aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/dsp/ddc_chain.v
diff options
context:
space:
mode:
Diffstat (limited to 'fpga/usrp3/lib/dsp/ddc_chain.v')
-rw-r--r--fpga/usrp3/lib/dsp/ddc_chain.v375
1 files changed, 375 insertions, 0 deletions
diff --git a/fpga/usrp3/lib/dsp/ddc_chain.v b/fpga/usrp3/lib/dsp/ddc_chain.v
new file mode 100644
index 000000000..9c25d8e43
--- /dev/null
+++ b/fpga/usrp3/lib/dsp/ddc_chain.v
@@ -0,0 +1,375 @@
+//
+// Copyright 2011-2013 Ettus Research LLC
+// Copyright 2018 Ettus Research, a National Instruments Company
+//
+// SPDX-License-Identifier: LGPL-3.0-or-later
+//
+
+
+//! The USRP digital down-conversion chain
+
+module ddc_chain
+ #(
+ parameter BASE = 0,
+ parameter DSPNO = 0,
+ parameter WIDTH = 24,
+ parameter NEW_HB_DECIM = 0,
+ parameter DEVICE = "SPARTAN6"
+ )
+ (input clk, input rst, input clr,
+ input set_stb, input [7:0] set_addr, input [31:0] set_data,
+
+ // From RX frontend
+ input [WIDTH-1:0] rx_fe_i,
+ input [WIDTH-1:0] rx_fe_q,
+
+ // To RX control
+ output [31:0] sample,
+ input run,
+ output strobe,
+ output [31:0] debug
+ );
+
+ localparam cwidth = 25;
+ localparam zwidth = 24;
+
+ wire [31:0] phase_inc;
+ reg [31:0] phase;
+
+ wire [17:0] scale_factor;
+ wire [cwidth-1:0] to_cordic_i, to_cordic_q;
+ wire [cwidth-1:0] i_cordic, q_cordic;
+ reg [WIDTH-1:0] i_cordic_pipe, q_cordic_pipe;
+ wire [WIDTH-1:0] i_cic, q_cic;
+
+
+ wire strobe_cic, strobe_hb1, strobe_hb2;
+ wire enable_hb1, enable_hb2;
+ wire [7:0] cic_decim_rate;
+
+ reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux;
+ wire realmode;
+ wire swap_iq;
+ wire invert_i;
+ wire invert_q;
+
+ setting_reg #(.my_addr(BASE+0)) sr_0
+ (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
+ .in(set_data),.out(phase_inc),.changed());
+
+ setting_reg #(.my_addr(BASE+1), .width(18)) sr_1
+ (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
+ .in(set_data),.out(scale_factor),.changed());
+
+ setting_reg #(.my_addr(BASE+2), .width(10)) sr_2
+ (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
+ .in(set_data),.out({enable_hb1, enable_hb2, cic_decim_rate}),.changed());
+
+ setting_reg #(.my_addr(BASE+3), .width(4)) sr_3
+ (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
+ .in(set_data),.out({invert_i,invert_q,realmode,swap_iq}),.changed());
+
+
+ // MUX so we can do realmode signals on either input
+
+ always @(posedge clk)
+ if(swap_iq)
+ begin
+ rx_fe_i_mux <= invert_i ? ~rx_fe_q : rx_fe_q;
+ rx_fe_q_mux <= realmode ? {WIDTH{1'b0}} : invert_q ? ~rx_fe_i : rx_fe_i;
+ end
+ else
+ begin
+ rx_fe_i_mux <= invert_i ? ~rx_fe_i : rx_fe_i;
+ rx_fe_q_mux <= realmode ? {WIDTH{1'b0}} : invert_q ? ~rx_fe_q : rx_fe_q;
+ end
+
+ // NCO
+ always @(posedge clk)
+ if(rst)
+ phase <= 0;
+ else if(~run)
+ phase <= 0;
+ else
+ phase <= phase + phase_inc;
+
+ // CORDIC 24-bit I/O
+ // (Algorithmic gain through CORDIC => 1.647 * 0.5 = 0.8235)
+ // (Worst case gain through rotation => SQRT(2) = 1.4142)
+ // Total worst case gain => 0.8235 * 1.4142 = 1.1646
+ // So add an extra MSB bit for word growth.
+
+ sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_i (.in(rx_fe_i_mux), .out(to_cordic_i));
+ sign_extend #(.bits_in(WIDTH), .bits_out(cwidth)) sign_extend_cordic_q (.in(rx_fe_q_mux), .out(to_cordic_q));
+
+ cordic_z24 #(.bitwidth(cwidth))
+ cordic(.clock(clk), .reset(rst), .enable(run),
+ .xi(to_cordic_i),. yi(to_cordic_q), .zi(phase[31:32-zwidth]),
+ .xo(i_cordic),.yo(q_cordic),.zo() );
+
+ always @(posedge clk) begin
+ i_cordic_pipe[23:0] <= i_cordic[24:1];
+ q_cordic_pipe[23:0] <= q_cordic[24:1];
+ end
+
+
+ // CIC decimator 24 bit I/O
+ // Applies crude 1/(2^N) right shift gain compensation internally to prevent excesive downstream word growth.
+ // Output gain is = algo_gain/(POW(2,CEIL(LOG2(algo_gain))) where algo_gain is = cic_decim_rate^4
+ // Thus output gain is <= 1.0 and no word growth occurs.
+ cic_strober cic_strober(.clock(clk),.reset(rst),.enable(run),.rate(cic_decim_rate),
+ .strobe_fast(1'b1),.strobe_slow(strobe_cic) );
+
+ cic_decim #(.bw(WIDTH))
+ decim_i (.clock(clk),.reset(rst),.enable(run),
+ .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
+ .signal_in(i_cordic_pipe),.signal_out(i_cic));
+
+ cic_decim #(.bw(WIDTH))
+ decim_q (.clock(clk),.reset(rst),.enable(run),
+ .rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
+ .signal_in(q_cordic_pipe),.signal_out(q_cic));
+
+ //////////////////////////////////////////////////////////////////////////
+ //
+ // Conditional compilation of either:
+ // 1) New X300 style decimation filters, or
+ // 2) Traditional N210 style decimation filters.
+ //
+ //////////////////////////////////////////////////////////////////////////
+ generate
+ if (NEW_HB_DECIM == 1) begin: new_hb
+
+ wire reload_go, reload_we1, reload_we2, reload_ld1, reload_ld2;
+ wire [17:0] coef_din;
+
+ setting_reg #(.my_addr(BASE+4), .width(22)) sr_4
+ (.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
+ .in(set_data),.out({reload_ld2,reload_we2,reload_ld1,reload_we1,coef_din[17:0]}),.changed(reload_go));
+
+ // Halfbands
+ wire nd1, nd2, nd3;
+ wire rfd1, rfd2, rfd3;
+ wire rdy1, rdy2, rdy3;
+ wire data_valid1, data_valid2, data_valid3;
+ wire [46:0] i_hb1, q_hb1;
+ wire [46:0] i_hb2, q_hb2;
+ localparam HB1_SCALE = 18;
+ localparam HB2_SCALE = 18;
+
+
+ assign strobe_hb1 = data_valid1;
+ assign strobe_hb2 = data_valid2;
+
+ assign nd1 = strobe_cic;
+ assign nd2 = strobe_hb1;
+
+ // Default Coeffs have gain of ~1.0
+ hbdec1 hbdec1
+ (.clk(clk), // input clk
+ .sclr(rst), // input sclr
+ .ce(enable_hb1), // input ce
+ .coef_ld(reload_go & reload_ld1), // input coef_ld
+ .coef_we(reload_go & reload_we1), // input coef_we
+ .coef_din(coef_din), // input [17 : 0] coef_din
+ .rfd(rfd1), // output rfd
+ .nd(nd1), // input nd
+ .din_1(i_cic), // input [23 : 0] din_1
+ .din_2(q_cic), // input [23 : 0] din_2
+ .rdy(rdy1), // output rdy
+ .data_valid(data_valid1), // output data_valid
+ .dout_1(i_hb1), // output [46 : 0] dout_1
+ .dout_2(q_hb1)); // output [46 : 0] dout_2
+
+ // Default Coeffs have gain of ~1.0
+ hbdec2 hbdec2
+ (.clk(clk), // input clk
+ .sclr(rst), // input sclr
+ .ce(enable_hb2), // input ce
+ .coef_ld(reload_go & reload_ld2), // input coef_ld
+ .coef_we(reload_go & reload_we2), // input coef_we
+ .coef_din(coef_din), // input [17 : 0] coef_din
+ .rfd(rfd2), // output rfd
+ .nd(nd2), // input nd
+ .din_1(i_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_1
+ .din_2(q_hb1[23+HB1_SCALE:HB1_SCALE]), // input [23 : 0] din_2
+ .rdy(rdy2), // output rdy
+ .data_valid(data_valid2), // output data_valid
+ .dout_1(i_hb2), // output [46 : 0] dout_1
+ .dout_2(q_hb2)); // output [46 : 0] dout_2
+
+
+
+ reg [18:0] i_unscaled, q_unscaled;
+ reg strobe_unscaled;
+
+ always @(posedge clk)
+ case({enable_hb1,enable_hb2})
+ // No Halfbands enabled, no decimation.
+ 2'd0 :
+ begin
+ strobe_unscaled <= strobe_cic;
+ i_unscaled <= i_cic[23:5];
+ q_unscaled <= q_cic[23:5];
+ end
+ // ILLEGAL. Only half sample rate half band enabled.
+ 2'd1 :
+ begin
+ strobe_unscaled <= strobe_cic;
+ i_unscaled <= i_cic[23:5];
+ q_unscaled <= q_cic[23:5];
+ end
+ // One Halfband enabled, decimate by 2.
+ 2'd2 :
+ begin
+ strobe_unscaled <= strobe_hb1;
+ i_unscaled <= i_hb1[23+HB1_SCALE:5+HB1_SCALE];
+ q_unscaled <= q_hb1[23+HB1_SCALE:5+HB1_SCALE];
+ end
+ // Both Halfbands enabled, decimate by 4.
+ 2'd3 :
+ begin
+ strobe_unscaled <= strobe_hb2;
+ i_unscaled <= i_hb2[23+HB2_SCALE:5+HB2_SCALE];
+ q_unscaled <= q_hb2[23+HB2_SCALE:5+HB2_SCALE];
+ end
+ endcase // case (hb_rate)
+
+ // Need to clip 1 bit here or we loose small signal performance out the truncated LSB's for worst case CIC gain cases.
+ // NOTE: We can only clip here with CORDIC rotating, CIC in it's highest gain configurations and an input signal thats
+ // saturated.
+ wire strobe_unscaled_clip;
+ wire [17:0] i_unscaled_clip, q_unscaled_clip;
+
+ clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_i
+ (.clk(clk), .in(i_unscaled[18:0]), .strobe_in(strobe_unscaled), .out(i_unscaled_clip[17:0]), .strobe_out(strobe_unscaled_clip));
+ clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_q
+ (.clk(clk), .in(q_unscaled[18:0]), .strobe_in(strobe_unscaled), .out(q_unscaled_clip[17:0]), .strobe_out());
+
+ // Apply scaling gain to compensate for CORDIC and CIC gain adjustments so that signal swing over network transport has
+ // optimal dynamic range.
+ wire [35:0] prod_i, prod_q;
+
+ MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
+ .LATENCY(1), // Desired clock cycle latency, 0-4
+ .WIDTH_A(18), // Multiplier A-input bus width, 1-25
+ .WIDTH_B(18)) // Multiplier B-input bus width, 1-18
+ mult_i (.P(prod_i), // Multiplier output bus, width determined by WIDTH_P parameter
+ .A(i_unscaled_clip), // Multiplier input A bus, width determined by WIDTH_A parameter
+ .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
+ .CE(strobe_unscaled_clip), // 1-bit active high input clock enable
+ .CLK(clk), // 1-bit positive edge clock input
+ .RST(rst)); // 1-bit input active high reset
+
+ MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
+ .LATENCY(1), // Desired clock cycle latency, 0-4
+ .WIDTH_A(18), // Multiplier A-input bus width, 1-25
+ .WIDTH_B(18)) // Multiplier B-input bus width, 1-18
+ mult_q (.P(prod_q), // Multiplier output bus, width determined by WIDTH_P parameter
+ .A(q_unscaled_clip), // Multiplier input A bus, width determined by WIDTH_A parameter
+ .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
+ .CE(strobe_unscaled_clip), // 1-bit active high input clock enable
+ .CLK(clk), // 1-bit positive edge clock input
+ .RST(rst)); // 1-bit input active high reset
+
+ reg strobe_scaled;
+ wire strobe_clip;
+ wire [32:0] i_clip, q_clip;
+
+ always @(posedge clk) strobe_scaled <= strobe_unscaled_clip;
+
+ clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_i
+ (.clk(clk), .in(prod_i[35:0]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
+ clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_q
+ (.clk(clk), .in(prod_q[35:0]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
+
+ round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_i
+ (.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe));
+ round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_q
+ (.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out());
+
+ end else begin: old_hb // block: new_hb
+ ///////////////////////////////////////////////
+ //
+ // Legacy Decimation Filters from USRP2
+ //
+ ///////////////////////////////////////////////
+ wire [WIDTH-1:0] i_hb1, q_hb1;
+ wire [WIDTH-1:0] i_hb2, q_hb2;
+ // First (small) halfband 24 bit I/O
+ small_hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) small_hb_i
+ (.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run),
+ .stb_in(strobe_cic),.data_in(i_cic),.stb_out(strobe_hb1),.data_out(i_hb1));
+
+ small_hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) small_hb_q
+ (.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(run),
+ .stb_in(strobe_cic),.data_in(q_cic),.stb_out(),.data_out(q_hb1));
+
+ // Second (large) halfband 24 bit I/O
+ wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate};
+ hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) hb_i
+ (.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb),
+ .stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2));
+
+ hb_dec #(.WIDTH(WIDTH),.DEVICE(DEVICE)) hb_q
+ (.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(run),.cpi(cpi_hb),
+ .stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2));
+
+ // Need to clip 1 bit here or we loose small signal performance out the truncated LSB's for worst case CIC gain cases.
+ wire strobe_unscaled_clip;
+ wire [17:0] i_unscaled_clip, q_unscaled_clip;
+
+ clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_i
+ (.clk(clk), .in(i_hb2[WIDTH-1:WIDTH-19]), .strobe_in(strobe_hb2), .out(i_unscaled_clip[17:0]), .strobe_out(strobe_unscaled_clip));
+ clip_reg #(.bits_in(19), .bits_out(18), .STROBED(1)) unscaled_clip_q
+ (.clk(clk), .in(q_hb2[WIDTH-1:WIDTH-19]), .strobe_in(strobe_hb2), .out(q_unscaled_clip[17:0]), .strobe_out());
+
+ //scalar operation (gain of 6 bits)
+ wire [35:0] prod_i, prod_q;
+
+ MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
+ .LATENCY(1), // Desired clock cycle latency, 0-4
+ .WIDTH_A(18), // Multiplier A-input bus width, 1-25
+ .WIDTH_B(18)) // Multiplier B-input bus width, 1-18
+ mult_i (.P(prod_i), // Multiplier output bus, width determined by WIDTH_P parameter
+ .A(i_unscaled_clip),// Multiplier input A bus, width determined by WIDTH_A parameter
+ .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
+ .CE(strobe_unscaled_clip), // 1-bit active high input clock enable
+ .CLK(clk), // 1-bit positive edge clock input
+ .RST(rst)); // 1-bit input active high reset
+
+ MULT_MACRO #(.DEVICE(DEVICE), // Target Device: "VIRTEX5", "VIRTEX6", "SPARTAN6","7SERIES"
+ .LATENCY(1), // Desired clock cycle latency, 0-4
+ .WIDTH_A(18), // Multiplier A-input bus width, 1-25
+ .WIDTH_B(18)) // Multiplier B-input bus width, 1-18
+ mult_q (.P(prod_q), // Multiplier output bus, width determined by WIDTH_P parameter
+ .A(q_unscaled_clip),// Multiplier input A bus, width determined by WIDTH_A parameter
+ .B(scale_factor), // Multiplier input B bus, width determined by WIDTH_B parameter
+ .CE(strobe_unscaled_clip), // 1-bit active high input clock enable
+ .CLK(clk), // 1-bit positive edge clock input
+ .RST(rst)); // 1-bit input active high reset
+
+ reg strobe_scaled;
+ wire strobe_clip;
+ wire [32:0] i_clip, q_clip;
+
+ always @(posedge clk) strobe_scaled <= strobe_unscaled_clip;
+
+ clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_i
+ (.clk(clk), .in(prod_i[35:0]), .strobe_in(strobe_scaled), .out(i_clip), .strobe_out(strobe_clip));
+ clip_reg #(.bits_in(36), .bits_out(33), .STROBED(1)) clip_q
+ (.clk(clk), .in(prod_q[35:0]), .strobe_in(strobe_scaled), .out(q_clip), .strobe_out());
+
+ round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_i
+ (.clk(clk), .reset(rst), .in(i_clip), .strobe_in(strobe_clip), .out(sample[31:16]), .strobe_out(strobe));
+ round_sd #(.WIDTH_IN(33), .WIDTH_OUT(16)) round_q
+ (.clk(clk), .reset(rst), .in(q_clip), .strobe_in(strobe_clip), .out(sample[15:0]), .strobe_out());
+
+ end // block: old_hb
+ endgenerate
+
+
+
+ assign debug = {enable_hb1, enable_hb2, run, strobe, strobe_cic, strobe_hb1, strobe_hb2};
+
+endmodule // ddc_chain