aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/cal/pwr_cal.cpp
diff options
context:
space:
mode:
authorMartin Braun <martin.braun@ettus.com>2020-05-15 15:25:21 -0700
committerAaron Rossetto <aaron.rossetto@ni.com>2020-05-19 13:25:20 -0500
commita847aea736d5f20387b7a658abfb0bf360750351 (patch)
tree48ae75359fb462ebc801833a04bbb26cb3deb4e4 /host/lib/cal/pwr_cal.cpp
parent2d7676e8cf2cc4fb59e59185864c8804ca77e15b (diff)
downloaduhd-a847aea736d5f20387b7a658abfb0bf360750351.tar.gz
uhd-a847aea736d5f20387b7a658abfb0bf360750351.tar.bz2
uhd-a847aea736d5f20387b7a658abfb0bf360750351.zip
lib: pwr_cal: Fix power indexing
The pwr_cal::get_gain() method previously held the incorrect assumption that power values per frequency would be equidistant, i.e., be at the same indices as the gain values. Due to the frequency-dependent nature of the hardware, this is not a valid assumption (if that were the case, frequency-dependent calibration would be unnecessary). This changes get_gain() to not rely on that assumption. Note that it requires doing some more rounding: The bilinear interpolation method uses requires coordinates to be on a rectangular grid. This snaps the power values onto a single coordinate.
Diffstat (limited to 'host/lib/cal/pwr_cal.cpp')
-rw-r--r--host/lib/cal/pwr_cal.cpp44
1 files changed, 28 insertions, 16 deletions
diff --git a/host/lib/cal/pwr_cal.cpp b/host/lib/cal/pwr_cal.cpp
index 3ff199598..82af208df 100644
--- a/host/lib/cal/pwr_cal.cpp
+++ b/host/lib/cal/pwr_cal.cpp
@@ -178,32 +178,44 @@ public:
const auto f_iters = get_bounding_iterators(table, freqi);
const uint64_t f1i = f_iters.first->first;
const uint64_t f2i = f_iters.second->first;
- // Frequency is out of bounds
if (f1i == f2i) {
+ // Frequency is out of bounds
return at_lin_interp(table.at(f1i).p2g, power_coerced);
}
- const double f1 = static_cast<double>(f1i);
- const double f2 = static_cast<double>(f2i);
- const auto pwr_iters = get_bounding_iterators(table.at(f1).p2g, power_coerced);
- const double pwr1 = pwr_iters.first->first;
- const double pwr2 = pwr_iters.second->first;
+
+ // NOTE: bilinear_interp() does not interpolate on an arbitrary tetragon,
+ // but requires the coordinates to be on a rectangular grid. Due to the
+ // frequency-dependent nature of power calibration, it is unlikely that
+ // the bounding power values for f1 and f2 (respectively) are identical.
+ // We therefore not only interpolate the final gain values, but we also
+ // nearest-neighbor-interpolate the grid coordinates for the power.
+ // This snap-to-grid adds another error, which can be counteracted by
+ // good choice of frequency and gain points on which to sample.
+ const auto f1pwr_iters = get_bounding_iterators(table.at(f1i).p2g, power_coerced);
+ const double f1pwr1 = f1pwr_iters.first->first;
+ const double f1pwr2 = f1pwr_iters.second->first;
+ const auto f2pwr_iters = get_bounding_iterators(table.at(f2i).p2g, power_coerced);
+ const double f2pwr1 = f2pwr_iters.first->first;
+ const double f2pwr2 = f2pwr_iters.second->first;
+ const double f1 = static_cast<double>(f1i);
+ const double f2 = static_cast<double>(f2i);
+ const double pwr1 = linear_interp(freq, f1, f1pwr1, f2, f2pwr1);
+ const double pwr2 = linear_interp(freq, f1, f1pwr2, f2, f2pwr2);
// Power is out of bounds (this shouldn't happen after coercing, but this
// is just another good sanity check on our data)
if (pwr1 == pwr2) {
return linear_interp(freq,
f1,
- table.at(f1i).p2g.at(pwr1),
+ at_nearest(table.at(f1i).p2g, pwr1),
f2,
- table.at(f2i).p2g.at(pwr1));
+ at_nearest(table.at(f2i).p2g, pwr2));
}
-
- // Both gain and freq are within bounds: Bi-Linear interpolation
- // Find power values
- const auto gain11 = table.at(f1i).p2g.at(pwr1);
- const auto gain12 = table.at(f1i).p2g.at(pwr2);
- const auto gain21 = table.at(f2i).p2g.at(pwr1);
- const auto gain22 = table.at(f2i).p2g.at(pwr2);
-
+ // Both gain and freq are within bounds => Bi-Linear interpolation
+ // Find gain values:
+ const auto gain11 = table.at(f1i).p2g.at(f1pwr1);
+ const auto gain12 = table.at(f1i).p2g.at(f1pwr2);
+ const auto gain21 = table.at(f2i).p2g.at(f2pwr1);
+ const auto gain22 = table.at(f2i).p2g.at(f2pwr2);
return bilinear_interp(
freq, power_coerced, f1, pwr1, f2, pwr2, gain11, gain12, gain21, gain22);
}