diff options
author | Wade Fife <wade.fife@ettus.com> | 2021-07-06 18:53:14 -0500 |
---|---|---|
committer | Wade Fife <wade.fife@ettus.com> | 2021-08-08 14:59:26 -0500 |
commit | da4202e6f74796603072aa14544581604e81df02 (patch) | |
tree | b5f568ed1959915d85c312188fd5546cd4b17b80 /fpga/usrp3/sim | |
parent | 8edd13e6eba61ef2bfd96c7dc88b2642decbaa7a (diff) | |
download | uhd-da4202e6f74796603072aa14544581604e81df02.tar.gz uhd-da4202e6f74796603072aa14544581604e81df02.tar.bz2 uhd-da4202e6f74796603072aa14544581604e81df02.zip |
fpga: sim: Add PkgComplex, PkgMath, and PkgRandom
PkgComplex adds functions for doing complex arithmetic in SystemVerilog
simulation.
PkgMath provides mathematical operations and constants that aren't
built into SystemVerilog, such as a constant for pi and the function
round().
PkgRandom adds randomization functions beyond what standard Verilog
supports but that don't require any special licenses or simulators.
Diffstat (limited to 'fpga/usrp3/sim')
-rw-r--r-- | fpga/usrp3/sim/packages/Makefile.srcs | 11 | ||||
-rw-r--r-- | fpga/usrp3/sim/packages/PkgComplex.sv | 230 | ||||
-rw-r--r-- | fpga/usrp3/sim/packages/PkgMath.sv | 157 | ||||
-rw-r--r-- | fpga/usrp3/sim/packages/PkgRandom.sv | 146 |
4 files changed, 544 insertions, 0 deletions
diff --git a/fpga/usrp3/sim/packages/Makefile.srcs b/fpga/usrp3/sim/packages/Makefile.srcs new file mode 100644 index 000000000..4f87f3615 --- /dev/null +++ b/fpga/usrp3/sim/packages/Makefile.srcs @@ -0,0 +1,11 @@ +# +# Copyright 2021 Ettus Research, A National Instruments Brand +# +# SPDX-License-Identifier: LGPL-3.0-or-later +# + +SIM_PACKAGES_SRCS = $(abspath $(addprefix $(BASE_DIR)/../sim/packages/, \ +PkgMath.sv \ +PkgComplex.sv \ +PkgRandom.sv \ +)) diff --git a/fpga/usrp3/sim/packages/PkgComplex.sv b/fpga/usrp3/sim/packages/PkgComplex.sv new file mode 100644 index 000000000..9fc957b97 --- /dev/null +++ b/fpga/usrp3/sim/packages/PkgComplex.sv @@ -0,0 +1,230 @@ +// +// Copyright 2021 Ettus Research, A National Instruments Brand +// +// SPDX-License-Identifier: LGPL-3.0-or-later +// +// Package: PkgComplex +// +// Description: +// +// A package for doing complex arithmetic in SystemVerilog simulations. +// Fixed-point operations are implemented such that results clip to the range +// [-1.0, 1.0) and are rounded to the nearest ULP (half ULP is rounded away +// from zero, following SystemVerilog rounding behavior). +// + + +package PkgComplex; + + //--------------------------------------------------------------------------- + // Type Definitions + //--------------------------------------------------------------------------- + + // Define a signed 16-bit fixed-point type with 15 fractional bits (Q0.15). + typedef bit signed [15:0] s16_t; + + // Signed complex 16-bit data type, the standard type used by UHD and RFNoC. + typedef struct packed { + s16_t re; + s16_t im; + } sc16_t; + + // Complex floating point data type. + typedef struct { + real re; + real im; + } complex_t; + + // Maximum and minimum allowed by the s16 type. + localparam s16_t MAX_S16 = 16'h7FFF; + localparam s16_t MIN_S16 = 16'h8000; + + + //--------------------------------------------------------------------------- + // Conversion Functions + //--------------------------------------------------------------------------- + + // Create an sc16 value from two s16 values. + function sc16_t build_sc16(s16_t x = 0, s16_t y = 0); + sc16_t val; + val.re = x; + val.im = y; + return val; + endfunction : build_sc16 + + // Create a complex value from two real values. + function complex_t build_complex(real x = 0.0, real y = 0.0); + complex_t val; + val.re = x; + val.im = y; + return val; + endfunction : build_complex + + // Convert s16 to real. + function real s16_to_real(s16_t x); + return real'(x) / (2.0**15); + endfunction : s16_to_real + + // Convert real to s16. + function s16_t real_to_s16(real x); + real val; + val = x * (2.0**15); + val = (val > MAX_S16) ? MAX_S16 : val; + val = (val < MIN_S16) ? MIN_S16 : val; + return s16_t'(val); + endfunction : real_to_s16 + + // Convert complex to sc16. + function sc16_t complex_to_sc16(complex_t x); + sc16_t val; + val.re = real_to_s16(x.re); + val.im = real_to_s16(x.im); + return val; + endfunction : complex_to_sc16 + + // Convert sc16 to complex. + function complex_t sc16_to_complex(sc16_t x); + complex_t val; + val.re = s16_to_real(x.re); + val.im = s16_to_real(x.im); + return val; + endfunction : sc16_to_complex + + // Convert polar coordinates to a complex number. The phase should be in + // radians. + function complex_t polar_to_complex(real mag, real phase); + complex_t val; + val.re = mag * $cos(phase); + val.im = mag * $sin(phase); + return val; + endfunction : polar_to_complex + + // Convert polar coordinates to an sc16 complex number. The phase should be + // in radians. + function sc16_t polar_to_sc16(real mag, real phase); + return complex_to_sc16(polar_to_complex(mag, phase)); + endfunction : polar_to_sc16 + + + //--------------------------------------------------------------------------- + // Floating Point Complex Arithmetic + //--------------------------------------------------------------------------- + + // Add two complex numbers: x + y + function complex_t add(complex_t x, complex_t y); + complex_t val; + val.re = x.re + y.re; + val.im = x.im + y.im; + return val; + endfunction : add + + // Subtract two complex numbers: x - y + function complex_t sub(complex_t x, complex_t y); + complex_t val; + val.re = x.re - y.re; + val.im = x.im - y.im; + return val; + endfunction : sub + + // Multiply two complex numbers: x * y + function complex_t mul(complex_t x, complex_t y); + complex_t val; + val.re = x.re*y.re - x.im*y.im; + val.im = x.re*y.im + x.im*y.re; + return val; + endfunction : mul + + // Divide two complex numbers: x / y + function complex_t div(complex_t x, complex_t y); + complex_t z; + z.re = (x.re*y.re + x.im*y.im) / (y.re*y.re + y.im*y.im); + z.im = (x.im*y.re + x.re*y.im) / (y.re*y.re + y.im*y.im); + return z; + endfunction : div + + // Compute the exponential: e^x + function complex_t exp(complex_t x); + complex_t val; + // exp(a+jb) = exp(a)*exp(jb) = exp(a)*(cos(b) + j*sin(b)) + val.re = $exp(x.re)*$cos(x.im); + val.im = $exp(x.re)*$sin(x.im); + return val; + endfunction : exp + + // Compute the sine: sin(x) + function complex_t sin(complex_t x); + complex_t val; + val.re = $sin(x.re)*$cosh(x.im); + val.im = $cos(x.re)*$sinh(x.im); + return val; + endfunction : sin + + // Compute the cosine: cos(x) + function complex_t cos(complex_t x); + complex_t val; + val.re = $cos(x.re)*$cosh(x.im); + val.im = -1.0*$sin(x.re)*$sinh(x.im); + return val; + endfunction : cos + + // Compute the magnitude/modulus/absolute value: |x| + function real mag(complex_t x); + return $sqrt(x.re*x.re + x.im*x.im); + endfunction : mag + + // Compute the phase/argument: arg(x) + function real arg(complex_t x); + return $atan2(x.im, x.re); + endfunction : arg + + + //--------------------------------------------------------------------------- + // Fixed-Point Complex Arithmetic + //--------------------------------------------------------------------------- + + // Add two complex numbers: x + y + function sc16_t add_sc16(sc16_t x, sc16_t y); + return complex_to_sc16(add(sc16_to_complex(x), sc16_to_complex(y))); + endfunction : add_sc16 + + // Subtract two complex numbers: x - y + function sc16_t sub_sc16(sc16_t x, sc16_t y); + return complex_to_sc16(sub(sc16_to_complex(x), sc16_to_complex(y))); + endfunction : sub_sc16 + + // Multiply two complex numbers: x * y + function sc16_t mul_sc16(sc16_t x, sc16_t y); + return complex_to_sc16(mul(sc16_to_complex(x), sc16_to_complex(y))); + endfunction : mul_sc16 + + // Divide two complex numbers: x / y + function sc16_t div_sc16(sc16_t x, sc16_t y); + return complex_to_sc16(div(sc16_to_complex(x), sc16_to_complex(y))); + endfunction : div_sc16 + + // Compute the exponential: e^x + function sc16_t exp_sc16(sc16_t x); + return complex_to_sc16(exp(sc16_to_complex(x))); + endfunction : exp_sc16 + + // Compute the sine: sin(x) + function sc16_t sin_sc16(sc16_t x); + return complex_to_sc16(sin(sc16_to_complex(x))); + endfunction : sin_sc16 + + // compute the cosine: cos(x) + function sc16_t cos_sc16(sc16_t x); + return complex_to_sc16(cos(sc16_to_complex(x))); + endfunction : cos_sc16 + + // Compute the magnitude/modulus/absolute value: |x| + function s16_t mag_sc16(sc16_t x); + return real_to_s16(mag(sc16_to_complex(x))); + endfunction : mag_sc16 + + // Compute the phase/argument: arg(x) + function s16_t arg_sc16(sc16_t x); + return real_to_s16(arg(sc16_to_complex(x))); + endfunction : arg_sc16 + +endpackage : PkgComplex diff --git a/fpga/usrp3/sim/packages/PkgMath.sv b/fpga/usrp3/sim/packages/PkgMath.sv new file mode 100644 index 000000000..db5c15840 --- /dev/null +++ b/fpga/usrp3/sim/packages/PkgMath.sv @@ -0,0 +1,157 @@ +// +// Copyright 2021 Ettus Research, A National Instruments Brand +// +// SPDX-License-Identifier: LGPL-3.0-or-later +// +// Package: PkgMath +// +// Description: +// +// SystemVerilog supports many Math functions. This adds a few that it +// doesn't have built in, as well as useful mathematical constants. +// +// SystemVerilog has built-in support for the following: +// +// $clog2 $asin +// $ln $acos +// $log10 $atan +// $exp $atan2 +// $sqrt $hypot +// $pow $sinh +// $floor $cosh +// $ceil $tanh +// $sin $asinh +// $cos $acosh +// $tan $atanh +// + +package PkgMath; + + //--------------------------------------------------------------------------- + // Constants + //--------------------------------------------------------------------------- + + localparam real PI = 2*$acos(0.0); + localparam real TAU = 4*$acos(0.0); + + localparam real PHI = (1 + $sqrt(5.0)) / 2.0; + localparam real E = $exp(1); + + localparam byte BYTE_MAX = 8'sh7F; + localparam byte BYTE_MIN = 8'sh80; + localparam shortint SHORT_MAX = 16'sh7FFF; + localparam shortint SHORT_MIN = 16'sh8000; + localparam int INT_MAX = 32'sh7FFFFFFF; + localparam int INT_MIN = 32'sh80000000; + localparam longint LONG_MAX = 64'sh7FFFFFFFFFFFFFFF; + localparam longint LONG_MIN = 64'sh8000000000000000; + + localparam byte unsigned UBYTE_MAX = 8'hFF; + localparam byte unsigned UBYTE_MIN = 8'h00; + localparam shortint unsigned USHORT_MAX = 16'hFFFF; + localparam shortint unsigned USHORT_MIN = 16'h0000; + localparam int unsigned UINT_MAX = 32'hFFFFFFFF; + localparam int unsigned UINT_MIN = 32'h00000000; + localparam longint unsigned ULONG_MAX = 64'hFFFFFFFFFFFFFFFF; + localparam longint unsigned ULONG_MIN = 64'h0000000000000000; + + + //--------------------------------------------------------------------------- + // Functions (For real data types) + //--------------------------------------------------------------------------- + + // Return the absolute value + function automatic real abs(real num); + if (num < 0) return -1.0*num; + return num; + endfunction : abs + + // Round a float to the nearest whole number, rounding away from zero for 0.5 + // (same as C++ and default SystemVerilog behavior). + function automatic real round(real num); + if (num >= 0) begin + // Round toward +inf + if (num - $floor(num) < 0.5) return $floor(num); + return $ceil(num); + end else begin + // Round toward -inf + if (num - $floor(num) <= 0.5) return $floor(num); + return $ceil(num); + end + + endfunction : round + + // Round a float to the nearest value having bits to the right of the binary + // point. For example: + // + // 1.2265625 (0b1.0011101) --> 3 bits --> 1.25000 (0b1.0100000) + // 1.2265625 (0b1.0011101) --> 5 bits --> 1.21875 (0b1.0011100) + // + function automatic real round_bits(real num, int unsigned bits); + return round(num * 2.0**bits) / (2.0**bits); + endfunction : round_bits + + // Return the sign of num as +1.0 or -1.0; + function automatic real sign(real num); + if (num < 0.0) return -1.0; + return 1.0; + endfunction : sign; + + // Return the modulus (remainder) of a / b, with the sign of the numerator. + // This should match the C++ standard library std::fmod() behavior, as well + // as SystemVerilog % operator with integer values. + function automatic real fmod(real a, real b); + a = abs(a); + b = abs(b); + return sign(b) * (a - ($floor(a / b) * b)); + endfunction : fmod + + // Return the (remainder) of a / b, where the quotient is rounded to the + // nearest integer. This should approximate the C++ standard library + // std::remainder() behavior. + function automatic real remainder(real a, real b); + return a - round(a/b)*b; + endfunction : remainder + + // Return the maximum of a and b. + function automatic real fmax(real a, real b); + if (a > b) return a; + return b; + endfunction : fmax + + // Return the minimum of a and b. + function automatic real fmin(real a, real b); + if (a < b) return a; + return b; + endfunction : fmin + + + //--------------------------------------------------------------------------- + // Template Functions (For any data type) + //--------------------------------------------------------------------------- + + class Math #(type T); + + static function T abs(T num); + if (num < 0) return -num; + return num; + endfunction : abs + + static function T sign(T num); + if (num < 0) return -1; + return 1; + endfunction : sign + + static function T max(T a, T b); + if (a > b) return a; + else return b; + endfunction : max + + static function T min(T a, T b); + if (a < b) return a; + else return b; + endfunction : min + + endclass : Math + +endpackage : PkgMath diff --git a/fpga/usrp3/sim/packages/PkgRandom.sv b/fpga/usrp3/sim/packages/PkgRandom.sv new file mode 100644 index 000000000..94e08d447 --- /dev/null +++ b/fpga/usrp3/sim/packages/PkgRandom.sv @@ -0,0 +1,146 @@ +// +// Copyright 2021 Ettus Research, A National Instruments Brand +// +// SPDX-License-Identifier: LGPL-3.0-or-later +// +// Package: PkgRandom +// +// Description: +// +// SystemVerilog has great randomization support, but some features require a +// more expensive license or aren't supported by all tools. This package +// tries to fill that gap by providing some useful randomization functions +// beyond what's supported by standard Verilog. +// + +package PkgRandom; + + import PkgMath::*; + + //--------------------------------------------------------------------------- + // Functions + //--------------------------------------------------------------------------- + + // Return a real value in the range [0,max), where max is 1.0 by default. + function automatic real frand(real max = 1.0); + bit [63:0] real_bits; + real num; + + // Build a double-precision floating point value per IEEE-754 standard, + // which SystemVerilog follows. + + // Positive, with exponent 0 + real_bits[63:52] = 12'h3FF; + + // Mantissa in the range [1.0, 2.0). The leading 1 in the mantissa is + // implied by the floating point format. + real_bits[31: 0] = $urandom(); + real_bits[51:32] = $urandom(); + + // Compensate for the implied leading 1 in the mantissa by subtracting 1. + num = $bitstoreal(real_bits) - 1.0; + + // Scale the result to return a value in the desired range. + return num * max; + endfunction : frand + + + // Return a real value in the range [a,b), [b,a), or [0,a) depending on + // whether a or b is larger and whether b is provided. This matches the + // behavior of $urandom_range(). + // + // frand_range(1.0, 2.0) -> Random value in the range [1,2) + // frand_range(2.0, 1.0) -> Random value in the range [1,2) + // frand_range(1.0) -> Random value in the range [0,1) + // + function automatic real frand_range(real a = 1.0, real b = 0.0); + if (a > b) return b + frand(a - b); + if (b > a) return a + frand(b - a); + return a; + endfunction : frand_range + + + // Return a real value with a normal distribution, having the mean value mu + // and standard deviation sigma. + function automatic real frandn(real sigma = 1.0, real mu = 0.0); + // Use the Box-Muller transform to convert uniform random variables to a + // Gaussian one. + return sigma*$sqrt(-2.0*$ln(frand())) * $cos(TAU*frand()) + mu; + endfunction : frandn + + + //--------------------------------------------------------------------------- + // Template Functions + //--------------------------------------------------------------------------- + + class Rand #(WIDTH = 64); + + // These are static class functions. They can be called directly, as in: + // + // Rand#(N)::rand_bit() + // + // Or, you can declare an object reference, as in: + // + // Rand #(N) rand; + // rand.rand_bit(); + + typedef bit [WIDTH-1:0] unsigned_t; + typedef bit signed [WIDTH-1:0] signed_t; + + + // Returns a WIDTH-bit random bit packed array. + static function unsigned_t rand_bit(); + unsigned_t result; + int num_rand32 = (WIDTH + 31) / 32; + for (int i = 0; i < num_rand32; i++) begin + result = {result, $urandom()}; + end + return result; + endfunction : rand_bit + + + // Returns a WIDTH-bit random number in the UNSIGNED range [a,b], [b,a], or + // [0,a] depending on whether a or b is greater and if b is provided. This + // is equivalent to $urandom_range() but works with any length. + static function bit [WIDTH-1:0] rand_bit_range( + unsigned_t a = {WIDTH{1'b1}}, + unsigned_t b = 0 + ); + unsigned_t num; + int num_bits; + if (a > b) begin + // Swap a and b + unsigned_t temp; + temp = a; + a = b; + b = temp; + end + num_bits = $clog2(b - a + unsigned_t'{1}); + do begin + num = a + (rand_bit() & ((unsigned_t'{1} << num_bits) - 1)); + end while (num > b); + return num; + endfunction : rand_bit_range + + + // Returns a random number in the given SIGNED range. Behavior is the same + // as rand_bit_range(), bunsigned_t treats the range values as SIGNED numbers. + static function signed_t rand_sbit_range( + signed_t a = {1'b0, {WIDTH{1'b1}}}, + signed_t b = 0 + ); + if (a > b) return b + $signed(rand_bit_range(0, a-b)); + if (b > a) return a + $signed(rand_bit_range(0, b-a)); + return a; + endfunction : rand_sbit_range + + + // Rand#(WIDTH)::rand_logic() returns a WIDTH-bit random logic packed + // array. Each bit will be 0 or 1 with equal probability (not X or Z). + static function logic [WIDTH-1:0] rand_logic(); + return rand_bit(); + endfunction : rand_logic + + endclass : Rand + +endpackage : PkgRandom |