diff options
Diffstat (limited to 'firmware/fx3/ad9361/lib/ad9361_impl.c')
-rw-r--r-- | firmware/fx3/ad9361/lib/ad9361_impl.c | 1937 |
1 files changed, 0 insertions, 1937 deletions
diff --git a/firmware/fx3/ad9361/lib/ad9361_impl.c b/firmware/fx3/ad9361/lib/ad9361_impl.c deleted file mode 100644 index 42d38b0f9..000000000 --- a/firmware/fx3/ad9361/lib/ad9361_impl.c +++ /dev/null @@ -1,1937 +0,0 @@ -// -// Copyright 2013-2014 Ettus Research LLC -// - -/* This file implements b200 vendor requests handler - * It handles ad9361 setup and configuration - */ - -#include <stdarg.h> -#include <stdio.h> -#include <math.h> - -#include <ad9361_transaction.h> -#include "ad9361_filter_taps.h" -#include "ad9361_gain_tables.h" -#include "ad9361_synth_lut.h" -#include "ad9361_dispatch.h" - -//////////////////////////////////////////////////////////// - -static void fake_msg(const char* str, ...) -{ -} - -static msgfn _msgfn = fake_msg; - -//extern void msg(const char* str, ...); External object must provide this symbol -#define msg (_msgfn) - -void ad9361_set_msgfn(msgfn pfn) -{ - _msgfn = pfn; -} - -//////////////////////////////////////////////////////////// -#define AD9361_MAX_GAIN 89.75 - -#define DOUBLE_PI 3.14159265359 -#define DOUBLE_LN_2 0.693147181 - -#define RX_TYPE 0 -#define TX_TYPE 1 - -#ifndef AD9361_CLOCKING_MODE -#error define a AD9361_CLOCKING_MODE -#endif - -#ifndef AD9361_RX_BAND_EDGE0 -#error define a AD9361_RX_BAND_EDGE0 -#endif - -#ifndef AD9361_RX_BAND_EDGE1 -#error define a AD9361_RX_BAND_EDGE1 -#endif - -#ifndef AD9361_TX_BAND_EDGE -#error define a AD9361_TX_BAND_EDGE -#endif - -//////////////////////////////////////////////////////////// -// the following macros evaluate to a compile time constant -// macros By Tom Torfs - donated to the public domain - -/* turn a numeric literal into a hex constant -(avoids problems with leading zeroes) -8-bit constants max value 0x11111111, always fits in unsigned long -*/ -#define HEX__(n) 0x##n##LU - -/* 8-bit conversion function */ -#define B8__(x) ((x&0x0000000FLU)?1:0) \ -+((x&0x000000F0LU)?2:0) \ -+((x&0x00000F00LU)?4:0) \ -+((x&0x0000F000LU)?8:0) \ -+((x&0x000F0000LU)?16:0) \ -+((x&0x00F00000LU)?32:0) \ -+((x&0x0F000000LU)?64:0) \ -+((x&0xF0000000LU)?128:0) - -/* *** user macros *** */ - -/* for upto 8-bit binary constants */ -#define B8(d) ((unsigned char)B8__(HEX__(d))) - -//////////////////////////////////////////////////////////// -// shadow registers -static uint8_t reg_vcodivs; -static uint8_t reg_inputsel; -static uint8_t reg_rxfilt; -static uint8_t reg_txfilt; -static uint8_t reg_bbpll; -static uint8_t reg_bbftune_config; -static uint8_t reg_bbftune_mode; - -//////////////////////////////////////////////////////////// -// other private data fields for VRQ handler -static double _rx_freq, _tx_freq, _req_rx_freq, _req_tx_freq; -static double _baseband_bw, _bbpll_freq, _adcclock_freq; -static double _req_clock_rate, _req_coreclk; -static uint16_t _rx_bbf_tunediv; -static uint8_t _curr_gain_table; -static uint32_t _rx1_gain, _rx2_gain, _tx1_gain, _tx2_gain; -static int _tfir_factor; - -double set_gain(int which, int n, const double value); -void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2); -/*********************************************************************** - * Placeholders, unused, or test functions - **********************************************************************/ -static char *tmp_req_buffer; - -void post_err_msg(const char* error) -{ - msg("[AD9361 error] %s", error); - - if (!tmp_req_buffer) - return; - - ad9361_transaction_t *request = (ad9361_transaction_t *)tmp_req_buffer; - strncpy(request->error_msg, error, (AD9361_TRANSACTION_MAX_ERROR_MSG + 1)); // '+ 1' as length excludes terminating NUL - request->error_msg[AD9361_TRANSACTION_MAX_ERROR_MSG] = '\0'; // If string was too long, NUL will not be copied, so force one just in case -} - -void write_ad9361_reg(uint32_t reg, uint8_t val) -{ - ad9361_transact_spi((reg << 8) | val | (1 << 23)); -} - -uint8_t read_ad9361_reg(uint32_t reg) -{ - return ad9361_transact_spi((reg << 8)) & 0xff; -} - -//shortcuts for double packer/unpacker function -#define double_pack ad9361_double_pack -#define double_unpack ad9361_double_unpack - -/* Make Catalina output its test tone. */ -void output_test_tone(void) { - /* Output a 480 kHz tone at 800 MHz */ - write_ad9361_reg(0x3F4, 0x0B); - write_ad9361_reg(0x3FC, 0xFF); - write_ad9361_reg(0x3FD, 0xFF); - write_ad9361_reg(0x3FE, 0x3F); -} - -/* Turn on/off Catalina's TX port --> RX port loopback. */ -void data_port_loopback(const int on) { - msg("[data_port_loopback] Enabled: %d", on); - write_ad9361_reg(0x3F5, (on ? 0x01 : 0x00)); -} - -/* This is a simple comparison for very large double-precision floating - * point numbers. It is used to prevent re-tunes for frequencies that are - * the same but not 'exactly' because of data precision issues. */ -// TODO: see if we can avoid the need for this function -int freq_is_nearly_equal(double a, double b) { - return AD9361_MAX(a,b) - AD9361_MIN(a,b) < 1; -} - -/*********************************************************************** - * Filter functions - **********************************************************************/ - -/* This function takes in the calculated maximum number of FIR taps, and - * returns a number of taps that makes Catalina happy. */ -int get_num_taps(int max_num_taps) { - - int num_taps = 0; - int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128}; - int i; - for(i = 1; i < 8; i++) { - if(max_num_taps >= num_taps_list[i]) { - continue; - } else { - num_taps = num_taps_list[i - 1]; - break; - } - } if(num_taps == 0) { num_taps = 128; } - - return num_taps; -} - -/* Program either the RX or TX FIR filter. - * - * The process is the same for both filters, but the function must be told - * how many taps are in the filter, and given a vector of the taps - * themselves. Note that the filters are symmetric, so value of 'num_taps' - * should actually be twice the length of the tap vector. */ -void program_fir_filter(int which, int num_taps, \ - uint16_t *coeffs) { - - uint16_t base; - if(which == RX_TYPE) { - base = 0x0f0; - write_ad9361_reg(base+6, 0x02); //filter gain - } else { - base = 0x060; - } - - /* Write the filter configuration. */ - uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5; - - /* Turn on the filter clock. */ - write_ad9361_reg(base+5, reg_numtaps | 0x1a); - ad9361_msleep(1); - - int num_unique_coeffs = (num_taps / 2); - - /* The filters are symmetric, so iterate over the tap vector, - * programming each index, and then iterate backwards, repeating the - * process. */ - int addr; - for(addr=0; addr < num_unique_coeffs; addr++) { - write_ad9361_reg(base+0, addr); - write_ad9361_reg(base+1, (coeffs[addr]) & 0xff); - write_ad9361_reg(base+2, (coeffs[addr] >> 8) & 0xff); - write_ad9361_reg(base+5, 0xfe); - write_ad9361_reg(base+4, 0x00); - write_ad9361_reg(base+4, 0x00); - } - - for(addr=0; addr < num_unique_coeffs; addr++) { - write_ad9361_reg(base+0, addr+num_unique_coeffs); - write_ad9361_reg(base+1, (coeffs[num_unique_coeffs-1-addr]) & 0xff); - write_ad9361_reg(base+2, (coeffs[num_unique_coeffs-1-addr] >> 8) & 0xff); - write_ad9361_reg(base+5, 0xfe); - write_ad9361_reg(base+4, 0x00); - write_ad9361_reg(base+4, 0x00); - } - - /* Disable the filter clock. */ - write_ad9361_reg(base+5, 0xf8); -} - -/* Program the RX FIR Filter. */ -void setup_rx_fir(int total_num_taps) { - int num_taps = total_num_taps / 2; - uint16_t coeffs[num_taps]; - int i; - for(i = 0; i < num_taps; i++) { - coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i]; - } - - program_fir_filter(RX_TYPE, total_num_taps, coeffs); -} - -/* Program the TX FIR Filter. */ -void setup_tx_fir(int total_num_taps) { - int num_taps = total_num_taps / 2; - uint16_t coeffs[num_taps]; - int i; - for(i = 0; i < num_taps; i++) { - coeffs[num_taps - 1 - i] = default_128tap_coeffs[63 - i]; - } - - program_fir_filter(TX_TYPE, total_num_taps, coeffs); -} - -/*********************************************************************** - * Calibration functions - ***********************************************************************/ - -/* Calibrate and lock the BBPLL. - * - * This function should be called anytime the BBPLL is tuned. */ -void calibrate_lock_bbpll() { - write_ad9361_reg(0x03F, 0x05); // Start the BBPLL calibration - write_ad9361_reg(0x03F, 0x01); // Clear the 'start' bit - - /* Increase BBPLL KV and phase margin. */ - write_ad9361_reg(0x04c, 0x86); - write_ad9361_reg(0x04d, 0x01); - write_ad9361_reg(0x04d, 0x05); - - /* Wait for BBPLL lock. */ - int count = 0; - while(!(read_ad9361_reg(0x05e) & 0x80)) { - if(count > 1000) { - post_err_msg("BBPLL not locked"); - break; - } - - count++; - ad9361_msleep(2); - } -} - -/* Calibrate the synthesizer charge pumps. - * - * Technically, this calibration only needs to be done once, at device - * initialization. */ -void calibrate_synth_charge_pumps() { - /* If this function ever gets called, and the ENSM isn't already in the - * ALERT state, then something has gone horribly wrong. */ - if((read_ad9361_reg(0x017) & 0x0F) != 5) { - post_err_msg("Catalina not in ALERT during cal"); - } - - /* Calibrate the RX synthesizer charge pump. */ - int count = 0; - write_ad9361_reg(0x23d, 0x04); - while(!(read_ad9361_reg(0x244) & 0x80)) { - if(count > 5) { - post_err_msg("RX charge pump cal failure"); - break; - } - - count++; - ad9361_msleep(1); - } - write_ad9361_reg(0x23d, 0x00); - - /* Calibrate the TX synthesizer charge pump. */ - count = 0; - write_ad9361_reg(0x27d, 0x04); - while(!(read_ad9361_reg(0x284) & 0x80)) { - if(count > 5) { - post_err_msg("TX charge pump cal failure"); - break; - } - - count++; - ad9361_msleep(1); - } - write_ad9361_reg(0x27d, 0x00); -} - -/* Calibrate the analog BB RX filter. - * - * Note that the filter calibration depends heavily on the baseband - * bandwidth, so this must be re-done after any change to the RX sample - * rate. */ -double calibrate_baseband_rx_analog_filter() { - /* For filter tuning, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - double bbbw = _baseband_bw / 2.0; - if(bbbw > 28e6) { - bbbw = 28e6; - } else if (bbbw < 0.20e6) { - bbbw = 0.20e6; - } - - double rxtune_clk = ((1.4 * bbbw * 2 * - DOUBLE_PI) / DOUBLE_LN_2); - - _rx_bbf_tunediv = AD9361_MIN(511, AD9361_CEIL_INT(_bbpll_freq / rxtune_clk)); - - reg_bbftune_config = (reg_bbftune_config & 0xFE) \ - | ((_rx_bbf_tunediv >> 8) & 0x0001); - - double bbbw_mhz = bbbw / 1e6; - - double temp = ((bbbw_mhz - AD9361_FLOOR_INT(bbbw_mhz)) * 1000) / 7.8125; - uint8_t bbbw_khz = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(temp + 0.5))); - - /* Set corner frequencies and dividers. */ - write_ad9361_reg(0x1fb, (uint8_t)(bbbw_mhz)); - write_ad9361_reg(0x1fc, bbbw_khz); - write_ad9361_reg(0x1f8, (_rx_bbf_tunediv & 0x00FF)); - write_ad9361_reg(0x1f9, reg_bbftune_config); - - /* RX Mix Voltage settings - only change with apps engineer help. */ - write_ad9361_reg(0x1d5, 0x3f); - write_ad9361_reg(0x1c0, 0x03); - - /* Enable RX1 & RX2 filter tuners. */ - write_ad9361_reg(0x1e2, 0x02); - write_ad9361_reg(0x1e3, 0x02); - - /* Run the calibration! */ - int count = 0; - write_ad9361_reg(0x016, 0x80); - while(read_ad9361_reg(0x016) & 0x80) { - if(count > 100) { - post_err_msg("RX baseband filter cal FAILURE"); - break; - } - - count++; - ad9361_msleep(1); - } - - /* Disable RX1 & RX2 filter tuners. */ - write_ad9361_reg(0x1e2, 0x03); - write_ad9361_reg(0x1e3, 0x03); - - return bbbw; -} - -/* Calibrate the analog BB TX filter. - * - * Note that the filter calibration depends heavily on the baseband - * bandwidth, so this must be re-done after any change to the TX sample - * rate. */ -double calibrate_baseband_tx_analog_filter() { - /* For filter tuning, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - double bbbw = _baseband_bw / 2.0; - if(bbbw > 20e6) { - bbbw = 20e6; - } else if (bbbw < 0.625e6) { - bbbw = 0.625e6; - } - - double txtune_clk = ((1.6 * bbbw * 2 * - DOUBLE_PI) / DOUBLE_LN_2); - - uint16_t txbbfdiv = AD9361_MIN(511, (AD9361_CEIL_INT(_bbpll_freq / txtune_clk))); - - reg_bbftune_mode = (reg_bbftune_mode & 0xFE) \ - | ((txbbfdiv >> 8) & 0x0001); - - /* Program the divider values. */ - write_ad9361_reg(0x0d6, (txbbfdiv & 0x00FF)); - write_ad9361_reg(0x0d7, reg_bbftune_mode); - - /* Enable the filter tuner. */ - write_ad9361_reg(0x0ca, 0x22); - - /* Calibrate! */ - int count = 0; - write_ad9361_reg(0x016, 0x40); - while(read_ad9361_reg(0x016) & 0x40) { - if(count > 100) { - post_err_msg("TX baseband filter cal FAILURE"); - break; - } - - count++; - ad9361_msleep(1); - } - - /* Disable the filter tuner. */ - write_ad9361_reg(0x0ca, 0x26); - - return bbbw; -} - -/* Calibrate the secondary TX filter. - * - * This filter also depends on the TX sample rate, so if a rate change is - * made, the previous calibration will no longer be valid. */ -void calibrate_secondary_tx_filter() { - /* For filter tuning, baseband BW is half the complex BW, and must be - * between 20e6 and 0.53e6. */ - double bbbw = _baseband_bw / 2.0; - if(bbbw > 20e6) { - bbbw = 20e6; - } else if (bbbw < 0.53e6) { - bbbw = 0.53e6; - } - - double bbbw_mhz = bbbw / 1e6; - - /* Start with a resistor value of 100 Ohms. */ - int res = 100; - - /* Calculate target corner frequency. */ - double corner_freq = 5 * bbbw_mhz * 2 * DOUBLE_PI; - - /* Iterate through RC values to determine correct combination. */ - int cap = 0; - int i; - for(i = 0; i <= 3; i++) { - cap = (AD9361_FLOOR_INT(0.5 + (( 1 / ((corner_freq * res) * 1e6)) * 1e12))) - 12; - - if(cap <= 63) { - break; - } - - res = res * 2; - } - if(cap > 63) { - cap = 63; - } - - uint8_t reg0d0, reg0d1, reg0d2; - - /* Translate baseband bandwidths to register settings. */ - if((bbbw_mhz * 2) <= 9) { - reg0d0 = 0x59; - } else if(((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) { - reg0d0 = 0x56; - } else if((bbbw_mhz * 2) > 24) { - reg0d0 = 0x57; - } else { - post_err_msg("Cal2ndTxFil: bad bbbw_mhz INV_PATH"); - reg0d0 = 0x00; - } - - /* Translate resistor values to register settings. */ - if(res == 100) { - reg0d1 = 0x0c; - } else if(res == 200) { - reg0d1 = 0x04; - } else if(res == 400) { - reg0d1 = 0x03; - } else if(res == 800) { - reg0d1 = 0x01; - } else { - reg0d1 = 0x0c; - } - - reg0d2 = cap; - - /* Program the above-calculated values. Sweet. */ - write_ad9361_reg(0x0d2, reg0d2); - write_ad9361_reg(0x0d1, reg0d1); - write_ad9361_reg(0x0d0, reg0d0); -} - -/* Calibrate the RX TIAs. - * - * Note that the values in the TIA register, after calibration, vary with - * the RX gain settings. */ -void calibrate_rx_TIAs() { - - uint8_t reg1eb = read_ad9361_reg(0x1eb) & 0x3F; - uint8_t reg1ec = read_ad9361_reg(0x1ec) & 0x7F; - uint8_t reg1e6 = read_ad9361_reg(0x1e6) & 0x07; - uint8_t reg1db = 0x00; - uint8_t reg1dc = 0x00; - uint8_t reg1dd = 0x00; - uint8_t reg1de = 0x00; - uint8_t reg1df = 0x00; - - /* For calibration, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - double bbbw = _baseband_bw / 2.0; - if(bbbw > 20e6) { - bbbw = 20e6; - } else if (bbbw < 0.20e6) { - bbbw = 0.20e6; - } - double ceil_bbbw_mhz = AD9361_CEIL_INT(bbbw / 1e6); - - /* Do some crazy resistor and capacitor math. */ - int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140; - int R2346 = 18300 * (reg1e6 & 0x07); - double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500; - - /* Translate baseband BW to register settings. */ - if(ceil_bbbw_mhz <= 3) { - reg1db = 0xe0; - } else if((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) { - reg1db = 0x60; - } else if(ceil_bbbw_mhz > 10) { - reg1db = 0x20; - } else { - post_err_msg("CalRxTias: bad bbbw_mhz INV_PATH"); - } - - if(CTIA_fF > 2920) { - reg1dc = 0x40; - reg1de = 0x40; - - uint8_t temp = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 320.0)))); - reg1dd = temp; - reg1df = temp; - } else { - uint8_t temp = (uint8_t) AD9361_FLOOR_INT(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40; - reg1dc = temp; - reg1de = temp; - reg1dd = 0; - reg1df = 0; - } - - /* w00t. Settings calculated. Program them and roll out. */ - write_ad9361_reg(0x1db, reg1db); - write_ad9361_reg(0x1dd, reg1dd); - write_ad9361_reg(0x1df, reg1df); - write_ad9361_reg(0x1dc, reg1dc); - write_ad9361_reg(0x1de, reg1de); -} - -/* Setup the Catalina ADC. - * - * There are 40 registers that control the ADC's operation, most of the - * values of which must be derived mathematically, dependent on the current - * setting of the BBPLL. Note that the order of calculation is critical, as - * some of the 40 registers depend on the values in others. */ -void setup_adc() { - double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * DOUBLE_LN_2) \ - / (1.4 * 2 * DOUBLE_PI); - - /* For calibration, baseband BW is half the complex BW, and must be - * between 28e6 and 0.2e6. */ - if(bbbw_mhz > 28) { - bbbw_mhz = 28; - } else if (bbbw_mhz < 0.20) { - bbbw_mhz = 0.20; - } - - uint8_t rxbbf_c3_msb = read_ad9361_reg(0x1eb) & 0x3F; - uint8_t rxbbf_c3_lsb = read_ad9361_reg(0x1ec) & 0x7F; - uint8_t rxbbf_r2346 = read_ad9361_reg(0x1e6) & 0x07; - - double fsadc = _adcclock_freq / 1e6; - - /* Sort out the RC time constant for our baseband bandwidth... */ - double rc_timeconst = 0.0; - if(bbbw_mhz < 18) { - rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ - * (18300 * rxbbf_r2346) - * ((160e-15 * rxbbf_c3_msb) - + (10e-15 * rxbbf_c3_lsb) + 140e-15) - * (bbbw_mhz * 1e6))); - } else { - rc_timeconst = (1 / ((1.4 * 2 * DOUBLE_PI) \ - * (18300 * rxbbf_r2346) - * ((160e-15 * rxbbf_c3_msb) - + (10e-15 * rxbbf_c3_lsb) + 140e-15) - * (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18))))); - } - - double scale_res = ad9361_sqrt(1 / rc_timeconst); - double scale_cap = ad9361_sqrt(1 / rc_timeconst); - - double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192; - double maxsnr = 640 / 160; - - /* Calculate the values for all 40 settings registers. - * - * DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/ - uint8_t data[40]; - data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24; - data[4] = 0x24; data[5] = 0; data[6] = 0; - data[7] = (uint8_t) AD9361_MIN(124, (AD9361_FLOOR_INT(-0.5 - + (80.0 * scale_snr * scale_res - * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); - double data007 = data[7]; - data[8] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5 - + ((20.0 * (640.0 / fsadc) * ((data007 / 80.0)) - / (scale_res * scale_cap)))))); - data[10] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 + (77.0 * scale_res - * AD9361_MIN(1.0, ad9361_sqrt(maxsnr * fsadc / 640.0)))))); - double data010 = data[10]; - data[9] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(0.8 * data010))); - data[11] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(0.5 - + (20.0 * (640.0 / fsadc) * ((data010 / 77.0) - / (scale_res * scale_cap)))))); - data[12] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(-0.5 - + (80.0 * scale_res * AD9361_MIN(1.0, - ad9361_sqrt(maxsnr * fsadc / 640.0)))))); - double data012 = data[12]; - data[13] = (uint8_t) AD9361_MIN(255, (AD9361_FLOOR_INT(-1.5 - + (20.0 * (640.0 / fsadc) * ((data012 / 80.0) - / (scale_res * scale_cap)))))); - data[14] = 21 * (uint8_t)(AD9361_FLOOR_INT(0.1 * 640.0 / fsadc)); - data[15] = (uint8_t) AD9361_MIN(127, (1.025 * data007)); - double data015 = data[15]; - data[16] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data015 - * (0.98 + (0.02 * AD9361_MAX(1.0, - (640.0 / fsadc) / maxsnr))))))); - data[17] = data[15]; - data[18] = (uint8_t) AD9361_MIN(127, (0.975 * (data010))); - double data018 = data[18]; - data[19] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data018 - * (0.98 + (0.02 * AD9361_MAX(1.0, - (640.0 / fsadc) / maxsnr))))))); - data[20] = data[18]; - data[21] = (uint8_t) AD9361_MIN(127, (0.975 * data012)); - double data021 = data[21]; - data[22] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT((data021 - * (0.98 + (0.02 * AD9361_MAX(1.0, - (640.0 / fsadc) / maxsnr))))))); - data[23] = data[21]; - data[24] = 0x2e; - data[25] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0)))); - data[26] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, 63.0 * (fsadc / 640.0) - * (0.92 + (0.08 * (640.0 / fsadc)))))); - data[27] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, - 32.0 * ad9361_sqrt(fsadc / 640.0)))); - data[28] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0)))); - data[29] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0) - * (0.92 + (0.08 * (640.0 / fsadc)))))); - data[30] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, - 32.0 * ad9361_sqrt(fsadc / 640.0)))); - data[31] = (uint8_t)(AD9361_FLOOR_INT(128.0 + AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0)))); - data[32] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, - 63.0 * (fsadc / 640.0) * (0.92 - + (0.08 * (640.0 / fsadc)))))); - data[33] = (uint8_t)(AD9361_FLOOR_INT(AD9361_MIN(63.0, - 63.0 * ad9361_sqrt(fsadc / 640.0)))); - data[34] = (uint8_t) AD9361_MIN(127, (AD9361_FLOOR_INT(64.0 - * ad9361_sqrt(fsadc / 640.0)))); - data[35] = 0x40; - data[36] = 0x40; - data[37] = 0x2c; - data[38] = 0x00; - data[39] = 0x00; - - /* Program the registers! */ - int i; - for(i=0; i<40; i++) { - write_ad9361_reg(0x200+i, data[i]); - } - -} - -/* Calibrate the baseband DC offset. - * - * Note that this function is called from within the TX quadrature - * calibration function! */ -void calibrate_baseband_dc_offset() { - write_ad9361_reg(0x193, 0x3f); // Calibration settings - write_ad9361_reg(0x190, 0x0f); // Set tracking coefficient - //write_ad9361_reg(0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift - write_ad9361_reg(0x194, 0x01); // More calibration settings - - /* Start that calibration, baby. */ - int count = 0; - write_ad9361_reg(0x016, 0x01); - while(read_ad9361_reg(0x016) & 0x01) { - if(count > 100) { - post_err_msg("Baseband DC Offset Cal Failure"); - break; - } - - count++; - ad9361_msleep(5); - } -} - -/* Calibrate the RF DC offset. - * - * Note that this function is called from within the TX quadrature - * calibration function. */ -void calibrate_rf_dc_offset() { - /* Some settings are frequency-dependent. */ - if(_rx_freq < 4e9) { - write_ad9361_reg(0x186, 0x32); // RF DC Offset count - write_ad9361_reg(0x187, 0x24); - write_ad9361_reg(0x188, 0x05); - } else { - write_ad9361_reg(0x186, 0x28); // RF DC Offset count - write_ad9361_reg(0x187, 0x34); - write_ad9361_reg(0x188, 0x06); - } - - write_ad9361_reg(0x185, 0x20); // RF DC Offset wait count - write_ad9361_reg(0x18b, 0x83); - write_ad9361_reg(0x189, 0x30); - - /* Run the calibration! */ - int count = 0; - write_ad9361_reg(0x016, 0x02); - while(read_ad9361_reg(0x016) & 0x02) { - if(count > 100) { - post_err_msg("RF DC Offset Cal Failure"); - break; - } - - count++; - ad9361_msleep(50); - } -} - -/* Start the RX quadrature calibration. - * - * Note that we are using Catalina's 'tracking' feature for RX quadrature - * calibration, so once it starts it continues to free-run during operation. - * It should be re-run for large frequency changes. */ -void calibrate_rx_quadrature(void) { - /* Configure RX Quadrature calibration settings. */ - write_ad9361_reg(0x168, 0x03); // Set tone level for cal - write_ad9361_reg(0x16e, 0x25); // RX Gain index to use for cal - write_ad9361_reg(0x16a, 0x75); // Set Kexp phase - write_ad9361_reg(0x16b, 0x15); // Set Kexp amplitude - write_ad9361_reg(0x169, 0xcf); // Continuous tracking mode - write_ad9361_reg(0x18b, 0xad); -} - -/* TX quadtrature calibration routine. - * - * The TX quadrature needs to be done twice, once for each TX chain, with - * only one register change in between. Thus, this function enacts the - * calibrations, and it is called from calibrate_tx_quadrature. */ -void tx_quadrature_cal_routine(void) { - - /* This is a weird process, but here is how it works: - * 1) Read the calibrated NCO frequency bits out of 0A3. - * 2) Write the two bits to the RX NCO freq part of 0A0. - * 3) Re-read 0A3 to get bits [5:0] because maybe they changed? - * 4) Update only the TX NCO freq bits in 0A3. - * 5) Profit (I hope). */ - uint8_t reg0a3 = read_ad9361_reg(0x0a3); - uint8_t nco_freq = (reg0a3 & 0xC0); - write_ad9361_reg(0x0a0, 0x15 | (nco_freq >> 1)); - reg0a3 = read_ad9361_reg(0x0a3); - write_ad9361_reg(0x0a3, (reg0a3 & 0x3F) | nco_freq); - - /* It is possible to reach a configuration that won't operate correctly, - * where the two test tones used for quadrature calibration are outside - * of the RX BBF, and therefore don't make it to the ADC. We will check - * for that scenario here. */ - double max_cal_freq = (((_baseband_bw * _tfir_factor) * ((nco_freq >> 6) + 1)) / 32) * 2; - double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW - if(bbbw > 28e6) { - bbbw = 28e6; - } else if (bbbw < 0.20e6) { - bbbw = 0.20e6; - } - if (max_cal_freq > bbbw ) - post_err_msg("max_cal_freq > bbbw"); - - write_ad9361_reg(0x0a1, 0x7B); // Set tracking coefficient - write_ad9361_reg(0x0a9, 0xff); // Cal count - write_ad9361_reg(0x0a2, 0x7f); // Cal Kexp - write_ad9361_reg(0x0a5, 0x01); // Cal magnitude threshold VVVV - write_ad9361_reg(0x0a6, 0x01); - - /* The gain table index used for calibration must be adjusted for the - * mid-table to get a TIA index = 1 and LPF index = 0. */ - if((_rx_freq >= 1300e6) && (_rx_freq < 4000e6)) { - write_ad9361_reg(0x0aa, 0x22); // Cal gain table index - } else { - write_ad9361_reg(0x0aa, 0x25); // Cal gain table index - } - - write_ad9361_reg(0x0a4, 0xf0); // Cal setting conut - write_ad9361_reg(0x0ae, 0x00); // Cal LPF gain index (split mode) - - /* First, calibrate the baseband DC offset. */ - calibrate_baseband_dc_offset(); - - /* Second, calibrate the RF DC offset. */ - calibrate_rf_dc_offset(); - - /* Now, calibrate the TX quadrature! */ - int count = 0; - write_ad9361_reg(0x016, 0x10); - while(read_ad9361_reg(0x016) & 0x10) { - if(count > 100) { - post_err_msg("TX Quadrature Cal Failure"); - break; - } - - count++; - ad9361_msleep(10); - } -} - -/* Run the TX quadrature calibration. - * - * Note that from within this function we are also triggering the baseband - * and RF DC calibrations. */ -void calibrate_tx_quadrature(void) { - /* Make sure we are, in fact, in the ALERT state. If not, something is - * terribly wrong in the driver execution flow. */ - if((read_ad9361_reg(0x017) & 0x0F) != 5) { - post_err_msg("TXQuadCal started,but not in ALERT"); - } - - /* Turn off free-running and continuous calibrations. Note that this - * will get turned back on at the end of the RX calibration routine. */ - write_ad9361_reg(0x169, 0xc0); - - /* This calibration must be done in a certain order, and for both TX_A - * and TX_B, separately. Store the original setting so that we can - * restore it later. */ - uint8_t orig_reg_inputsel = reg_inputsel; - - /*********************************************************************** - * TX1/2-A Calibration - **********************************************************************/ - reg_inputsel = reg_inputsel & 0xBF; - write_ad9361_reg(0x004, reg_inputsel); - - tx_quadrature_cal_routine(); - - /*********************************************************************** - * TX1/2-B Calibration - **********************************************************************/ - reg_inputsel = reg_inputsel | 0x40; - write_ad9361_reg(0x004, reg_inputsel); - - tx_quadrature_cal_routine(); - - /*********************************************************************** - * fin - **********************************************************************/ - reg_inputsel = orig_reg_inputsel; - write_ad9361_reg(0x004, orig_reg_inputsel); -} - - -/*********************************************************************** - * Other Misc Setup Functions - ***********************************************************************/ - -/* Program the mixer gain table. - * - * Note that this table is fixed for all frequency settings. */ -void program_mixer_gm_subtable() { - uint8_t gain[] = {0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58, - 0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00}; - uint8_t gm[] = {0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, - 0x31, 0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E}; - - /* Start the clock. */ - write_ad9361_reg(0x13f, 0x02); - - /* Program the GM Sub-table. */ - int i; - for(i = 15; i >= 0; i--) { - write_ad9361_reg(0x138, i); - write_ad9361_reg(0x139, gain[(15 - i)]); - write_ad9361_reg(0x13A, 0x00); - write_ad9361_reg(0x13B, gm[(15 - i)]); - write_ad9361_reg(0x13F, 0x06); - write_ad9361_reg(0x13C, 0x00); - write_ad9361_reg(0x13C, 0x00); - } - - /* Clear write bit and stop clock. */ - write_ad9361_reg(0x13f, 0x02); - write_ad9361_reg(0x13C, 0x00); - write_ad9361_reg(0x13C, 0x00); - write_ad9361_reg(0x13f, 0x00); -} - -/* Program the gain table. - * - * There are three different gain tables for different frequency ranges! */ -void program_gain_table() { - - /* Figure out which gain table we should be using for our current - * frequency band. */ - uint8_t (*gain_table)[5] = NULL; - uint8_t new_gain_table; - if(_rx_freq < 1300e6) { - gain_table = gain_table_sub_1300mhz; - new_gain_table = 1; - } else if(_rx_freq < 4e9) { - gain_table = gain_table_1300mhz_to_4000mhz; - new_gain_table = 2; - } else if(_rx_freq <= 6e9) { - gain_table = gain_table_4000mhz_to_6000mhz; - new_gain_table = 3; - } else { - post_err_msg("Wrong _rx_freq value"); - new_gain_table = 1; - } - - /* Only re-program the gain table if there has been a band change. */ - if(_curr_gain_table == new_gain_table) { - return; - } else { - _curr_gain_table = new_gain_table; - } - - /* Okay, we have to program a new gain table. Sucks, brah. Start the - * gain table clock. */ - write_ad9361_reg(0x137, 0x1A); - - /* IT'S PROGRAMMING TIME. */ - uint8_t index = 0; - for(; index < 77; index++) { - write_ad9361_reg(0x130, index); - write_ad9361_reg(0x131, gain_table[index][1]); - write_ad9361_reg(0x132, gain_table[index][2]); - write_ad9361_reg(0x133, gain_table[index][3]); - write_ad9361_reg(0x137, 0x1E); - write_ad9361_reg(0x134, 0x00); - write_ad9361_reg(0x134, 0x00); - } - - /* Everything above the 77th index is zero. */ - for(; index < 91; index++) { - write_ad9361_reg(0x130, index); - write_ad9361_reg(0x131, 0x00); - write_ad9361_reg(0x132, 0x00); - write_ad9361_reg(0x133, 0x00); - write_ad9361_reg(0x137, 0x1E); - write_ad9361_reg(0x134, 0x00); - write_ad9361_reg(0x134, 0x00); - } - - /* Clear the write bit and stop the gain clock. */ - write_ad9361_reg(0x137, 0x1A); - write_ad9361_reg(0x134, 0x00); - write_ad9361_reg(0x134, 0x00); - write_ad9361_reg(0x137, 0x00); -} - -/* Setup gain control registers. - * - * This really only needs to be done once, at initialization. */ -void setup_gain_control() { - write_ad9361_reg(0x0FA, 0xE0); // Gain Control Mode Select - write_ad9361_reg(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl - write_ad9361_reg(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size - write_ad9361_reg(0x0FD, 0x4C); // Max Full/LMT Gain Table Index - write_ad9361_reg(0x0FE, 0x44); // Decr Step Size, Peak Overload Time - write_ad9361_reg(0x100, 0x6F); // Max Digital Gain - write_ad9361_reg(0x104, 0x2F); // ADC Small Overload Threshold - write_ad9361_reg(0x105, 0x3A); // ADC Large Overload Threshold - write_ad9361_reg(0x107, 0x31); // Large LMT Overload Threshold - write_ad9361_reg(0x108, 0x39); // Small LMT Overload Threshold - write_ad9361_reg(0x109, 0x23); // Rx1 Full/LMT Gain Index - write_ad9361_reg(0x10A, 0x58); // Rx1 LPF Gain Index - write_ad9361_reg(0x10B, 0x00); // Rx1 Digital Gain Index - write_ad9361_reg(0x10C, 0x23); // Rx2 Full/LMT Gain Index - write_ad9361_reg(0x10D, 0x18); // Rx2 LPF Gain Index - write_ad9361_reg(0x10E, 0x00); // Rx2 Digital Gain Index - write_ad9361_reg(0x114, 0x30); // Low Power Threshold - write_ad9361_reg(0x11A, 0x27); // Initial LMT Gain Limit - write_ad9361_reg(0x081, 0x00); // Tx Symbol Gain Control -} - -/* Setup the RX or TX synthesizers. - * - * This setup depends on a fixed look-up table, which is stored in an - * included header file. The table is indexed based on the passed VCO rate. - */ -void setup_synth(int which, double vcorate) { - /* The vcorates in the vco_index array represent lower boundaries for - * rates. Once we find a match, we use that index to look-up the rest of - * the register values in the LUT. */ - int vcoindex = 0; - int i; - for(i = 0; i < 53; i++) { - vcoindex = i; - if(vcorate > vco_index[i]) { - break; - } - } - - if (vcoindex > 53) - post_err_msg("vcoindex > 53"); - - /* Parse the values out of the LUT based on our calculated index... */ - uint8_t vco_output_level = synth_cal_lut[vcoindex][0]; - uint8_t vco_varactor = synth_cal_lut[vcoindex][1]; - uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2]; - uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3]; - uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4]; - uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5]; - uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6]; - uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7]; - uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8]; - uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9]; - uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10]; - uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11]; - - /* ... annnd program! */ - if(which == RX_TYPE) { - write_ad9361_reg(0x23a, 0x40 | vco_output_level); - write_ad9361_reg(0x239, 0xC0 | vco_varactor); - write_ad9361_reg(0x242, vco_bias_ref | (vco_bias_tcf << 3)); - write_ad9361_reg(0x238, (vco_cal_offset << 3)); - write_ad9361_reg(0x245, 0x00); - write_ad9361_reg(0x251, vco_varactor_ref); - write_ad9361_reg(0x250, 0x70); - write_ad9361_reg(0x23b, 0x80 | charge_pump_curr); - write_ad9361_reg(0x23e, loop_filter_c1 | (loop_filter_c2 << 4)); - write_ad9361_reg(0x23f, loop_filter_c3 | (loop_filter_r1 << 4)); - write_ad9361_reg(0x240, loop_filter_r3); - } else if(which == TX_TYPE) { - write_ad9361_reg(0x27a, 0x40 | vco_output_level); - write_ad9361_reg(0x279, 0xC0 | vco_varactor); - write_ad9361_reg(0x282, vco_bias_ref | (vco_bias_tcf << 3)); - write_ad9361_reg(0x278, (vco_cal_offset << 3)); - write_ad9361_reg(0x285, 0x00); - write_ad9361_reg(0x291, vco_varactor_ref); - write_ad9361_reg(0x290, 0x70); - write_ad9361_reg(0x27b, 0x80 | charge_pump_curr); - write_ad9361_reg(0x27e, loop_filter_c1 | (loop_filter_c2 << 4)); - write_ad9361_reg(0x27f, loop_filter_c3 | (loop_filter_r1 << 4)); - write_ad9361_reg(0x280, loop_filter_r3); - } else { - post_err_msg("[setup_synth] INVALID_CODE_PATH"); - } -} - - -/* Tune the baseband VCO. - * - * This clock signal is what gets fed to the ADCs and DACs. This function is - * not exported outside of this file, and is invoked based on the rate - * fed to the public set_clock_rate function. */ -double tune_bbvco(const double rate) { - msg("[tune_bbvco] rate=%.10f", rate); - - /* Let's not re-tune to the same frequency over and over... */ - if(freq_is_nearly_equal(rate, _req_coreclk)) { - return _adcclock_freq; - } - - _req_coreclk = rate; - - const double fref = 40e6; - const int modulus = 2088960; - const double vcomax = 1430e6; - const double vcomin = 672e6; - double vcorate; - int vcodiv; - - /* Iterate over VCO dividers until appropriate divider is found. */ - int i = 1; - for(; i <= 6; i++) { - vcodiv = 1 << i; - vcorate = rate * vcodiv; - - if(vcorate >= vcomin && vcorate <= vcomax) break; - } - if(i == 7) - post_err_msg("[tune_bbvco] wrong vcorate"); - - msg("[tune_bbvco] vcodiv=%d vcorate=%.10f", vcodiv, vcorate); - - /* Fo = Fref * (Nint + Nfrac / mod) */ - int nint = vcorate / fref; - msg("[tune_bbvco] (nint)=%.10f", (vcorate / fref)); - int nfrac = lround(((vcorate / fref) - (double)nint) * (double)modulus); - msg("[tune_bbvco] (nfrac)=%.10f", (((vcorate / fref) - (double)nint) * (double)modulus)); - msg("[tune_bbvco] nint=%d nfrac=%d", nint, nfrac); - double actual_vcorate = fref * ((double)nint + ((double)nfrac / (double)modulus)); - - /* Scale CP current according to VCO rate */ - const double icp_baseline = 150e-6; - const double freq_baseline = 1280e6; - double icp = icp_baseline * (actual_vcorate / freq_baseline); - int icp_reg = (icp / 25e-6) - 1; - - write_ad9361_reg(0x045, 0x00); // REFCLK / 1 to BBPLL - write_ad9361_reg(0x046, icp_reg & 0x3F); // CP current - write_ad9361_reg(0x048, 0xe8); // BBPLL loop filters - write_ad9361_reg(0x049, 0x5b); // BBPLL loop filters - write_ad9361_reg(0x04a, 0x35); // BBPLL loop filters - - write_ad9361_reg(0x04b, 0xe0); - write_ad9361_reg(0x04e, 0x10); // Max accuracy - - write_ad9361_reg(0x043, nfrac & 0xFF); // Nfrac[7:0] - write_ad9361_reg(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8] - write_ad9361_reg(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16] - write_ad9361_reg(0x044, nint); // Nint - - calibrate_lock_bbpll(); - - reg_bbpll = (reg_bbpll & 0xF8) | i; - - _bbpll_freq = actual_vcorate; - _adcclock_freq = (actual_vcorate / vcodiv); - - return _adcclock_freq; -} - -/* This function re-programs all of the gains in the system. - * - * Because the gain values match to different gain indices based on the - * current operating band, this function can be called to update all gain - * settings to the appropriate index after a re-tune. */ -void program_gains() { - set_gain(RX_TYPE,1, _rx1_gain); - set_gain(RX_TYPE,2, _rx2_gain); - set_gain(TX_TYPE,1, _tx1_gain); - set_gain(TX_TYPE,2, _tx2_gain); -} - -/* This is the internal tune function, not available for a host call. - * - * Calculate the VCO settings for the requested frquency, and then either - * tune the RX or TX VCO. */ -double tune_helper(int which, const double value) { - - /* The RFPLL runs from 6 GHz - 12 GHz */ - const double fref = 80e6; - const int modulus = 8388593; - const double vcomax = 12e9; - const double vcomin = 6e9; - double vcorate; - int vcodiv; - - /* Iterate over VCO dividers until appropriate divider is found. */ - int i; - for(i = 0; i <= 6; i++) { - vcodiv = 2 << i; - vcorate = value * vcodiv; - if(vcorate >= vcomin && vcorate <= vcomax) break; - } - if(i == 7) - post_err_msg("RFVCO can't find valid VCO rate!"); - - int nint = vcorate / fref; - int nfrac = ((vcorate / fref) - nint) * modulus; - - double actual_vcorate = fref * (nint + (double)(nfrac)/modulus); - double actual_lo = actual_vcorate / vcodiv; - - // UHD_VAR(actual_lo); // TODO: - - if(which == RX_TYPE) { - - _req_rx_freq = value; - - /* Set band-specific settings. */ - if(value < AD9361_RX_BAND_EDGE0) { - reg_inputsel = (reg_inputsel & 0xC0) | 0x30; - } else if((value >= AD9361_RX_BAND_EDGE0) && (value < AD9361_RX_BAND_EDGE1)) { - reg_inputsel = (reg_inputsel & 0xC0) | 0x0C; - } else if((value >= AD9361_RX_BAND_EDGE1) && (value <= 6e9)) { - reg_inputsel = (reg_inputsel & 0xC0) | 0x03; - } else { - post_err_msg("[tune_helper] INVALID_CODE_PATH"); - } - - write_ad9361_reg(0x004, reg_inputsel); - - /* Store vcodiv setting. */ - reg_vcodivs = (reg_vcodivs & 0xF0) | (i & 0x0F); - - /* Setup the synthesizer. */ - setup_synth(RX_TYPE, actual_vcorate); - - /* Tune!!!! */ - write_ad9361_reg(0x233, nfrac & 0xFF); - write_ad9361_reg(0x234, (nfrac >> 8) & 0xFF); - write_ad9361_reg(0x235, (nfrac >> 16) & 0xFF); - write_ad9361_reg(0x232, (nint >> 8) & 0xFF); - write_ad9361_reg(0x231, nint & 0xFF); - write_ad9361_reg(0x005, reg_vcodivs); - - /* Lock the PLL! */ - ad9361_msleep(2); - if((read_ad9361_reg(0x247) & 0x02) == 0) { - post_err_msg("RX PLL NOT LOCKED"); - } - - _rx_freq = actual_lo; - - return actual_lo; - - } else { - - _req_tx_freq = value; - - /* Set band-specific settings. */ - if(value < AD9361_TX_BAND_EDGE) { - reg_inputsel = reg_inputsel | 0x40; - } else if((value >= AD9361_TX_BAND_EDGE) && (value <= 6e9)) { - reg_inputsel = reg_inputsel & 0xBF; - } else { - post_err_msg("[tune_helper] INVALID_CODE_PATH"); - } - - write_ad9361_reg(0x004, reg_inputsel); - - /* Store vcodiv setting. */ - reg_vcodivs = (reg_vcodivs & 0x0F) | ((i & 0x0F) << 4); - - /* Setup the synthesizer. */ - setup_synth(TX_TYPE, actual_vcorate); - - /* Tune it, homey. */ - write_ad9361_reg(0x273, nfrac & 0xFF); - write_ad9361_reg(0x274, (nfrac >> 8) & 0xFF); - write_ad9361_reg(0x275, (nfrac >> 16) & 0xFF); - write_ad9361_reg(0x272, (nint >> 8) & 0xFF); - write_ad9361_reg(0x271, nint & 0xFF); - write_ad9361_reg(0x005, reg_vcodivs); - - /* Lock the PLL! */ - ad9361_msleep(2); - if((read_ad9361_reg(0x287) & 0x02) == 0) { - post_err_msg("TX PLL NOT LOCKED"); - } - - _tx_freq = actual_lo; - - return actual_lo; - } -} - -/* Configure the various clock / sample rates in the RX and TX chains. - * - * Functionally, this function configures Catalina's RX and TX rates. For - * a requested TX & RX rate, it sets the interpolation & decimation filters, - * and tunes the VCO that feeds the ADCs and DACs. - */ -double setup_rates(const double rate) { - - /* If we make it into this function, then we are tuning to a new rate. - * Store the new rate. */ - _req_clock_rate = rate; - - /* Set the decimation and interpolation values in the RX and TX chains. - * This also switches filters in / out. Note that all transmitters and - * receivers have to be turned on for the calibration portion of - * bring-up, and then they will be switched out to reflect the actual - * user-requested antenna selections. */ - int divfactor = 0; - _tfir_factor = 0; - if(rate < 0.33e6) { - // RX1 + RX2 enabled, 3, 2, 2, 4 - reg_rxfilt = B8( 11101111 ) ; - - // TX1 + TX2 enabled, 3, 2, 2, 4 - reg_txfilt = B8( 11101111 ) ; - - divfactor = 48; - _tfir_factor = 2; - } else if(rate < 0.66e6) { - // RX1 + RX2 enabled, 2, 2, 2, 4 - reg_rxfilt = B8( 11011111 ) ; - - // TX1 + TX2 enabled, 2, 2, 2, 4 - reg_txfilt = B8( 11011111 ) ; - - divfactor = 32; - _tfir_factor = 2; - } else if(rate <= 20e6) { - // RX1 + RX2 enabled, 2, 2, 2, 2 - reg_rxfilt = B8( 11011110 ) ; - - // TX1 + TX2 enabled, 2, 2, 2, 2 - reg_txfilt = B8( 11011110 ) ; - - divfactor = 16; - _tfir_factor = 2; - } else if((rate > 20e6) && (rate < 23e6)) { - // RX1 + RX2 enabled, 3, 2, 2, 2 - reg_rxfilt = B8( 11101110 ) ; - - // TX1 + TX2 enabled, 3, 1, 2, 2 - reg_txfilt = B8( 11100110 ) ; - - divfactor = 24; - _tfir_factor = 2; - } else if((rate >= 23e6) && (rate < 41e6)) { - // RX1 + RX2 enabled, 2, 2, 2, 2 - reg_rxfilt = B8( 11011110 ) ; - - // TX1 + TX2 enabled, 1, 2, 2, 2 - reg_txfilt = B8( 11001110 ) ; - - divfactor = 16; - _tfir_factor = 2; - } else if((rate >= 41e6) && (rate <= 56e6)) { - // RX1 + RX2 enabled, 3, 1, 2, 2 - reg_rxfilt = B8( 11100110 ) ; - - // TX1 + TX2 enabled, 3, 1, 1, 2 - reg_txfilt = B8( 11100010 ) ; - - divfactor = 12; - _tfir_factor = 2; - } else if((rate > 56e6) && (rate <= 61.44e6)) { - // RX1 + RX2 enabled, 3, 1, 1, 2 - reg_rxfilt = B8( 11100010 ) ; - - // TX1 + TX2 enabled, 3, 1, 1, 1 - reg_txfilt = B8( 11100001 ) ; - - divfactor = 6; - _tfir_factor = 1; - } else { - // should never get in here - post_err_msg("[setup_rates] INVALID_CODE_PATH"); - } - - msg("[setup_rates] divfactor=%d", divfactor); - - /* Tune the BBPLL to get the ADC and DAC clocks. */ - const double adcclk = tune_bbvco(rate * divfactor); - double dacclk = adcclk; - - /* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the - * ADC clock.*/ - if(adcclk > 336e6) { - /* Make the DAC clock = ADC/2, and bypass the TXFIR. */ - reg_bbpll = reg_bbpll | 0x08; - dacclk = adcclk / 2.0; - } else { - reg_bbpll = reg_bbpll & 0xF7; - } - - /* Set the dividers / interpolators in Catalina. */ - write_ad9361_reg(0x002, reg_txfilt); - write_ad9361_reg(0x003, reg_rxfilt); - write_ad9361_reg(0x004, reg_inputsel); - write_ad9361_reg(0x00A, reg_bbpll); - - msg("[setup_rates] adcclk=%f", adcclk); - _baseband_bw = (adcclk / divfactor); - - /* Setup the RX and TX FIR filters. Scale the number of taps based on - * the clock speed. */ - const int max_tx_taps = 16 * AD9361_MIN((int)((dacclk / rate) + 0.5), \ - AD9361_MIN(4 * (1 << _tfir_factor), 8)); - const int max_rx_taps = AD9361_MIN((16 * (int)(adcclk / rate)), 128); - - const int num_tx_taps = get_num_taps(max_tx_taps); - const int num_rx_taps = get_num_taps(max_rx_taps); - - setup_tx_fir(num_tx_taps); - setup_rx_fir(num_rx_taps); - - return _baseband_bw; -} - -/*********************************************************************** - * Publicly exported functions to host calls - **********************************************************************/ -void init_ad9361(void) { - - /* Initialize shadow registers. */ - reg_vcodivs = 0x00; - reg_inputsel = 0x30; - reg_rxfilt = 0x00; - reg_txfilt = 0x00; - reg_bbpll = 0x02; - reg_bbftune_config = 0x1e; - reg_bbftune_mode = 0x1e; - - /* Initialize private VRQ fields. */ - _rx_freq = 0.0; - _tx_freq = 0.0; - _req_rx_freq = 0.0; - _req_tx_freq = 0.0; - _baseband_bw = 0.0; - _req_clock_rate = 0.0; - _req_coreclk = 0.0; - _bbpll_freq = 0.0; - _adcclock_freq = 0.0; - _rx_bbf_tunediv = 0; - _curr_gain_table = 0; - _rx1_gain = 0; - _rx2_gain = 0; - _tx1_gain = 0; - _tx2_gain = 0; - - /* Reset the device. */ - write_ad9361_reg(0x000,0x01); - write_ad9361_reg(0x000,0x00); - ad9361_msleep(20); - - /* There is not a WAT big enough for this. */ - write_ad9361_reg(0x3df, 0x01); - - write_ad9361_reg(0x2a6, 0x0e); // Enable master bias - write_ad9361_reg(0x2a8, 0x0e); // Set bandgap trim - - /* Set RFPLL ref clock scale to REFCLK * 2 */ - write_ad9361_reg(0x2ab, 0x07); - write_ad9361_reg(0x2ac, 0xff); - - /* Enable clocks. */ - if (AD9361_CLOCKING_MODE == 0) - { - write_ad9361_reg(0x009, 0x17); - } - if (AD9361_CLOCKING_MODE == 1) - { - write_ad9361_reg(0x009, 0x07); - write_ad9361_reg(0x292, 0x08); - write_ad9361_reg(0x293, 0x80); - write_ad9361_reg(0x294, 0x00); - write_ad9361_reg(0x295, 0x14); - } - ad9361_msleep(20); - - /* Tune the BBPLL, write TX and RX FIRS. */ - setup_rates(50e6); - - /* Setup data ports (FDD dual port DDR CMOS): - * FDD dual port DDR CMOS no swap. - * Force TX on one port, RX on the other. */ - write_ad9361_reg(0x010, 0xc8); - write_ad9361_reg(0x011, 0x00); - write_ad9361_reg(0x012, 0x02); - - /* Data delay for TX and RX data clocks */ - write_ad9361_reg(0x006, 0x0F); - write_ad9361_reg(0x007, 0x0F); - - /* Setup AuxDAC */ - write_ad9361_reg(0x018, 0x00); // AuxDAC1 Word[9:2] - write_ad9361_reg(0x019, 0x00); // AuxDAC2 Word[9:2] - write_ad9361_reg(0x01A, 0x00); // AuxDAC1 Config and Word[1:0] - write_ad9361_reg(0x01B, 0x00); // AuxDAC2 Config and Word[1:0] - write_ad9361_reg(0x022, 0x4A); // Invert Bypassed LNA - write_ad9361_reg(0x023, 0xFF); // AuxDAC Manaul/Auto Control - write_ad9361_reg(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select - write_ad9361_reg(0x030, 0x00); // AuxDAC1 Rx Delay - write_ad9361_reg(0x031, 0x00); // AuxDAC1 Tx Delay - write_ad9361_reg(0x032, 0x00); // AuxDAC2 Rx Delay - write_ad9361_reg(0x033, 0x00); // AuxDAC2 Tx Delay - - /* Setup AuxADC */ - write_ad9361_reg(0x00B, 0x00); // Temp Sensor Setup (Offset) - write_ad9361_reg(0x00C, 0x00); // Temp Sensor Setup (Temp Window) - write_ad9361_reg(0x00D, 0x03); // Temp Sensor Setup (Periodic Measure) - write_ad9361_reg(0x00F, 0x04); // Temp Sensor Setup (Decimation) - write_ad9361_reg(0x01C, 0x10); // AuxADC Setup (Clock Div) - write_ad9361_reg(0x01D, 0x01); // AuxADC Setup (Decimation/Enable) - - /* Setup control outputs. */ - write_ad9361_reg(0x035, 0x07); - write_ad9361_reg(0x036, 0xFF); - - /* Setup GPO */ - write_ad9361_reg(0x03a, 0x27); //set delay register - write_ad9361_reg(0x020, 0x00); // GPO Auto Enable Setup in RX and TX - write_ad9361_reg(0x027, 0x03); // GPO Manual and GPO auto value in ALERT - write_ad9361_reg(0x028, 0x00); // GPO_0 RX Delay - write_ad9361_reg(0x029, 0x00); // GPO_1 RX Delay - write_ad9361_reg(0x02A, 0x00); // GPO_2 RX Delay - write_ad9361_reg(0x02B, 0x00); // GPO_3 RX Delay - write_ad9361_reg(0x02C, 0x00); // GPO_0 TX Delay - write_ad9361_reg(0x02D, 0x00); // GPO_1 TX Delay - write_ad9361_reg(0x02E, 0x00); // GPO_2 TX Delay - write_ad9361_reg(0x02F, 0x00); // GPO_3 TX Delay - - write_ad9361_reg(0x261, 0x00); // RX LO power - write_ad9361_reg(0x2a1, 0x00); // TX LO power - write_ad9361_reg(0x248, 0x0b); // en RX VCO LDO - write_ad9361_reg(0x288, 0x0b); // en TX VCO LDO - write_ad9361_reg(0x246, 0x02); // pd RX cal Tcf - write_ad9361_reg(0x286, 0x02); // pd TX cal Tcf - write_ad9361_reg(0x249, 0x8e); // rx vco cal length - write_ad9361_reg(0x289, 0x8e); // rx vco cal length - write_ad9361_reg(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp - write_ad9361_reg(0x27b, 0x80); // "" TX //FIXME 0x88 see above - write_ad9361_reg(0x243, 0x0d); // set rx prescaler bias - write_ad9361_reg(0x283, 0x0d); // "" TX - - write_ad9361_reg(0x23d, 0x00); // Clear half VCO cal clock setting - write_ad9361_reg(0x27d, 0x00); // Clear half VCO cal clock setting - - /* The order of the following process is EXTREMELY important. If the - * below functions are modified at all, device initialization and - * calibration might be broken in the process! */ - - write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en - write_ad9361_reg(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on - write_ad9361_reg(0x013, 0x01); // enable ENSM - ad9361_msleep(1); - - calibrate_synth_charge_pumps(); - - tune_helper(RX_TYPE, 800e6); - tune_helper(TX_TYPE, 850e6); - - program_mixer_gm_subtable(); - program_gain_table(); - setup_gain_control(); - - calibrate_baseband_rx_analog_filter(); - calibrate_baseband_tx_analog_filter(); - calibrate_rx_TIAs(); - calibrate_secondary_tx_filter(); - - setup_adc(); - - calibrate_tx_quadrature(); - calibrate_rx_quadrature(); - - write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config - write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit - write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en - - /* Default TX attentuation to 10dB on both TX1 and TX2 */ - write_ad9361_reg(0x073, 0x00); - write_ad9361_reg(0x074, 0x00); - write_ad9361_reg(0x075, 0x00); - write_ad9361_reg(0x076, 0x00); - - /* Setup RSSI Measurements */ - write_ad9361_reg(0x150, 0x0E); // RSSI Measurement Duration 0, 1 - write_ad9361_reg(0x151, 0x00); // RSSI Measurement Duration 2, 3 - write_ad9361_reg(0x152, 0xFF); // RSSI Weighted Multiplier 0 - write_ad9361_reg(0x153, 0x00); // RSSI Weighted Multiplier 1 - write_ad9361_reg(0x154, 0x00); // RSSI Weighted Multiplier 2 - write_ad9361_reg(0x155, 0x00); // RSSI Weighted Multiplier 3 - write_ad9361_reg(0x156, 0x00); // RSSI Delay - write_ad9361_reg(0x157, 0x00); // RSSI Wait - write_ad9361_reg(0x158, 0x0D); // RSSI Mode Select - write_ad9361_reg(0x15C, 0x67); // Power Measurement Duration - - /* Turn on the default RX & TX chains. */ - set_active_chains(true, false, false, false); - - /* Set TXers & RXers on (only works in FDD mode) */ - write_ad9361_reg(0x014, 0x21); -} - - -/* This function sets the RX / TX rate between Catalina and the FPGA, and - * thus determines the interpolation / decimation required in the FPGA to - * achieve the user's requested rate. - * - * This is the only clock setting function that is exposed to the outside. */ -double set_clock_rate(const double req_rate) { - if(req_rate > 61.44e6) { - post_err_msg("Req. master clk rate outside range"); - } - - msg("[set_clock_rate] req_rate=%.10f", req_rate); - - /* UHD has a habit of requesting the same rate like four times when it - * starts up. This prevents that, and any bugs in user code that request - * the same rate over and over. */ - if(freq_is_nearly_equal(req_rate, _req_clock_rate)) { - return _baseband_bw; - } - - /* We must be in the SLEEP / WAIT state to do this. If we aren't already - * there, transition the ENSM to State 0. */ - uint8_t current_state = read_ad9361_reg(0x017) & 0x0F; - switch(current_state) { - case 0x05: - /* We are in the ALERT state. */ - write_ad9361_reg(0x014, 0x21); - ad9361_msleep(5); - write_ad9361_reg(0x014, 0x00); - break; - - case 0x0A: - /* We are in the FDD state. */ - write_ad9361_reg(0x014, 0x00); - break; - - default: - post_err_msg("[set_clock_rate:1] Unknown state"); - break; - }; - - /* Store the current chain / antenna selections so that we can restore - * them at the end of this routine; all chains will be enabled from - * within setup_rates for calibration purposes. */ - uint8_t orig_tx_chains = reg_txfilt & 0xC0; - uint8_t orig_rx_chains = reg_rxfilt & 0xC0; - - /* Call into the clock configuration / settings function. This is where - * all the hard work gets done. */ - double rate = setup_rates(req_rate); - - msg("[set_clock_rate] rate=%.10f", rate); - - /* Transition to the ALERT state and calibrate everything. */ - write_ad9361_reg(0x015, 0x04); //dual synth mode, synth en ctrl en - write_ad9361_reg(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on - write_ad9361_reg(0x013, 0x01); //enable ENSM - ad9361_msleep(1); - - calibrate_synth_charge_pumps(); - - tune_helper(RX_TYPE, _rx_freq); - tune_helper(TX_TYPE, _tx_freq); - - program_mixer_gm_subtable(); - program_gain_table(); - setup_gain_control(); - program_gains(); - - calibrate_baseband_rx_analog_filter(); - calibrate_baseband_tx_analog_filter(); - calibrate_rx_TIAs(); - calibrate_secondary_tx_filter(); - - setup_adc(); - - calibrate_tx_quadrature(); - calibrate_rx_quadrature(); - - write_ad9361_reg(0x012, 0x02); // cals done, set PPORT config - write_ad9361_reg(0x013, 0x01); // Set ENSM FDD bit - write_ad9361_reg(0x015, 0x04); // dual synth mode, synth en ctrl en - - /* End the function in the same state as the entry state. */ - switch(current_state) { - case 0x05: - /* We are already in ALERT. */ - break; - - case 0x0A: - /* Transition back to FDD, and restore the original antenna - * / chain selections. */ - reg_txfilt = (reg_txfilt & 0x3F) | orig_tx_chains; - reg_rxfilt = (reg_rxfilt & 0x3F) | orig_rx_chains; - - write_ad9361_reg(0x002, reg_txfilt); - write_ad9361_reg(0x003, reg_rxfilt); - write_ad9361_reg(0x014, 0x21); - break; - - default: - post_err_msg("[set_clock_rate:2] Unknown state"); - break; - }; - - return rate; -} - - -/* Set which of the four TX / RX chains provided by Catalina are active. - * - * Catalina provides two sets of chains, Side A and Side B. Each side - * provides one TX antenna, and one RX antenna. The B200 maintains the USRP - * standard of providing one antenna connection that is both TX & RX, and - * one that is RX-only - for each chain. Thus, the possible antenna and - * chain selections are: - * - * B200 Antenna Catalina Side Catalina Chain - * ------------------------------------------------------------------- - * TX / RX1 Side A TX1 (when switched to TX) - * TX / RX1 Side A RX1 (when switched to RX) - * RX1 Side A RX1 - * - * TX / RX2 Side B TX2 (when switched to TX) - * TX / RX2 Side B RX2 (when switched to RX) - * RX2 Side B RX2 - */ -void set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2) { - /* Clear out the current active chain settings. */ - reg_txfilt = reg_txfilt & 0x3F; - reg_rxfilt = reg_rxfilt & 0x3F; - - /* Turn on the different chains based on the passed parameters. */ - if(tx1) { reg_txfilt = reg_txfilt | 0x40; } - if(tx2) { reg_txfilt = reg_txfilt | 0x80; } - if(rx1) { reg_rxfilt = reg_rxfilt | 0x40; } - if(rx2) { reg_rxfilt = reg_rxfilt | 0x80; } - - /* Check for FDD state */ - bool set_back_to_fdd = false; - uint8_t ensm_state = read_ad9361_reg(0x017) & 0x0F; - if (ensm_state == 0xA) // FDD - { - /* Put into ALERT state (via the FDD flush state). */ - write_ad9361_reg(0x014, 0x01); - set_back_to_fdd = true; - } - - /* Wait for FDD flush state to complete (if necessary) */ - while (ensm_state == 0xA || ensm_state == 0xB) - ensm_state = read_ad9361_reg(0x017) & 0x0F; - - /* Turn on / off the chains. */ - write_ad9361_reg(0x002, reg_txfilt); - write_ad9361_reg(0x003, reg_rxfilt); - - /* Put back into FDD state if necessary */ - if (set_back_to_fdd) - write_ad9361_reg(0x014, 0x21); -} - -/* Tune the RX or TX frequency. - * - * This is the publicly-accessible tune function. It makes sure the tune - * isn't a redundant request, and if not, passes it on to the class's - * internal tune function. - * - * After tuning, it runs any appropriate calibrations. */ -double tune(int which, const double value) { - - if(which == RX_TYPE) { - if(freq_is_nearly_equal(value, _req_rx_freq)) { - return _rx_freq; - } - - } else if(which == TX_TYPE) { - if(freq_is_nearly_equal(value, _req_tx_freq)) { - return _tx_freq; - } - - } else { - post_err_msg("[tune] INVALID_CODE_PATH"); - } - - /* If we aren't already in the ALERT state, we will need to return to - * the FDD state after tuning. */ - int not_in_alert = 0; - if((read_ad9361_reg(0x017) & 0x0F) != 5) { - /* Force the device into the ALERT state. */ - not_in_alert = 1; - write_ad9361_reg(0x014, 0x01); - } - - /* Tune the RF VCO! */ - double tune_freq = tune_helper(which, value); - - /* Run any necessary calibrations / setups */ - if(which == RX_TYPE) { - program_gain_table(); - } - - /* Update the gain settings. */ - program_gains(); - - /* Run the calibration algorithms. */ - calibrate_tx_quadrature(); - calibrate_rx_quadrature(); - - /* If we were in the FDD state, return it now. */ - if(not_in_alert) { - write_ad9361_reg(0x014, 0x21); - } - - return tune_freq; -} - -/* Set the gain of RX1, RX2, TX1, or TX2. - * - * Note that the 'value' passed to this function is the actual gain value, - * _not_ the gain index. This is the opposite of the eval software's GUI! - * Also note that the RX chains are done in terms of gain, and the TX chains - * are done in terms of attenuation. */ -double set_gain(int which, int n, const double value) { - - if(which == RX_TYPE) { - /* Indexing the gain tables requires an offset from the requested - * amount of total gain in dB: - * < 1300MHz: dB + 5 - * >= 1300MHz and < 4000MHz: dB + 3 - * >= 4000MHz and <= 6000MHz: dB + 14 - */ - int gain_offset = 0; - if(_rx_freq < 1300e6) { - gain_offset = 5; - } else if(_rx_freq < 4000e6) { - gain_offset = 3; - } else { - gain_offset = 14; - } - - int gain_index = value + gain_offset; - - /* Clip the gain values to the proper min/max gain values. */ - if(gain_index > 76) gain_index = 76; - if(gain_index < 0) gain_index = 0; - - if(n == 1) { - _rx1_gain = value; - write_ad9361_reg(0x109, gain_index); - } else { - _rx2_gain = value; - write_ad9361_reg(0x10c, gain_index); - } - - return gain_index - gain_offset; - } else { - /* Setting the below bits causes a change in the TX attenuation word - * to immediately take effect. */ - write_ad9361_reg(0x077, 0x40); - write_ad9361_reg(0x07c, 0x40); - - /* Each gain step is -0.25dB. Calculate the attenuation necessary - * for the requested gain, convert it into gain steps, then write - * the attenuation word. Max gain (so zero attenuation) is 89.75. */ - double atten = AD9361_MAX_GAIN - value; - int attenreg = atten * 4; - if(n == 1) { - _tx1_gain = value; - write_ad9361_reg(0x073, attenreg & 0xFF); - write_ad9361_reg(0x074, (attenreg >> 8) & 0x01); - } else { - _tx2_gain = value; - write_ad9361_reg(0x075, attenreg & 0xFF); - write_ad9361_reg(0x076, (attenreg >> 8) & 0x01); - } - return AD9361_MAX_GAIN - ((double)(attenreg)/ 4); - } -} - -/* This function is responsible to dispatch the vendor request call - * to the proper handler - */ -void ad9361_dispatch(const char* vrb, char* vrb_out) { - memcpy(vrb_out, vrb, AD9361_DISPATCH_PACKET_SIZE); // Copy request to response memory - tmp_req_buffer = vrb_out; // Set this to enable 'post_err_msg' - - ////////////////////////////////////////////// - - double ret_val = 0.0; - int mask = 0; - - const ad9361_transaction_t *request = (const ad9361_transaction_t *)vrb; - ad9361_transaction_t *response = (ad9361_transaction_t *)vrb_out; - response->error_msg[0] = '\0'; // Ensure error is cleared - - //msg("[ad9361_dispatch] action=%d", request->action); - - switch (request->action) { - case AD9361_ACTION_ECHO: - break; // nothing to do - case AD9361_ACTION_INIT: - init_ad9361(); - break; - case AD9361_ACTION_SET_RX1_GAIN: - ret_val = set_gain(RX_TYPE,1,double_unpack(request->value.gain)); - double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_TX1_GAIN: - ret_val = set_gain(TX_TYPE,1,double_unpack(request->value.gain)); - double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_RX2_GAIN: - ret_val = set_gain(RX_TYPE,2,double_unpack(request->value.gain)); - double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_TX2_GAIN: - ret_val = set_gain(TX_TYPE,2,double_unpack(request->value.gain)); - double_pack(ret_val, response->value.gain); - break; - case AD9361_ACTION_SET_RX_FREQ: - ret_val = tune(RX_TYPE, double_unpack(request->value.freq)); - double_pack(ret_val, response->value.freq); - break; - case AD9361_ACTION_SET_TX_FREQ: - ret_val = tune(TX_TYPE, double_unpack(request->value.freq)); - double_pack(ret_val, response->value.freq); - break; - case AD9361_ACTION_SET_CODEC_LOOP: - data_port_loopback(request->value.codec_loop != 0); - break; - case AD9361_ACTION_SET_CLOCK_RATE: - ret_val = set_clock_rate(double_unpack(request->value.rate)); - double_pack(ret_val, response->value.rate); - break; - case AD9361_ACTION_SET_ACTIVE_CHAINS: - mask = request->value.enable_mask; - set_active_chains(mask & 1, mask & 2, mask & 4, mask & 8); - break; - default: - post_err_msg("[ad9361_dispatch] NOT IMPLEMENTED"); - break; - } -} |