diff options
Diffstat (limited to 'fpga/usrp3/lib/dsp/ddc_chain.v')
-rw-r--r-- | fpga/usrp3/lib/dsp/ddc_chain.v | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/fpga/usrp3/lib/dsp/ddc_chain.v b/fpga/usrp3/lib/dsp/ddc_chain.v new file mode 100644 index 000000000..9c25d8e43 --- /dev/null +++ b/fpga/usrp3/lib/dsp/ddc_chain.v @@ -0,0 +1,375 @@ +// +// Copyright 2011-2013 Ettus Research LLC +// Copyright 2018 Ettus Research, a National Instruments Company +// +// SPDX-License-Identifier: LGPL-3.0-or-later +// + + +//! The USRP digital down-conversion chain + +module ddc_chain + #( + parameter BASE = 0, + parameter DSPNO = 0, + parameter WIDTH = 24, + parameter NEW_HB_DECIM = 0, + parameter DEVICE = "SPARTAN6" + ) + (input clk, input rst, input clr, + input set_stb, input [7:0] set_addr, input [31:0] set_data, + + // From RX frontend + input [WIDTH-1:0] rx_fe_i, + input [WIDTH-1:0] rx_fe_q, + + // To RX control + output [31:0] sample, + input run, + output strobe, + output [31:0] debug + ); + + localparam cwidth = 25; + localparam zwidth = 24; + + wire [31:0] phase_inc; + reg [31:0] phase; + + wire [17:0] scale_factor; + wire [cwidth-1:0] to_cordic_i, to_cordic_q; + wire [cwidth-1:0] i_cordic, q_cordic; + reg [WIDTH-1:0] i_cordic_pipe, q_cordic_pipe; + wire [WIDTH-1:0] i_cic, q_cic; + + + wire strobe_cic, strobe_hb1, strobe_hb2; + wire enable_hb1, enable_hb2; + wire [7:0] cic_decim_rate; + + reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux; + wire realmode; + wire swap_iq; + wire invert_i; + wire invert_q; + + setting_reg #(.my_addr(BASE+0)) sr_0 + (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), + .in(set_data),.out(phase_inc),.changed()); + + setting_reg #(.my_addr(BASE+1), .width(18)) sr_1 + (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), + .in(set_data),.out(scale_factor),.changed()); + + setting_reg #(.my_addr(BASE+2), .width(10)) sr_2 + (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), + .in(set_data),.out({enable_hb1, enable_hb2, cic_decim_rate}),.changed()); + + setting_reg #(.my_addr(BASE+3), .width(4)) sr_3 + (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), + .in(set_data),.out({invert_i,invert_q,realmode,swap_iq}),.changed()); + + + // MUX so we can do realmode signals on either input + + always @(posedge clk) + if(swap_iq) + begin + rx_fe_i_mux <= invert_i ? ~rx_fe_q : rx_fe_q; + rx_fe_q_mux <= realmode ? {WIDTH{1'b0}} : invert_q ? ~rx_fe_i : rx_fe_i; + end + else + begin + rx_fe_i_mux <= invert_i ? ~rx_fe_i : rx_fe_i; + rx_fe_q_mux <= realmode ? {WIDTH{1'b0}} : invert_q ? ~rx_fe_q : rx_fe_q; + end + + // NCO + always @(posedge clk) + if(rst) + phase <= 0; + else if(~run) + phase <= 0; + else + phase <= phase + phase_inc; + + // CORDIC 24-bit I/O + // (Algorithmic gain through CORDIC => 1.647 * 0.5 = 0.8235) + // (Worst case gain through rotation => SQRT(2) = 1.4142) + // Total worst case gain => 0.8235 * 1.4142 = 1.1646 + // So add an extra MSB bit for word growth. + + sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_i (.in(rx_fe_i_mux), .out(to_cordic_i)); + sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_q (.in(rx_fe_q_mux), .out(to_cordic_q)); + + cordic_z24 #(.bitwidth(cwidth)) + cordic(.clock(clk), .reset(rst), .enable(run), + .xi(to_cordic_i),. yi(to_cordic_q), .zi(phase[31:32-zwidth]), + .xo(i_cordic),.yo(q_cordic),.zo() ); + + always @(posedge clk) begin + i_cordic_pipe[23:0] <= i_cordic[24:1]; + q_cordic_pipe[23:0] <= q_cordic[24:1]; + end + + + // CIC decimator 24 bit I/O + // Applies crude 1/(2^N) right shift gain compensation internally to prevent excesive downstream word growth. + // Output gain is = algo_gain/(POW(2,CEIL(LOG2(algo_gain))) where algo_gain is = cic_decim_rate^4 + // Thus output gain is <= 1.0 and no word growth occurs. + cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate), + .strobe_fast(1'b1),.strobe_slow(strobe_cic) ); + + cic_decim #(.bw(WIDTH)) + decim_i (.clock(clk),.reset(rst),.enable(run), + .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), + .signal_in(i_cordic_pipe),.signal_out(i_cic)); + + cic_decim #(.bw(WIDTH)) + decim_q (.clock(clk),.reset(rst),.enable(run), + .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic), + .signal_in(q_cordic_pipe),.signal_out(q_cic)); + + ////////////////////////////////////////////////////////////////////////// + // + // Conditional compilation of either: + // 1) New X300 style decimation filters, or + // 2) Traditional N210 style decimation filters. + // + ////////////////////////////////////////////////////////////////////////// + generate + if (NEW_HB_DECIM == 1) begin: new_hb + + wire reload_go, reload_we1, reload_we2, reload_ld1, reload_ld2; + wire [17:0] coef_din; + + setting_reg #(.my_addr(BASE+4), .width(22)) sr_4 + (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr), + .in(set_data),.out({reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din[17:0]}),.changed(reload_go)); + + // Halfbands + wire nd1, nd2, nd3; + wire rfd1, rfd2, rfd3; + wire rdy1, rdy2, rdy3; + wire data_valid1, data_valid2, data_valid3; + wire [46:0] i_hb1, q_hb1; + wire [46:0] i_hb2, q_hb2; + localparam HB1_SCALE = 18; + localparam HB2_SCALE = 18; + + + assign strobe_hb1 = data_valid1; + assign strobe_hb2 = data_valid2; + + assign nd1 = strobe_cic; + assign nd2 = strobe_hb1; + + // Default Coeffs have gain of ~1.0 + hbdec1 hbdec1 + (.clk(clk), // input clk + .sclr(rst), // input sclr + .ce(enable_hb1), // input ce + .coef_ld(reload_go & reload_ld1), // input coef_ld + .coef_we(reload_go & reload_we1), // input coef_we + .coef_din(coef_din), // input [17 : 0] coef_din + .rfd(rfd1), // output rfd + .nd(nd1), // input nd + .din_1(i_cic), // input [23 : 0] din_1 + .din_2(q_cic), // input [23 : 0] din_2 + .rdy(rdy1), // output rdy + .data_valid(data_valid1), // output data_valid + .dout_1(i_hb1), // output [46 : 0] dout_1 + .dout_2(q_hb1)); // output [46 : 0] dout_2 + + // Default Coeffs have gain of ~1.0 + hbdec2 hbdec2 + (.clk(clk), // input clk + .sclr(rst), // input sclr + .ce(enable_hb2), // input ce + .coef_ld(reload_go & reload_ld2), // input coef_ld + .coef_we(reload_go & reload_we2), // input coef_we + .coef_din(coef_din), // input [17 : 0] coef_din + .rfd(rfd2), // output rfd + .nd(nd2), // input nd + .din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1 + .din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2 + .rdy(rdy2), // output rdy + .data_valid(data_valid2), // output data_valid + .dout_1(i_hb2), // output [46 : 0] dout_1 + .dout_2(q_hb2)); // output [46 : 0] dout_2 + + + + reg [18:0] i_unscaled, q_unscaled; + reg strobe_unscaled; + + always @(posedge clk) + case({enable_hb1,enable_hb2}) + // No Halfbands enabled, no decimation. + 2'd0 : + begin + strobe_unscaled <= strobe_cic; + i_unscaled <= i_cic[23:5]; + q_unscaled <= q_cic[23:5]; + end + // ILLEGAL. Only half sample rate half band enabled. + 2'd1 : + begin + strobe_unscaled <= strobe_cic; + i_unscaled <= i_cic[23:5]; + q_unscaled <= q_cic[23:5]; + end + // One Halfband enabled, decimate by 2. + 2'd2 : + begin + strobe_unscaled <= strobe_hb1; + i_unscaled <= i_hb1[23+HB1_SCALE:5+HB1_SCALE]; + q_unscaled <= q_hb1[23+HB1_SCALE:5+HB1_SCALE]; + end + // Both Halfbands enabled, decimate by 4. + 2'd3 : + begin + strobe_unscaled <= strobe_hb2; + i_unscaled <= i_hb2[23+HB2_SCALE:5+HB2_SCALE]; + q_unscaled <= q_hb2[23+HB2_SCALE:5+HB2_SCALE]; + end + endcase // case (hb_rate) + + // Need to clip 1 bit here or we loose small signal performance out the truncated LSB's for worst case CIC gain cases. + // NOTE: We can only clip here with CORDIC rotating, CIC in it's highest gain configurations and an input signal thats + // saturated. + wire strobe_unscaled_clip; + wire [17:0] i_unscaled_clip, q_unscaled_clip; + + clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_i + (.clk(clk), .in(i_unscaled[18:0]), .strobe_in(strobe_unscaled), .out(i_unscaled_clip[17:0]), .strobe_out(strobe_unscaled_clip)); + clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_q + (.clk(clk), .in(q_unscaled[18:0]), .strobe_in(strobe_unscaled), .out(q_unscaled_clip[17:0]), .strobe_out()); + + // Apply scaling gain to compensate for CORDIC and CIC gain adjustments so that signal swing over network transport has + // optimal dynamic range. + wire [35:0] prod_i, prod_q; + + MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES" + .LATENCY(1), // Desired clock cycle latency, 0-4 + .WIDTH_A(18), // Multiplier A-input bus width, 1-25 + .WIDTH_B(18)) // Multiplier B-input bus width, 1-18 + mult_i (.P(prod_i), // Multiplier output bus, width determined by WIDTH_P parameter + .A(i_unscaled_clip), // Multiplier input A bus, width determined by WIDTH_A parameter + .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter + .CE(strobe_unscaled_clip), // 1-bit active high input clock enable + .CLK(clk), // 1-bit positive edge clock input + .RST(rst)); // 1-bit input active high reset + + MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES" + .LATENCY(1), // Desired clock cycle latency, 0-4 + .WIDTH_A(18), // Multiplier A-input bus width, 1-25 + .WIDTH_B(18)) // Multiplier B-input bus width, 1-18 + mult_q (.P(prod_q), // Multiplier output bus, width determined by WIDTH_P parameter + .A(q_unscaled_clip), // Multiplier input A bus, width determined by WIDTH_A parameter + .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter + .CE(strobe_unscaled_clip), // 1-bit active high input clock enable + .CLK(clk), // 1-bit positive edge clock input + .RST(rst)); // 1-bit input active high reset + + reg strobe_scaled; + wire strobe_clip; + wire [32:0] i_clip, q_clip; + + always @(posedge clk) strobe_scaled <= strobe_unscaled_clip; + + clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_i + (.clk(clk), .in(prod_i[35:0]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip)); + clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_q + (.clk(clk), .in(prod_q[35:0]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out()); + + round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_i + (.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe)); + round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_q + (.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out()); + + end else begin: old_hb // block: new_hb + /////////////////////////////////////////////// + // + // Legacy Decimation Filters from USRP2 + // + /////////////////////////////////////////////// + wire [WIDTH-1:0] i_hb1, q_hb1; + wire [WIDTH-1:0] i_hb2, q_hb2; + // First (small) halfband 24 bit I/O + small_hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) small_hb_i + (.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run), + .stb_in(strobe_cic),.data_in(i_cic),.stb_out(strobe_hb1),.data_out(i_hb1)); + + small_hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) small_hb_q + (.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run), + .stb_in(strobe_cic),.data_in(q_cic),.stb_out(),.data_out(q_hb1)); + + // Second (large) halfband 24 bit I/O + wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate}; + hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) hb_i + (.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb), + .stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2)); + + hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) hb_q + (.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb), + .stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2)); + + // Need to clip 1 bit here or we loose small signal performance out the truncated LSB's for worst case CIC gain cases. + wire strobe_unscaled_clip; + wire [17:0] i_unscaled_clip, q_unscaled_clip; + + clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_i + (.clk(clk), .in(i_hb2[WIDTH-1:WIDTH-19]), .strobe_in(strobe_hb2), .out(i_unscaled_clip[17:0]), .strobe_out(strobe_unscaled_clip)); + clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_q + (.clk(clk), .in(q_hb2[WIDTH-1:WIDTH-19]), .strobe_in(strobe_hb2), .out(q_unscaled_clip[17:0]), .strobe_out()); + + //scalar operation (gain of 6 bits) + wire [35:0] prod_i, prod_q; + + MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES" + .LATENCY(1), // Desired clock cycle latency, 0-4 + .WIDTH_A(18), // Multiplier A-input bus width, 1-25 + .WIDTH_B(18)) // Multiplier B-input bus width, 1-18 + mult_i (.P(prod_i), // Multiplier output bus, width determined by WIDTH_P parameter + .A(i_unscaled_clip),// Multiplier input A bus, width determined by WIDTH_A parameter + .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter + .CE(strobe_unscaled_clip), // 1-bit active high input clock enable + .CLK(clk), // 1-bit positive edge clock input + .RST(rst)); // 1-bit input active high reset + + MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES" + .LATENCY(1), // Desired clock cycle latency, 0-4 + .WIDTH_A(18), // Multiplier A-input bus width, 1-25 + .WIDTH_B(18)) // Multiplier B-input bus width, 1-18 + mult_q (.P(prod_q), // Multiplier output bus, width determined by WIDTH_P parameter + .A(q_unscaled_clip),// Multiplier input A bus, width determined by WIDTH_A parameter + .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter + .CE(strobe_unscaled_clip), // 1-bit active high input clock enable + .CLK(clk), // 1-bit positive edge clock input + .RST(rst)); // 1-bit input active high reset + + reg strobe_scaled; + wire strobe_clip; + wire [32:0] i_clip, q_clip; + + always @(posedge clk) strobe_scaled <= strobe_unscaled_clip; + + clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_i + (.clk(clk), .in(prod_i[35:0]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip)); + clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_q + (.clk(clk), .in(prod_q[35:0]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out()); + + round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_i + (.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe)); + round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_q + (.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out()); + + end // block: old_hb + endgenerate + + + + assign debug = {enable_hb1, enable_hb2, run, strobe, strobe_cic, strobe_hb1, strobe_hb2}; + +endmodule // ddc_chain |