qsfp_scl_t),
+
+ .USBIND_0_port_indctl(),
+ .USBIND_0_vbus_pwrfault(),
+ .USBIND_0_vbus_pwrselect(),
+
+ // Outward connections to the pins
+ .MIO(MIO),
+ .DDR_cas_n(DDR_CAS_n),
+ .DDR_cke(DDR_CKE),
+ .DDR_ck_n(DDR_Clk_n),
+ .DDR_ck_p(DDR_Clk),
+ .DDR_cs_n(DDR_CS_n),
+ .DDR_reset_n(DDR_DRSTB),
+ .DDR_odt(DDR_ODT),
+ .DDR_ras_n(DDR_RAS_n),
+ .DDR_we_n(DDR_WEB),
+ .DDR_ba(DDR_BankAddr),
+ .DDR_addr(DDR_Addr),
+ .DDR_VRN(DDR_VRN),
+ .DDR_VRP(DDR_VRP),
+ .DDR_dm(DDR_DM),
+ .DDR_dq(DDR_DQ),
+ .DDR_dqs_n(DDR_DQS_n),
+ .DDR_dqs_p(DDR_DQS),
+ .PS_SRSTB(PS_SRSTB),
+ .PS_CLK(PS_CLK),
+ .PS_PORB(PS_PORB)
+ );
+
+ ///////////////////////////////////////////////////////////////////////////////////
+ //
+ // Xilinx DDR3 Controller and PHY.
+ //
+ ///////////////////////////////////////////////////////////////////////////////////
+
+ wire ddr3_axi_clk; // 1/4 DDR external clock rate (200MHz)
+ wire ddr3_axi_rst; // Synchronized to ddr_sys_clk
+ wire ddr3_running; // DRAM calibration complete.
+ wire [11:0] device_temp;
+
+ // Slave Interface Write Address Ports
+ wire [3:0] ddr3_axi_awid;
+ wire [31:0] ddr3_axi_awaddr;
+ wire [7:0] ddr3_axi_awlen;
+ wire [2:0] ddr3_axi_awsize;
+ wire [1:0] ddr3_axi_awburst;
+ wire [0:0] ddr3_axi_awlock;
+ wire [3:0] ddr3_axi_awcache;
+ wire [2:0] ddr3_axi_awprot;
+ wire [3:0] ddr3_axi_awqos;
+ wire ddr3_axi_awvalid;
+ wire ddr3_axi_awready;
+ // Slave Interface Write Data Ports
+ wire [255:0] ddr3_axi_wdata;
+ wire [31:0] ddr3_axi_wstrb;
+ wire ddr3_axi_wlast;
+ wire ddr3_axi_wvalid;
+ wire ddr3_axi_wready;
+ // Slave Interface Write Response Ports
+ wire ddr3_axi_bready;
+ wire [3:0] ddr3_axi_bid;
+ wire [1:0] ddr3_axi_bresp;
+ wire ddr3_axi_bvalid;
+ // Slave Interface Read Address Ports
+ wire [3:0] ddr3_axi_arid;
+ wire [31:0] ddr3_axi_araddr;
+ wire [7:0] ddr3_axi_arlen;
+ wire [2:0] ddr3_axi_arsize;
+ wire [1:0] ddr3_axi_arburst;
+ wire [0:0] ddr3_axi_arlock;
+ wire [3:0] ddr3_axi_arcache;
+ wire [2:0] ddr3_axi_arprot;
+ wire [3:0] ddr3_axi_arqos;
+ wire ddr3_axi_arvalid;
+ wire ddr3_axi_arready;
+ // Slave Interface Read Data Ports
+ wire ddr3_axi_rready;
+ wire [3:0] ddr3_axi_rid;
+ wire [255:0] ddr3_axi_rdata;
+ wire [1:0] ddr3_axi_rresp;
+ wire ddr3_axi_rlast;
+ wire ddr3_axi_rvalid;
+
+ reg ddr3_axi_rst_reg_n;
+
+ // Copied this reset circuit from example design.
+ always @(posedge ddr3_axi_clk)
+ ddr3_axi_rst_reg_n <= ~ddr3_axi_rst;
+
+
+ // Instantiate the DDR3 MIG core
+ //
+ // The top-level IP block has no parameters defined for some reason.
+ // Most of configurable parameters are hard-coded in the mig so get
+ // some additional knobs we pull those out into verilog headers.
+ //
+ // Synthesis params: ip/ddr3_32bit/ddr3_32bit_mig_parameters.vh
+ // Simulation params: ip/ddr3_32bit/ddr3_32bit_mig_sim_parameters.vh
+
+ ddr3_32bit u_ddr3_32bit (
+ // Memory interface ports
+ .ddr3_addr (ddr3_addr),
+ .ddr3_ba (ddr3_ba),
+ .ddr3_cas_n (ddr3_cas_n),
+ .ddr3_ck_n (ddr3_ck_n),
+ .ddr3_ck_p (ddr3_ck_p),
+ .ddr3_cke (ddr3_cke),
+ .ddr3_ras_n (ddr3_ras_n),
+ .ddr3_reset_n (ddr3_reset_n),
+ .ddr3_we_n (ddr3_we_n),
+ .ddr3_dq (ddr3_dq),
+ .ddr3_dqs_n (ddr3_dqs_n),
+ .ddr3_dqs_p (ddr3_dqs_p),
+ .init_calib_complete (ddr3_running),
+ .device_temp_i (device_temp),
+
+ .ddr3_cs_n (ddr3_cs_n),
+ .ddr3_dm (ddr3_dm),
+ .ddr3_odt (ddr3_odt),
+ // Application interface ports
+ .ui_clk (ddr3_axi_clk), // 200Hz clock out
+ .ui_clk_sync_rst (ddr3_axi_rst), // Active high Reset signal synchronised to 200 MHz.
+ .aresetn (ddr3_axi_rst_reg_n),
+ .app_sr_req (1'b0),
+ .app_sr_active (),
+ .app_ref_req (1'b0),
+ .app_ref_ack (),
+ .app_zq_req (1'b0),
+ .app_zq_ack (),
+ // Slave Interface Write Address Ports
+ .s_axi_awid (ddr3_axi_awid),
+ .s_axi_awaddr (ddr3_axi_awaddr),
+ .s_axi_awlen (ddr3_axi_awlen),
+ .s_axi_awsize (ddr3_axi_awsize),
+ .s_axi_awburst (ddr3_axi_awburst),
+ .s_axi_awlock (ddr3_axi_awlock),
+ .s_axi_awcache (ddr3_axi_awcache),
+ .s_axi_awprot (ddr3_axi_awprot),
+ .s_axi_awqos (ddr3_axi_awqos),
+ .s_axi_awvalid (ddr3_axi_awvalid),
+ .s_axi_awready (ddr3_axi_awready),
+ // Slave Interface Write Data Ports
+ .s_axi_wdata (ddr3_axi_wdata),
+ .s_axi_wstrb (ddr3_axi_wstrb),
+ .s_axi_wlast (ddr3_axi_wlast),
+ .s_axi_wvalid (ddr3_axi_wvalid),
+ .s_axi_wready (ddr3_axi_wready),
+ // Slave Interface Write Response Ports
+ .s_axi_bid (ddr3_axi_bid),
+ .s_axi_bresp (ddr3_axi_bresp),
+ .s_axi_bvalid (ddr3_axi_bvalid),
+ .s_axi_bready (ddr3_axi_bready),
+ // Slave Interface Read Address Ports
+ .s_axi_arid (ddr3_axi_arid),
+ .s_axi_araddr (ddr3_axi_araddr),
+ .s_axi_arlen (ddr3_axi_arlen),
+ .s_axi_arsize (ddr3_axi_arsize),
+ .s_axi_arburst (ddr3_axi_arburst),
+ .s_axi_arlock (ddr3_axi_arlock),
+ .s_axi_arcache (ddr3_axi_arcache),
+ .s_axi_arprot (ddr3_axi_arprot),
+ .s_axi_arqos (ddr3_axi_arqos),
+ .s_axi_arvalid (ddr3_axi_arvalid),
+ .s_axi_arready (ddr3_axi_arready),
+ // Slave Interface Read Data Ports
+ .s_axi_rid (ddr3_axi_rid),
+ .s_axi_rdata (ddr3_axi_rdata),
+ .s_axi_rresp (ddr3_axi_rresp),
+ .s_axi_rlast (ddr3_axi_rlast),
+ .s_axi_rvalid (ddr3_axi_rvalid),
+ .s_axi_rready (ddr3_axi_rready),
+ // System Clock Ports
+ .sys_clk_p (sys_clk_p),
+ .sys_clk_n (sys_clk_n),
+ .clk_ref_i (bus_clk),
+
+ .sys_rst (~global_rst) // IJB. Poorly named active low. Should change RST_ACT_LOW.
+ );
+
+ // Temperature monitor module
+ mig_7series_v4_2_tempmon #(
+ .TEMP_MON_CONTROL("INTERNAL"),
+ .XADC_CLK_PERIOD(5000 /* 200MHz clock period in ps */)
+ ) tempmon_i (
+ .clk(bus_clk), .xadc_clk(bus_clk), .rst(bus_rst),
+ .device_temp_i(12'd0 /* ignored */), .device_temp(device_temp)
+ );
+
+ ///////////////////////////////////////////////////////
+ //
+ // DB PS SPI Connections
+ //
+ ///////////////////////////////////////////////////////
+ wire [NUM_CHANNELS-1:0] rx_atr;
+ wire [NUM_CHANNELS-1:0] tx_atr;
+ (* IOB = "true" *) reg [NUM_CHANNELS-1:0] rx_atr_reg;
+ (* IOB = "true" *) reg [NUM_CHANNELS-1:0] tx_atr_reg;
+
+ // Radio GPIO control for DSA
+ wire [16*NUM_CHANNELS-1:0] db_gpio_out;
+ wire [16*NUM_CHANNELS-1:0] db_gpio_ddr;
+ wire [16*NUM_CHANNELS-1:0] db_gpio_in;
+ wire [16*NUM_CHANNELS-1:0] db_gpio_fab;
+
+ // DB A SPI Connections
+ assign DBA_CPLD_PS_SPI_SCLK = spi0_sclk;
+ assign DBA_CPLD_PS_SPI_MOSI = spi0_mosi;
+
+ // Assign individual chip selects from PS SPI MASTER 0.
+ assign DBA_CPLD_PS_SPI_CS_B = spi0_ss0;
+ assign DBA_CLKDIS_SPI_CS_B = spi0_ss1;
+ assign DBA_PHDAC_SPI_CS_B = spi0_ss2;
+ assign DBA_ADC_SPI_CS_B = ps_gpio_out[13];
+ assign DBA_DAC_SPI_CS_B = ps_gpio_out[14];
+
+ // Returned data mux from the SPI interfaces.
+ assign spi0_miso = DBA_CPLD_PS_SPI_MISO;
+
+ // TODO: How to control?
+ assign DBA_ATR_RX = rx_atr_reg[0];
+ assign DBA_ATR_TX = tx_atr_reg[0];
+ assign DBA_TXRX_SW_CTRL_1 = db_gpio_out[16*0+0];
+ assign DBA_TXRX_SW_CTRL_2 = db_gpio_out[16*0+1];
+ assign DBA_LED_RX = db_gpio_out[16*0+2];
+ assign DBA_LED_RX2 = db_gpio_out[16*0+3];
+ assign DBA_LED_TX = db_gpio_out[16*0+4];
+
+ // DB B SPI Connections
+ assign DBB_CPLD_PS_SPI_SCLK = spi1_sclk;
+ assign DBB_CPLD_PS_SPI_MOSI = spi1_mosi;
+
+ // Assign individual chip selects from PS SPI MASTER 1.
+ assign DBB_CPLD_PS_SPI_CS_B = spi1_ss0;
+ assign DBB_CLKDIS_SPI_CS_B = spi1_ss1;
+ assign DBB_PHDAC_SPI_CS_B = spi1_ss2;
+ assign DBB_ADC_SPI_CS_B = ps_gpio_out[15];
+ assign DBB_DAC_SPI_CS_B = ps_gpio_out[16];
+
+ // Returned data mux from the SPI interfaces.
+ assign spi1_miso = DBB_CPLD_PS_SPI_MISO;
+
+
+ // TODO: How to control?
+ assign DBB_ATR_RX = rx_atr_reg[1];
+ assign DBB_ATR_TX = tx_atr_reg[1];
+ assign DBB_TXRX_SW_CTRL_1 = db_gpio_out[16*1+0];
+ assign DBB_TXRX_SW_CTRL_2 = db_gpio_out[16*1+1];
+ assign DBB_LED_RX = db_gpio_out[16*1+2];
+ assign DBB_LED_RX2 = db_gpio_out[16*1+3];
+ assign DBB_LED_TX = db_gpio_out[16*1+4];
+
+
+ ///////////////////////////////////////////////////////
+ //
+ // N320 CORE
+ //
+ ///////////////////////////////////////////////////////
+
+ wire [CHANNEL_WIDTH-1:0] rx_db[2*NUM_CHANNELS-1:0];
+ wire [CHANNEL_WIDTH-1:0] tx_db[2*NUM_CHANNELS-1:0];
+ wire [CHANNEL_WIDTH-1:0] rx[NUM_CHANNELS-1:0];
+ wire [CHANNEL_WIDTH-1:0] tx[NUM_CHANNELS-1:0];
+ wire [CHANNEL_WIDTH*NUM_CHANNELS-1:0] rx_flat;
+ wire [CHANNEL_WIDTH*NUM_CHANNELS-1:0] tx_flat;
+ wire [47:0] rx_hb[NUM_CHANNELS-1:0];
+ wire [95:0] tx_hb[NUM_CHANNELS-1:0];
+
+ wire [NUM_CHANNELS-1:0] rx_stb;
+ wire [NUM_CHANNELS-1:0] tx_stb;
+
+ wire [31:0] build_datestamp;
+
+ /* 2:1 and 1:2 filters to bring sample rates down
+ */
+ genvar i;
+ generate for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
+ hb47_1to2 tx_1to2 (
+ .aresetn(!radio_rst),
+ .aclk(radio_clk),
+ .s_axis_data_tvalid(tx_stb[i]),
+ .s_axis_data_tready(),
+ .s_axis_data_tdata(tx[i]),
+ .m_axis_data_tvalid(),
+ .m_axis_data_tready(tx_stb[i]),
+ .m_axis_data_tdata(tx_hb[i])
+ );
+
+ assign tx_db[2*i] = {tx_hb[i][39:24], tx_hb[i][15:0]};
+ assign tx_db[2*i+1] = {tx_hb[i][87:72], tx_hb[i][63:48]};
+
+ hb47_2to1 rx_2to1 (
+ .aresetn(!radio_rst),
+ .aclk(radio_clk),
+ .s_axis_data_tvalid(rx_stb[i]),
+ .s_axis_data_tready(),
+ .s_axis_data_tdata({rx_db[2*i+1], rx_db[2*i]}),
+ .m_axis_data_tvalid(),
+ .m_axis_data_tdata(rx_hb[i])
+ );
+
+ assign rx[i] = {rx_hb[i][39:24], rx_hb[i][15:0]};
+ end endgenerate
+
+ generate
+ for (i = 0; i < NUM_CHANNELS; i = i + 1) begin
+ // Radio Data
+ assign rx_flat[CHANNEL_WIDTH*i +: CHANNEL_WIDTH] = rx[i];
+ assign tx[i] = tx_flat[CHANNEL_WIDTH*i +: CHANNEL_WIDTH];
+ end
+ endgenerate
+
+ USR_ACCESSE2 usr_access_i (
+ .DATA(build_datestamp), .CFGCLK(), .DATAVALID()
+ );
+
+ n3xx_core #(
+ .REG_AWIDTH(14),
+ .BUS_CLK_RATE(BUS_CLK_RATE),
+ .FP_GPIO_WIDTH(FP_GPIO_WIDTH),
+ .CHANNEL_WIDTH(CHANNEL_WIDTH),
+ .NUM_CHANNELS_PER_RADIO(NUM_CHANNELS_PER_RADIO),
+ .NUM_CHANNELS(NUM_CHANNELS),
+ .NUM_DBOARDS(NUM_DBOARDS),
+ .NUM_SPI_PER_DBOARD(4),
+ .USE_CORRECTION(1),
+ `ifdef USE_REPLAY
+ .USE_REPLAY(1)
+ `else
+ .USE_REPLAY(0)
+ `endif
+ ) n3xx_core(
+ // Clocks and resets
+`ifdef NO_DB
+ .radio_clk(bus_clk),
+ .radio_rst(bus_rst),
+`else
+ .radio_clk(radio_clk),
+ .radio_rst(radio_rst),
+`endif
+ .bus_clk(bus_clk),
+ .bus_rst(bus_rst),
+ .ddr3_dma_clk(ddr3_dma_clk),
+ .clk40(clk40),
+
+ // Clocking and PPS Controls/Indicators
+ .pps(pps_radioclk1x),
+ .pps_select(pps_select),
+ .pps_out_enb(pps_out_enb),
+ .pps_select_sfp(pps_select_sfp),
+ .ref_clk_reset(),
+ .meas_clk_reset(meas_clk_reset),
+ .ref_clk_locked(1'b1),
+ .meas_clk_locked(meas_clk_locked),
+ .enable_ref_clk_async(enable_ref_clk_async),
+
+ .s_axi_aclk(clk40),
+ .s_axi_aresetn(clk40_rstn),
+ // AXI4-Lite: Write address port (domain: s_axi_aclk)
+ .s_axi_awaddr(M_AXI_XBAR_AWADDR),
+ .s_axi_awvalid(M_AXI_XBAR_AWVALID),
+ .s_axi_awready(M_AXI_XBAR_AWREADY),
+ // AXI4-Lite: Write data port (domain: s_axi_aclk)
+ .s_axi_wdata(M_AXI_XBAR_WDATA),
+ .s_axi_wstrb(M_AXI_XBAR_WSTRB),
+ .s_axi_wvalid(M_AXI_XBAR_WVALID),
+ .s_axi_wready(M_AXI_XBAR_WREADY),
+ // AXI4-Lite: Write response port (domain: s_axi_aclk)
+ .s_axi_bresp(M_AXI_XBAR_BRESP),
+ .s_axi_bvalid(M_AXI_XBAR_BVALID),
+ .s_axi_bready(M_AXI_XBAR_BREADY),
+ // AXI4-Lite: Read address port (domain: s_axi_aclk)
+ .s_axi_araddr(M_AXI_XBAR_ARADDR),
+ .s_axi_arvalid(M_AXI_XBAR_ARVALID),
+ .s_axi_arready(M_AXI_XBAR_ARREADY),
+ // AXI4-Lite: Read data port (domain: s_axi_aclk)
+ .s_axi_rdata(M_AXI_XBAR_RDATA),
+ .s_axi_rresp(M_AXI_XBAR_RRESP),
+ .s_axi_rvalid(M_AXI_XBAR_RVALID),
+ .s_axi_rready(M_AXI_XBAR_RREADY),
+ // ps gpio source
+ .ps_gpio_tri(ps_gpio_tri[FP_GPIO_WIDTH+FP_GPIO_OFFSET-1:FP_GPIO_OFFSET]),
+ .ps_gpio_out(ps_gpio_out[FP_GPIO_WIDTH+FP_GPIO_OFFSET-1:FP_GPIO_OFFSET]),
+ .ps_gpio_in(ps_gpio_in[FP_GPIO_WIDTH+FP_GPIO_OFFSET-1:FP_GPIO_OFFSET]),
+ // FP_GPIO
+ .fp_gpio_inout(FPGA_GPIO),
+ // Radio ATR
+ .rx_atr(rx_atr),
+ .tx_atr(tx_atr),
+ // Radio GPIO DSA
+ .db_gpio_out_flat(db_gpio_out),
+ .db_gpio_in_flat(db_gpio_in),
+ .db_gpio_ddr_flat(db_gpio_ddr),
+ .db_gpio_fab_flat(db_gpio_fab),
+ // Radio Strobes
+ .rx_stb(rx_stb),
+ .tx_stb(tx_stb),
+ // Radio Data
+ .rx(rx_flat),
+ .tx(tx_flat),
+ //cpld rx_lo tx_lo spi
+ .sclk_flat({DBB_CPLD_PL_SPI_SCLK,
+ DBA_CPLD_PL_SPI_SCLK}),
+ .sen_flat({DBB_CPLD_PL_SPI_CS_B,DBB_LODIS_SPI_CS_B,DBB_RXLO_SPI_CS_B,DBB_TXLO_SPI_CS_B,
+ DBA_CPLD_PL_SPI_CS_B,DBA_LODIS_SPI_CS_B,DBA_RXLO_SPI_CS_B,DBA_TXLO_SPI_CS_B}),
+ .mosi_flat({DBB_CPLD_PL_SPI_MOSI,
+ DBA_CPLD_PL_SPI_MOSI}),
+ .miso_flat({DBB_CPLD_PL_SPI_MISO,
+ DBA_CPLD_PL_SPI_MISO}),
+ // DRAM signals.
+ .ddr3_axi_clk (ddr3_axi_clk),
+ .ddr3_axi_rst (ddr3_axi_rst),
+ .ddr3_running (ddr3_running),
+ // Slave Interface Write Address Ports
+ .ddr3_axi_awid (ddr3_axi_awid),
+ .ddr3_axi_awaddr (ddr3_axi_awaddr),
+ .ddr3_axi_awlen (ddr3_axi_awlen),
+ .ddr3_axi_awsize (ddr3_axi_awsize),
+ .ddr3_axi_awburst (ddr3_axi_awburst),
+ .ddr3_axi_awlock (ddr3_axi_awlock),
+ .ddr3_axi_awcache (ddr3_axi_awcache),
+ .ddr3_axi_awprot (ddr3_axi_awprot),
+ .ddr3_axi_awqos (ddr3_axi_awqos),
+ .ddr3_axi_awvalid (ddr3_axi_awvalid),
+ .ddr3_axi_awready (ddr3_axi_awready),
+ // Slave Interface Write Data Ports
+ .ddr3_axi_wdata (ddr3_axi_wdata),
+ .ddr3_axi_wstrb (ddr3_axi_wstrb),
+ .ddr3_axi_wlast (ddr3_axi_wlast),
+ .ddr3_axi_wvalid (ddr3_axi_wvalid),
+ .ddr3_axi_wready (ddr3_axi_wready),
+ // Slave Interface Write Response Ports
+ .ddr3_axi_bid (ddr3_axi_bid),
+ .ddr3_axi_bresp (ddr3_axi_bresp),
+ .ddr3_axi_bvalid (ddr3_axi_bvalid),
+ .ddr3_axi_bready (ddr3_axi_bready),
+ // Slave Interface Read Address Ports
+ .ddr3_axi_arid (ddr3_axi_arid),
+ .ddr3_axi_araddr (ddr3_axi_araddr),
+ .ddr3_axi_arlen (ddr3_axi_arlen),
+ .ddr3_axi_arsize (ddr3_axi_arsize),
+ .ddr3_axi_arburst (ddr3_axi_arburst),
+ .ddr3_axi_arlock (ddr3_axi_arlock),
+ .ddr3_axi_arcache (ddr3_axi_arcache),
+ .ddr3_axi_arprot (ddr3_axi_arprot),
+ .ddr3_axi_arqos (ddr3_axi_arqos),
+ .ddr3_axi_arvalid (ddr3_axi_arvalid),
+ .ddr3_axi_arready (ddr3_axi_arready),
+ // Slave Interface Read Data Ports
+ .ddr3_axi_rid (ddr3_axi_rid),
+ .ddr3_axi_rdata (ddr3_axi_rdata),
+ .ddr3_axi_rresp (ddr3_axi_rresp),
+ .ddr3_axi_rlast (ddr3_axi_rlast),
+ .ddr3_axi_rvalid (ddr3_axi_rvalid),
+ .ddr3_axi_rready (ddr3_axi_rready),
+
+ // DMA to PS
+ .m_dma_tdata(s_axis_dma_tdata),
+ .m_dma_tdest(s_axis_dma_tdest),
+ .m_dma_tlast(s_axis_dma_tlast),
+ .m_dma_tready(s_axis_dma_tready),
+ .m_dma_tvalid(s_axis_dma_tvalid),
+
+ .s_dma_tdata(m_axis_dma_tdata),
+ .s_dma_tuser(m_axis_dma_tuser),
+ .s_dma_tlast(m_axis_dma_tlast),
+ .s_dma_tready(m_axis_dma_tready),
+ .s_dma_tvalid(m_axis_dma_tvalid),
+
+ // VITA to Ethernet
+ .v2e0_tdata(v2e0_tdata),
+ .v2e0_tvalid(v2e0_tvalid),
+ .v2e0_tlast(v2e0_tlast),
+ .v2e0_tready(v2e0_tready),
+
+ .v2e1_tdata(v2e1_tdata),
+ .v2e1_tlast(v2e1_tlast),
+ .v2e1_tvalid(v2e1_tvalid),
+ .v2e1_tready(v2e1_tready),
+
+ // Ethernet to VITA
+ .e2v0_tdata(e2v0_tdata),
+ .e2v0_tlast(e2v0_tlast),
+ .e2v0_tvalid(e2v0_tvalid),
+ .e2v0_tready(e2v0_tready),
+
+ .e2v1_tdata(e2v1_tdata),
+ .e2v1_tlast(e2v1_tlast),
+ .e2v1_tvalid(e2v1_tvalid),
+ .e2v1_tready(e2v1_tready),
+
+ //regport interface to npio
+ .reg_wr_req_npio(reg_wr_req_npio),
+ .reg_wr_addr_npio(reg_wr_addr_npio),
+ .reg_wr_data_npio(reg_wr_data_npio),
+ .reg_rd_req_npio(reg_rd_req_npio),
+ .reg_rd_addr_npio(reg_rd_addr_npio),
+ .reg_rd_resp_npio(reg_rd_resp_npio),
+ .reg_rd_data_npio(reg_rd_data_npio),
+
+ .build_datestamp(build_datestamp),
+ .xadc_readback({20'h0, device_temp}),
+ .sfp_ports_info({sfp_port1_info, sfp_port0_info}),
+ .device_id(device_id)
+ );
+
+ // Register the ATR bits once between sending them out to the CPLD to avoid
+ // glitches on the outputs!
+ always @(posedge radio_clk) begin
+ rx_atr_reg <= rx_atr;
+ tx_atr_reg <= tx_atr;
+ end
+
+ // //////////////////////////////////////////////////////////////////////
+ //
+ // Daughterboard Cores
+ //
+ // //////////////////////////////////////////////////////////////////////
+
+ wire sAdcSyncUnusedA;
+ wire sAdcSyncUnusedB;
+ wire sDacSyncUnusedA;
+ wire sDacSyncUnusedB;
+ wire sSysrefUnusedA;
+ wire sSysrefUnusedB;
+ wire rRpTransferUnusedA;
+ wire rRpTransferUnusedB;
+ wire sSpTransferUnusedA;
+ wire sSpTransferUnusedB;
+ wire rWrRpTransferUnusedA;
+ wire rWrRpTransferUnusedB;
+ wire sWrSpTransferUnusedA;
+ wire sWrSpTransferUnusedB;
+ wire sPpsUnusedB;
+ wire sPpsToIobUnusedB;
+
+ wire dba_adc_sync_b;
+ wire dba_dac_sync_b;
+ wire dba_dac_sync_b_n; // This is the swapped version coming from the IBUFDS.
+ wire dbb_adc_sync_b;
+ wire dbb_dac_sync_b;
+
+ wire [49:0] bRegPortInFlatA;
+ wire [49:0] bRegPortInFlatB;
+ wire [33:0] bRegPortOutFlatA;
+ wire [33:0] bRegPortOutFlatB;
+
+ wire rx_a_valid;
+ wire rx_b_valid;
+ wire tx_a_rfi;
+ wire tx_b_rfi;
+
+`ifdef BUILD_WR
+ localparam INCL_WR_TDC = 1'b1;
+`else
+ localparam INCL_WR_TDC = 1'b0;
+`endif
+
+ wire reg_portA_rd;
+ wire reg_portA_wr;
+ wire [14-1:0] reg_portA_addr;
+ wire [32-1:0] reg_portA_wr_data;
+ wire [32-1:0] reg_portA_rd_data;
+ wire reg_portA_ready;
+ wire validA_unused;
+
+ OBUFDS dba_adc_sync_buf(
+ .O(DBA_ADC_SYNCB_P),
+ .OB(DBA_ADC_SYNCB_N),
+ .I(dba_adc_sync_b)
+ );
+
+ IBUFDS dba_dac_sync_buf(
+ .I(DBA_DAC_SYNCB_P),
+ .IB(DBA_DAC_SYNCB_N),
+ .O(dba_dac_sync_b_n)
+ );
+
+ // The differential signals are swapped in the pins, so the SYNC signal
+ // must be negated after the IBUFDS.
+ assign dba_dac_sync_b = ~ dba_dac_sync_b_n;
+
+ OBUFDS dbb_adc_sync_buf(
+ .O(DBB_ADC_SYNCB_P),
+ .OB(DBB_ADC_SYNCB_N),
+ .I(dbb_adc_sync_b)
+ );
+
+ IBUFDS dbb_dac_sync_buf(
+ .I(DBB_DAC_SYNCB_P),
+ .IB(DBB_DAC_SYNCB_N),
+ .O(dbb_dac_sync_b)
+ );
+
+
+ assign bRegPortInFlatA = {2'b0, reg_portA_addr, reg_portA_wr_data, reg_portA_rd, reg_portA_wr};
+ assign {reg_portA_rd_data, validA_unused, reg_portA_ready} = bRegPortOutFlatA;
+
+ DbCore
+ # (.kInclWhiteRabbitTdc(INCL_WR_TDC)) //std_logic:='0'
+ dba_core (
+ .bBusReset(clk40_rst), //in std_logic
+ .BusClk(clk40), //in std_logic
+ .Clk40(clk40), //in std_logic
+ .MeasClk(meas_clk), //in std_logic
+ .FpgaClk_p(DBA_FPGA_CLK_P), //in std_logic
+ .FpgaClk_n(DBA_FPGA_CLK_N), //in std_logic
+ .SampleClk1xOut(radio_clk), //out std_logic
+ .SampleClk1x(radio_clk), //in std_logic
+ .SampleClk2xOut(radio_clk_2x), //out std_logic
+ .SampleClk2x(radio_clk_2x), //in std_logic
+ .bRegPortInFlat(bRegPortInFlatA), //in std_logic_vector(49:0)
+ .bRegPortOutFlat(bRegPortOutFlatA), //out std_logic_vector(33:0)
+ .kSlotId(1'b0), //in std_logic
+ .sSysRefFpgaLvds_p(DBA_FPGA_SYSREF_P), //in std_logic
+ .sSysRefFpgaLvds_n(DBA_FPGA_SYSREF_N), //in std_logic
+ .aLmkSync(DBA_CLKDIST_SYNC), //out std_logic
+ .JesdRefClk_p(DBA_MGTCLK_P), //in std_logic
+ .JesdRefClk_n(DBA_MGTCLK_N), //in std_logic
+ .aAdcRx_p(DBA_RX_P), //in std_logic_vector(3:0)
+ .aAdcRx_n(DBA_RX_N), //in std_logic_vector(3:0)
+ .aSyncAdcOut_n(dba_adc_sync_b), //out std_logic
+ .aDacTx_p(DBA_TX_P), //out std_logic_vector(3:0)
+ .aDacTx_n(DBA_TX_N), //out std_logic_vector(3:0)
+ .aSyncDacIn_n(dba_dac_sync_b), //in std_logic
+ .sAdcDataValid(rx_a_valid), //out std_logic
+ .sAdcDataSample0I(rx_db[0][31:16]), //out std_logic_vector(15:0)
+ .sAdcDataSample0Q(rx_db[0][15: 0]), //out std_logic_vector(15:0)
+ .sAdcDataSample1I(rx_db[1][31:16]), //out std_logic_vector(15:0)
+ .sAdcDataSample1Q(rx_db[1][15: 0]), //out std_logic_vector(15:0)
+ .sDacReadyForInput(tx_a_rfi), //out std_logic
+ .sDacDataSample0I(tx_db[0][31:16]), //in std_logic_vector(15:0)
+ .sDacDataSample0Q(tx_db[0][15: 0]), //in std_logic_vector(15:0)
+ .sDacDataSample1I(tx_db[1][31:16]), //in std_logic_vector(15:0)
+ .sDacDataSample1Q(tx_db[1][15: 0]), //in std_logic_vector(15:0)
+ .RefClk(ref_clk), //in std_logic
+ .rPpsPulse(pps_refclk), //in std_logic
+ .rGatedPulseToPin(UNUSED_PIN_TDCA_0), //inout std_logic
+ .sGatedPulseToPin(UNUSED_PIN_TDCA_1), //inout std_logic
+ .sPps(pps_radioclk1x), //out std_logic
+ .sPpsToIob(pps_radioclk1x_iob), //out std_logic
+ .WrRefClk(wr_ref_clk), //in std_logic
+ .rWrPpsPulse(pps_wr_refclk), //in std_logic
+ .rWrGatedPulseToPin(UNUSED_PIN_TDCA_2), //inout std_logic
+ .sWrGatedPulseToPin(UNUSED_PIN_TDCA_3), //inout std_logic
+ .aPpsSfpSel(pps_select_sfp), //in std_logic_vector(1:0)
+ .sAdcSync(sAdcSyncUnusedA), //out std_logic
+ .sDacSync(sDacSyncUnusedA), //out std_logic
+ .sSysRef(sSysrefUnusedA), //out std_logic
+ .rRpTransfer(rRpTransferUnusedA), //out std_logic
+ .sSpTransfer(sSpTransferUnusedA), //out std_logic
+ .rWrRpTransfer(rWrRpTransferUnusedA), //out std_logic
+ .sWrSpTransfer(sWrSpTransferUnusedA)); //out std_logic
+
+
+
+ assign rx_stb[0] = rx_a_valid;
+ assign tx_stb[0] = tx_a_rfi;
+
+ axil_to_ni_regport #(
+ .RP_DWIDTH (32),
+ .RP_AWIDTH (14),
+ .TIMEOUT (512)
+ ) ni_regportA_inst (
+ // Clock and reset
+ .s_axi_aclk (clk40),
+ .s_axi_areset (clk40_rst),
+ // AXI4-Lite: Write address port (domain: s_axi_aclk)
+ .s_axi_awaddr(M_AXI_JESD0_AWADDR),
+ .s_axi_awvalid(M_AXI_JESD0_AWVALID),
+ .s_axi_awready(M_AXI_JESD0_AWREADY),
+ // AXI4-Lite: Write data port (domain: s_axi_aclk)
+ .s_axi_wdata(M_AXI_JESD0_WDATA),
+ .s_axi_wstrb(M_AXI_JESD0_WSTRB),
+ .s_axi_wvalid(M_AXI_JESD0_WVALID),
+ .s_axi_wready(M_AXI_JESD0_WREADY),
+ // AXI4-Lite: Write response port (domain: s_axi_aclk)
+ .s_axi_bresp(M_AXI_JESD0_BRESP),
+ .s_axi_bvalid(M_AXI_JESD0_BVALID),
+ .s_axi_bready(M_AXI_JESD0_BREADY),
+ // AXI4-Lite: Read address port (domain: s_axi_aclk)
+ .s_axi_araddr(M_AXI_JESD0_ARADDR),
+ .s_axi_arvalid(M_AXI_JESD0_ARVALID),
+ .s_axi_arready(M_AXI_JESD0_ARREADY),
+ // AXI4-Lite: Read data port (domain: s_axi_aclk)
+ .s_axi_rdata(M_AXI_JESD0_RDATA),
+ .s_axi_rresp(M_AXI_JESD0_RRESP),
+ .s_axi_rvalid(M_AXI_JESD0_RVALID),
+ .s_axi_rready(M_AXI_JESD0_RREADY),
+ // Register port
+ .reg_port_in_rd (reg_portA_rd),
+ .reg_port_in_wt (reg_portA_wr),
+ .reg_port_in_addr (reg_portA_addr),
+ .reg_port_in_data (reg_portA_wr_data),
+ .reg_port_out_data (reg_portA_rd_data),
+ .reg_port_out_ready(reg_portA_ready)
+ );
+
+ wire reg_portB_rd;
+ wire reg_portB_wr;
+ wire [14-1:0] reg_portB_addr;
+ wire [32-1:0] reg_portB_wr_data;
+ wire [32-1:0] reg_portB_rd_data;
+ wire reg_portB_ready;
+ wire validB_unused;
+
+ assign bRegPortInFlatB = {2'b0, reg_portB_addr, reg_portB_wr_data, reg_portB_rd, reg_portB_wr};
+ assign {reg_portB_rd_data, validB_unused, reg_portB_ready} = bRegPortOutFlatB;
+
+ DbCore
+ # (.kInclWhiteRabbitTdc(INCL_WR_TDC)) //std_logic:='0'
+ dbb_core (
+ .bBusReset(clk40_rst), //in std_logic
+ .BusClk(clk40), //in std_logic
+ .Clk40(clk40), //in std_logic
+ .MeasClk(meas_clk), //in std_logic
+ .FpgaClk_p(DBB_FPGA_CLK_P), //in std_logic
+ .FpgaClk_n(DBB_FPGA_CLK_N), //in std_logic
+ .SampleClk1xOut(radio_clkB), //out std_logic
+ .SampleClk1x(radio_clk), //in std_logic
+ .SampleClk2xOut(radio_clk_2xB), //out std_logic
+ .SampleClk2x(radio_clk_2x), //in std_logic
+ .bRegPortInFlat(bRegPortInFlatB), //in std_logic_vector(49:0)
+ .bRegPortOutFlat(bRegPortOutFlatB), //out std_logic_vector(33:0)
+ .kSlotId(1'b1), //in std_logic
+ .sSysRefFpgaLvds_p(DBB_FPGA_SYSREF_P), //in std_logic
+ .sSysRefFpgaLvds_n(DBB_FPGA_SYSREF_N), //in std_logic
+ .aLmkSync(DBB_CLKDIST_SYNC), //out std_logic
+ .JesdRefClk_p(DBB_MGTCLK_P), //in std_logic
+ .JesdRefClk_n(DBB_MGTCLK_N), //in std_logic
+ .aAdcRx_p(DBB_RX_P), //in std_logic_vector(3:0)
+ .aAdcRx_n(DBB_RX_N), //in std_logic_vector(3:0)
+ .aSyncAdcOut_n(dbb_adc_sync_b), //out std_logic
+ .aDacTx_p(DBB_TX_P), //out std_logic_vector(3:0)
+ .aDacTx_n(DBB_TX_N), //out std_logic_vector(3:0)
+ .aSyncDacIn_n(dbb_dac_sync_b), //in std_logic
+ .sAdcDataValid(rx_b_valid), //out std_logic
+ .sAdcDataSample0I(rx_db[2][31:16]), //out std_logic_vector(15:0)
+ .sAdcDataSample0Q(rx_db[2][15: 0]), //out std_logic_vector(15:0)
+ .sAdcDataSample1I(rx_db[3][31:16]), //out std_logic_vector(15:0)
+ .sAdcDataSample1Q(rx_db[3][15: 0]), //out std_logic_vector(15:0)
+ .sDacReadyForInput(tx_b_rfi), //out std_logic
+ .sDacDataSample0I(tx_db[2][31:16]), //in std_logic_vector(15:0)
+ .sDacDataSample0Q(tx_db[2][15: 0]), //in std_logic_vector(15:0)
+ .sDacDataSample1I(tx_db[3][31:16]), //in std_logic_vector(15:0)
+ .sDacDataSample1Q(tx_db[3][15: 0]), //in std_logic_vector(15:0)
+ .RefClk(ref_clk), //in std_logic
+ .rPpsPulse(pps_refclk), //in std_logic
+ .rGatedPulseToPin(UNUSED_PIN_TDCB_0), //inout std_logic
+ .sGatedPulseToPin(UNUSED_PIN_TDCB_1), //inout std_logic
+ .sPps(sPpsUnusedB), //out std_logic
+ .sPpsToIob(sPpsToIobUnusedB), //out std_logic
+ .WrRefClk(wr_ref_clk), //in std_logic
+ .rWrPpsPulse(pps_wr_refclk), //in std_logic
+ .rWrGatedPulseToPin(UNUSED_PIN_TDCB_2), //inout std_logic
+ .sWrGatedPulseToPin(UNUSED_PIN_TDCB_3), //inout std_logic
+ .aPpsSfpSel(2'd0), //in std_logic_vector(1:0)
+ .sAdcSync(sAdcSyncUnusedB), //out std_logic
+ .sDacSync(sDacSyncUnusedB), //out std_logic
+ .sSysRef(sSysrefUnusedB), //out std_logic
+ .rRpTransfer(rRpTransferUnusedB), //out std_logic
+ .sSpTransfer(sSpTransferUnusedB), //out std_logic
+ .rWrRpTransfer(rWrRpTransferUnusedB), //out std_logic
+ .sWrSpTransfer(sWrSpTransferUnusedB)); //out std_logic
+
+
+
+ assign rx_stb[1] = rx_b_valid;
+ assign tx_stb[1] = tx_b_rfi;
+
+ axil_to_ni_regport #(
+ .RP_DWIDTH (32),
+ .RP_AWIDTH (14),
+ .TIMEOUT (512)
+ ) ni_regportB_inst (
+ // Clock and reset
+ .s_axi_aclk (clk40),
+ .s_axi_areset (clk40_rst),
+ // AXI4-Lite: Write address port (domain: s_axi_aclk)
+ .s_axi_awaddr(M_AXI_JESD1_AWADDR),
+ .s_axi_awvalid(M_AXI_JESD1_AWVALID),
+ .s_axi_awready(M_AXI_JESD1_AWREADY),
+ // AXI4-Lite: Write data port (domain: s_axi_aclk)
+ .s_axi_wdata(M_AXI_JESD1_WDATA),
+ .s_axi_wstrb(M_AXI_JESD1_WSTRB),
+ .s_axi_wvalid(M_AXI_JESD1_WVALID),
+ .s_axi_wready(M_AXI_JESD1_WREADY),
+ // AXI4-Lite: Write response port (domain: s_axi_aclk)
+ .s_axi_bresp(M_AXI_JESD1_BRESP),
+ .s_axi_bvalid(M_AXI_JESD1_BVALID),
+ .s_axi_bready(M_AXI_JESD1_BREADY),
+ // AXI4-Lite: Read address port (domain: s_axi_aclk)
+ .s_axi_araddr(M_AXI_JESD1_ARADDR),
+ .s_axi_arvalid(M_AXI_JESD1_ARVALID),
+ .s_axi_arready(M_AXI_JESD1_ARREADY),
+ // AXI4-Lite: Read data port (domain: s_axi_aclk)
+ .s_axi_rdata (M_AXI_JESD1_RDATA),
+ .s_axi_rresp (M_AXI_JESD1_RRESP),
+ .s_axi_rvalid (M_AXI_JESD1_RVALID),
+ .s_axi_rready (M_AXI_JESD1_RREADY),
+ // Register port
+ .reg_port_in_rd (reg_portB_rd),
+ .reg_port_in_wt (reg_portB_wr),
+ .reg_port_in_addr (reg_portB_addr),
+ .reg_port_in_data (reg_portB_wr_data),
+ .reg_port_out_data (reg_portB_rd_data),
+ .reg_port_out_ready(reg_portB_ready)
+ );
+
+
+ // //////////////////////////////////////////////////////////////////////
+ //
+ // LEDS
+ //
+ // //////////////////////////////////////////////////////////////////////
+
+ assign PANEL_LED_LINK = ps_gpio_out[45];
+ assign PANEL_LED_REF = ps_gpio_out[46];
+ assign PANEL_LED_GPS = ps_gpio_out[47];
+
+
+ /////////////////////////////////////////////////////////////////////
+ //
+ // PUDC Workaround
+ //
+ //////////////////////////////////////////////////////////////////////
+ // This is a workaround for a silicon bug in Series 7 FPGA where a
+ // race condition with the reading of PUDC during the erase of the FPGA
+ // image cause glitches on output IO pins.
+ //
+ // Workaround:
+ // - Define the PUDC pin in the XDC file with a pullup.
+ // - Implements an IBUF on the PUDC input and make sure that it does
+ // not get optimized out.
+ (* dont_touch = "true" *) wire fpga_pudc_b_buf;
+ IBUF pudc_ibuf_i (
+ .I(FPGA_PUDC_B),
+ .O(fpga_pudc_b_buf));
+
+endmodule