diff options
author | Martin Braun <martin.braun@ettus.com> | 2020-01-23 16:10:22 -0800 |
---|---|---|
committer | Martin Braun <martin.braun@ettus.com> | 2020-01-28 09:35:36 -0800 |
commit | bafa9d95453387814ef25e6b6256ba8db2df612f (patch) | |
tree | 39ba24b5b67072d354775272e687796bb511848d /fpga/usrp3/lib/control/map/cam_srl.v | |
parent | 3075b981503002df3115d5f1d0b97d2619ba30f2 (diff) | |
download | uhd-bafa9d95453387814ef25e6b6256ba8db2df612f.tar.gz uhd-bafa9d95453387814ef25e6b6256ba8db2df612f.tar.bz2 uhd-bafa9d95453387814ef25e6b6256ba8db2df612f.zip |
Merge FPGA repository back into UHD repository
The FPGA codebase was removed from the UHD repository in 2014 to reduce
the size of the repository. However, over the last half-decade, the
split between the repositories has proven more burdensome than it has
been helpful. By merging the FPGA code back, it will be possible to
create atomic commits that touch both FPGA and UHD codebases. Continuous
integration testing is also simplified by merging the repositories,
because it was previously difficult to automatically derive the correct
UHD branch when testing a feature branch on the FPGA repository.
This commit also updates the license files and paths therein.
We are therefore merging the repositories again. Future development for
FPGA code will happen in the same repository as the UHD host code and
MPM code.
== Original Codebase and Rebasing ==
The original FPGA repository will be hosted for the foreseeable future
at its original local location: https://github.com/EttusResearch/fpga/
It can be used for bisecting, reference, and a more detailed history.
The final commit from said repository to be merged here is
05003794e2da61cabf64dd278c45685a7abad7ec. This commit is tagged as
v4.0.0.0-pre-uhd-merge.
If you have changes in the FPGA repository that you want to rebase onto
the UHD repository, simply run the following commands:
- Create a directory to store patches (this should be an empty
directory):
mkdir ~/patches
- Now make sure that your FPGA codebase is based on the same state as
the code that was merged:
cd src/fpga # Or wherever your FPGA code is stored
git rebase v4.0.0.0-pre-uhd-merge
Note: The rebase command may look slightly different depending on what
exactly you're trying to rebase.
- Create a patch set for your changes versus v4.0.0.0-pre-uhd-merge:
git format-patch v4.0.0.0-pre-uhd-merge -o ~/patches
Note: Make sure that only patches are stored in your output directory.
It should otherwise be empty. Make sure that you picked the correct
range of commits, and only commits you wanted to rebase were exported
as patch files.
- Go to the UHD repository and apply the patches:
cd src/uhd # Or wherever your UHD repository is stored
git am --directory fpga ~/patches/*
rm -rf ~/patches # This is for cleanup
== Contributors ==
The following people have contributed mainly to these files (this list
is not complete):
Co-authored-by: Alex Williams <alex.williams@ni.com>
Co-authored-by: Andrej Rode <andrej.rode@ettus.com>
Co-authored-by: Ashish Chaudhari <ashish@ettus.com>
Co-authored-by: Ben Hilburn <ben.hilburn@ettus.com>
Co-authored-by: Ciro Nishiguchi <ciro.nishiguchi@ni.com>
Co-authored-by: Daniel Jepson <daniel.jepson@ni.com>
Co-authored-by: Derek Kozel <derek.kozel@ettus.com>
Co-authored-by: EJ Kreinar <ej@he360.com>
Co-authored-by: Humberto Jimenez <humberto.jimenez@ni.com>
Co-authored-by: Ian Buckley <ian.buckley@gmail.com>
Co-authored-by: Jörg Hofrichter <joerg.hofrichter@ni.com>
Co-authored-by: Jon Kiser <jon.kiser@ni.com>
Co-authored-by: Josh Blum <josh@joshknows.com>
Co-authored-by: Jonathon Pendlum <jonathan.pendlum@ettus.com>
Co-authored-by: Martin Braun <martin.braun@ettus.com>
Co-authored-by: Matt Ettus <matt@ettus.com>
Co-authored-by: Michael West <michael.west@ettus.com>
Co-authored-by: Moritz Fischer <moritz.fischer@ettus.com>
Co-authored-by: Nick Foster <nick@ettus.com>
Co-authored-by: Nicolas Cuervo <nicolas.cuervo@ettus.com>
Co-authored-by: Paul Butler <paul.butler@ni.com>
Co-authored-by: Paul David <paul.david@ettus.com>
Co-authored-by: Ryan Marlow <ryan.marlow@ettus.com>
Co-authored-by: Sugandha Gupta <sugandha.gupta@ettus.com>
Co-authored-by: Sylvain Munaut <tnt@246tNt.com>
Co-authored-by: Trung Tran <trung.tran@ettus.com>
Co-authored-by: Vidush Vishwanath <vidush.vishwanath@ettus.com>
Co-authored-by: Wade Fife <wade.fife@ettus.com>
Diffstat (limited to 'fpga/usrp3/lib/control/map/cam_srl.v')
-rw-r--r-- | fpga/usrp3/lib/control/map/cam_srl.v | 223 |
1 files changed, 223 insertions, 0 deletions
diff --git a/fpga/usrp3/lib/control/map/cam_srl.v b/fpga/usrp3/lib/control/map/cam_srl.v new file mode 100644 index 000000000..6bc4146b0 --- /dev/null +++ b/fpga/usrp3/lib/control/map/cam_srl.v @@ -0,0 +1,223 @@ +/* + +Copyright (c) 2015-2016 Alex Forencich + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +*/ + +// Language: Verilog 2001 + +`timescale 1ns / 1ps + +/* + * Content Addressable Memory (shift register based) + */ +module cam_srl #( + // search data bus width + parameter DATA_WIDTH = 64, + // memory size in log2(words) + parameter ADDR_WIDTH = 5, + // width of data bus slices (4 for SRL16, 5 for SRL32) + parameter SLICE_WIDTH = 4 +) +( + input wire clk, + input wire rst, + + input wire [ADDR_WIDTH-1:0] write_addr, + input wire [DATA_WIDTH-1:0] write_data, + input wire write_delete, + input wire write_enable, + output wire write_busy, + + input wire [DATA_WIDTH-1:0] compare_data, + output wire [2**ADDR_WIDTH-1:0] match_many, + output wire [2**ADDR_WIDTH-1:0] match_single, + output wire [ADDR_WIDTH-1:0] match_addr, + output wire match +); + +// total number of slices (enough to cover DATA_WIDTH with address inputs) +localparam SLICE_COUNT = (DATA_WIDTH + SLICE_WIDTH - 1) / SLICE_WIDTH; +// depth of RAMs +localparam RAM_DEPTH = 2**ADDR_WIDTH; + +localparam [1:0] + STATE_INIT = 2'd0, + STATE_IDLE = 2'd1, + STATE_WRITE = 2'd2, + STATE_DELETE = 2'd3; + +reg [1:0] state_reg = STATE_INIT, state_next; + +wire [SLICE_COUNT*SLICE_WIDTH-1:0] compare_data_padded = {{SLICE_COUNT*SLICE_WIDTH-DATA_WIDTH{1'b0}}, compare_data}; +wire [SLICE_COUNT*SLICE_WIDTH-1:0] write_data_padded = {{SLICE_COUNT*SLICE_WIDTH-DATA_WIDTH{1'b0}}, write_data}; + +reg [SLICE_WIDTH-1:0] count_reg = {SLICE_WIDTH{1'b1}}, count_next; + +reg [SLICE_COUNT-1:0] shift_data; +reg [RAM_DEPTH-1:0] shift_en; + +reg [ADDR_WIDTH-1:0] write_addr_reg = {ADDR_WIDTH{1'b0}}, write_addr_next; +reg [SLICE_COUNT*SLICE_WIDTH-1:0] write_data_padded_reg = {SLICE_COUNT*SLICE_WIDTH{1'b0}}, write_data_padded_next; + +reg write_busy_reg = 1'b1; + +assign write_busy = write_busy_reg; + +reg [RAM_DEPTH-1:0] match_raw_out[SLICE_COUNT-1:0]; +reg [RAM_DEPTH-1:0] match_many_raw; +reg [RAM_DEPTH-1:0] match_many_reg = {RAM_DEPTH{1'b0}}; + +assign match_many = match_many_reg; + +integer k; + +always @* begin + match_many_raw = ~shift_en; + for (k = 0; k < SLICE_COUNT; k = k + 1) begin + match_many_raw = match_many_raw & match_raw_out[k]; + end +end + +cam_priority_encoder #( + .WIDTH(RAM_DEPTH), + .LSB_PRIORITY("HIGH") +) +priority_encoder_inst ( + .input_unencoded(match_many_reg), + .output_valid(match), + .output_encoded(match_addr), + .output_unencoded(match_single) +); + +integer i; + +// SRLs +genvar row_ind, slice_ind; +generate + for (row_ind = 0; row_ind < RAM_DEPTH; row_ind = row_ind + 1) begin : row + for (slice_ind = 0; slice_ind < SLICE_COUNT; slice_ind = slice_ind + 1) begin : slice + reg [2**SLICE_WIDTH-1:0] srl_mem = {2**SLICE_WIDTH{1'b0}}; + + // match + always @* begin + match_raw_out[slice_ind][row_ind] = srl_mem[compare_data_padded[SLICE_WIDTH * slice_ind +: SLICE_WIDTH]]; + end + + // write + always @(posedge clk) begin + if (shift_en[row_ind]) begin + srl_mem <= {srl_mem[2**SLICE_WIDTH-2:0], shift_data[slice_ind]}; + end + end + end + end +endgenerate + +// match +always @(posedge clk) begin + match_many_reg <= match_many_raw; +end + +// write +always @* begin + state_next = STATE_IDLE; + + count_next = count_reg; + shift_data = {SLICE_COUNT{1'b0}}; + shift_en = {RAM_DEPTH{1'b0}}; + + write_addr_next = write_addr_reg; + write_data_padded_next = write_data_padded_reg; + + case (state_reg) + STATE_INIT: begin + // zero out shift registers + shift_en = {RAM_DEPTH{1'b1}}; + shift_data = {SLICE_COUNT{1'b0}}; + + if (count_reg == 0) begin + state_next = STATE_IDLE; + end else begin + count_next = count_reg - 1; + state_next = STATE_INIT; + end + end + STATE_IDLE: begin + if (write_enable) begin + write_addr_next = write_addr; + write_data_padded_next = write_data_padded; + count_next = {SLICE_WIDTH{1'b1}}; + if (write_delete) begin + state_next = STATE_DELETE; + end else begin + state_next = STATE_WRITE; + end + end else begin + state_next = STATE_IDLE; + end + end + STATE_WRITE: begin + // write entry + shift_en = 1'b1 << write_addr; + + for (i = 0; i < SLICE_COUNT; i = i + 1) begin + shift_data[i] = count_reg == write_data_padded_reg[SLICE_WIDTH * i +: SLICE_WIDTH]; + end + + if (count_reg == 0) begin + state_next = STATE_IDLE; + end else begin + count_next = count_reg - 1; + state_next = STATE_WRITE; + end + end + STATE_DELETE: begin + // delete entry + shift_en = 1'b1 << write_addr; + shift_data = {SLICE_COUNT{1'b0}}; + + if (count_reg == 0) begin + state_next = STATE_IDLE; + end else begin + count_next = count_reg - 1; + state_next = STATE_DELETE; + end + end + endcase +end + +always @(posedge clk) begin + if (rst) begin + state_reg <= STATE_INIT; + count_reg <= {SLICE_WIDTH{1'b1}}; + write_busy_reg <= 1'b1; + end else begin + state_reg <= state_next; + count_reg <= count_next; + write_busy_reg <= state_next != STATE_IDLE; + end + + write_addr_reg <= write_addr_next; + write_data_padded_reg <= write_data_padded_next; +end + +endmodule |