aboutsummaryrefslogtreecommitdiffstats
path: root/fpga/usrp3/lib/axi/axi_dram_fifo.v
diff options
context:
space:
mode:
authorBen Hilburn <ben.hilburn@ettus.com>2014-02-14 12:05:07 -0800
committerBen Hilburn <ben.hilburn@ettus.com>2014-02-14 12:05:07 -0800
commitff1546f8137f7f92bb250f685561b0c34cc0e053 (patch)
tree7fa6fd05c8828df256a1b20e2935bd3ba9899e2c /fpga/usrp3/lib/axi/axi_dram_fifo.v
parent4f691d88123784c2b405816925f1a1aef69d18c1 (diff)
downloaduhd-ff1546f8137f7f92bb250f685561b0c34cc0e053.tar.gz
uhd-ff1546f8137f7f92bb250f685561b0c34cc0e053.tar.bz2
uhd-ff1546f8137f7f92bb250f685561b0c34cc0e053.zip
Pushing the bulk of UHD-3.7.0 code.
Diffstat (limited to 'fpga/usrp3/lib/axi/axi_dram_fifo.v')
-rw-r--r--fpga/usrp3/lib/axi/axi_dram_fifo.v816
1 files changed, 816 insertions, 0 deletions
diff --git a/fpga/usrp3/lib/axi/axi_dram_fifo.v b/fpga/usrp3/lib/axi/axi_dram_fifo.v
new file mode 100644
index 000000000..52626123e
--- /dev/null
+++ b/fpga/usrp3/lib/axi/axi_dram_fifo.v
@@ -0,0 +1,816 @@
+
+//
+// There are various obligations put on this code not present in regular BRAM based FIFO's
+//
+// 1) Bursts are way more efficient, use local small FIFO's to interact with DRAM
+// 2) Never cross a 4KByte address boundry within a single transaction, this is an AXI4 rule.
+// 3) 2^SIZE must be greater than 4KB so that the 4KByte page protection also deals with FIFO wrap corner case.
+//
+module axi_dram_fifo
+ // NOTE: SIZE is log2 of size of FIFO buffer in bytes. i.e 13 for 8KBytes which is 1kx64
+ #(parameter BASE=0, SIZE=16, TIMEOUT=64)
+ (
+ input bus_clk,
+ input bus_reset,
+ input clear,
+ input dram_clk,
+ input dram_reset,
+ //
+ // AXI Write address channel
+ //
+ output [0 : 0] m_axi_awid, // Write address ID. This signal is the identification tag for the write address signals
+ output [31 : 0] m_axi_awaddr, // Write address. The write address gives the address of the first transfer in a write burst
+ output [7 : 0] m_axi_awlen, // Burst length. The burst length gives the exact number of transfers in a burst.
+ output [2 : 0] m_axi_awsize, // Burst size. This signal indicates the size of each transfer in the burst.
+ output [1 : 0] m_axi_awburst, // Burst type. The burst type and the size information, determine how the address is calculated
+ output [0 : 0] m_axi_awlock, // Lock type. Provides additional information about the atomic characteristics of the transfer.
+ output [3 : 0] m_axi_awcache, // Memory type. This signal indicates how transactions are required to progress
+ output [2 : 0] m_axi_awprot, // Protection type. This signal indicates the privilege and security level of the transaction
+ output [3 : 0] m_axi_awqos, // Quality of Service, QoS. The QoS identifier sent for each write transaction
+ output [3 : 0] m_axi_awregion, // Region identifier. Permits a single physical interface on a slave to be re-used.
+ output [0 : 0] m_axi_awuser, // User signal. Optional User-defined signal in the write address channel.
+ output m_axi_awvalid, // Write address valid. This signal indicates that the channel is signaling valid write addr
+ input m_axi_awready, // Write address ready. This signal indicates that the slave is ready to accept an address
+ //
+ // AXI Write data channel.
+ //
+ output [63 : 0] m_axi_wdata, // Write data
+ output [7 : 0] m_axi_wstrb, // Write strobes. This signal indicates which byte lanes hold valid data.
+ output m_axi_wlast, // Write last. This signal indicates the last transfer in a write burst
+ output [0 : 0] m_axi_wuser, // User signal. Optional User-defined signal in the write data channel.
+ output m_axi_wvalid, // Write valid. This signal indicates that valid write data and strobes are available.
+ input m_axi_wready, // Write ready. This signal indicates that the slave can accept the write data.
+ //
+ // AXI Write response channel signals
+ //
+ input [0 : 0] m_axi_bid, // Response ID tag. This signal is the ID tag of the write response.
+ input [1 : 0] m_axi_bresp, // Write response. This signal indicates the status of the write transaction.
+ input [0 : 0] m_axi_buser, // User signal. Optional User-defined signal in the write response channel.
+ input m_axi_bvalid, // Write response valid. This signal indicates that the channel is signaling a valid response
+ output m_axi_bready, // Response ready. This signal indicates that the master can accept a write response
+ //
+ // AXI Read address channel
+ //
+ output [0 : 0] m_axi_arid, // Read address ID. This signal is the identification tag for the read address group of signals
+ output [31 : 0] m_axi_araddr, // Read address. The read address gives the address of the first transfer in a read burst
+ output [7 : 0] m_axi_arlen, // Burst length. This signal indicates the exact number of transfers in a burst.
+ output [2 : 0] m_axi_arsize, // Burst size. This signal indicates the size of each transfer in the burst.
+ output [1 : 0] m_axi_arburst, // Burst type. The burst type and the size information determine how the address for each transfer
+ output [0 : 0] m_axi_arlock, // Lock type. This signal provides additional information about the atomic characteristics
+ output [3 : 0] m_axi_arcache, // Memory type. This signal indicates how transactions are required to progress
+ output [2 : 0] m_axi_arprot, // Protection type. This signal indicates the privilege and security level of the transaction
+ output [3 : 0] m_axi_arqos, // Quality of Service, QoS. QoS identifier sent for each read transaction.
+ output [3 : 0] m_axi_arregion, // Region identifier. Permits a single physical interface on a slave to be re-used
+ output [0 : 0] m_axi_aruser, // User signal. Optional User-defined signal in the read address channel.
+ output m_axi_arvalid, // Read address valid. This signal indicates that the channel is signaling valid read addr
+ input m_axi_arready, // Read address ready. This signal indicates that the slave is ready to accept an address
+ //
+ // AXI Read data channel
+ //
+ input [0 : 0] m_axi_rid, // Read ID tag. This signal is the identification tag for the read data group of signals
+ input [63 : 0] m_axi_rdata, // Read data.
+ input [1 : 0] m_axi_rresp, // Read response. This signal indicates the status of the read transfer
+ input m_axi_rlast, // Read last. This signal indicates the last transfer in a read burst.
+ input [0 : 0] m_axi_ruser, // User signal. Optional User-defined signal in the read data channel.
+ input m_axi_rvalid, // Read valid. This signal indicates that the channel is signaling the required read data.
+ output m_axi_rready, // Read ready. This signal indicates that the master can accept the read data and response
+ //
+ // CHDR friendly AXI stream input
+ //
+ input [63:0] i_tdata,
+ input i_tlast,
+ input i_tvalid,
+ output i_tready,
+ //
+ // CHDR friendly AXI Stream output
+ //
+ output [63:0] o_tdata,
+ output o_tlast,
+ output o_tvalid,
+ input o_tready,
+ //
+ //
+ //
+ input [15:0] supress_threshold,
+ input supress_enable,
+ //
+ // Debug Bus
+ //
+ output [197:0] debug
+ );
+
+ //
+ // We are only solving for width 64bits here, since it's our standard CHDR quanta
+ //
+ localparam WIDTH=64;
+
+ //
+ // Input side declarations
+ //
+ localparam INPUT_IDLE = 0;
+ localparam INPUT1 = 1;
+ localparam INPUT2 = 2;
+ localparam INPUT3 = 3;
+ localparam INPUT4 = 4;
+ localparam INPUT5 = 5;
+ localparam INPUT6 = 6;
+
+ reg [2:0] input_state;
+ reg input_timeout_triggered;
+ reg input_timeout_reset;
+ reg [8:0] input_timeout_count;
+ reg [31:0] write_addr;
+ reg write_ctrl_valid;
+ wire write_ctrl_ready;
+ reg [7:0] write_count;
+ reg update_write;
+ wire [63:0] write_data;
+ wire write_data_valid;
+ wire write_data_ready;
+
+ //
+ // Output side declarations
+ //
+ localparam OUTPUT_IDLE = 0;
+ localparam OUTPUT1 = 1;
+ localparam OUTPUT2 = 2;
+ localparam OUTPUT3 = 3;
+ localparam OUTPUT4 = 4;
+ localparam OUTPUT5 = 5;
+ localparam OUTPUT6 = 6;
+
+ reg [2:0] output_state;
+ reg output_timeout_triggered;
+ reg output_timeout_reset;
+ reg [8:0] output_timeout_count;
+ reg [31:0] read_addr;
+ reg read_ctrl_valid;
+ wire read_ctrl_ready;
+ reg [7:0] read_count;
+ reg update_read;
+ wire [63:0] read_data;
+ wire read_data_valid;
+ wire read_data_ready;
+
+ // Track main FIFO active size.
+ reg [SIZE-3:0] space, occupied;
+ wire [11:0] input_page_boundry, output_page_boundry;
+
+
+ //
+ // Buffer input in FIFO's. Embeded tlast signal using ESCape code.
+ //
+ wire [WIDTH-1:0] i_tdata_i0;
+ wire i_tvalid_i0, i_tready_i0, i_tlast_i0;
+
+ wire [WIDTH-1:0] i_tdata_i1;
+ wire i_tvalid_i1, i_tready_i1;
+
+ wire [WIDTH-1:0] i_tdata_i2;
+ wire i_tvalid_i2, i_tready_i2;
+
+ wire [WIDTH-1:0] i_tdata_input;
+ wire i_tvalid_input, i_tready_input;
+ wire [15:0] space_input, occupied_input;
+ reg [15:0] space_input_reg;
+ reg supress_reads;
+
+ ///////////////////////////
+ // DEBUG
+ ///////////////////////////
+ wire [31:0] debug_axi_dma_master;
+
+ //assign debug = {18'h0, input_state[2:0], output_state[2:0], debug_axi_dma_master[7:0]};
+
+ ///////////////////////////////////////////////////////////////////////////////
+
+ wire write_in, read_in, empty_in, full_in;
+ assign i_tready = ~full_in;
+ assign write_in = i_tvalid & i_tready;
+ assign i_tvalid_i0 = ~empty_in;
+ assign read_in = i_tvalid_i0 & i_tready_i0;
+ wire [6:0] discard_i0;
+
+ fifo_short_2clk fifo_short_2clk_i0
+ (.rst(bus_reset),
+ .wr_clk(bus_clk),
+ .din({7'h0,i_tlast,i_tdata}), // input [71 : 0] din
+ .wr_en(write_in), // input wr_en
+ .full(full_in), // output full
+ .wr_data_count(), // output [9 : 0] wr_data_count
+
+ .rd_clk(dram_clk), // input rd_clk
+ .dout({discard_i0,i_tlast_i0,i_tdata_i0}), // output [71 : 0] dout
+ .rd_en(read_in), // input rd_en
+ .empty(empty_in), // output empty
+ .rd_data_count() // output [9 : 0] rd_data_count
+ );
+
+ axi_embed_tlast axi_embed_tlast_i
+ (
+ .clk(dram_clk),
+ .reset(dram_reset),
+ .clear(clear),
+ //
+ .i_tdata(i_tdata_i0),
+ .i_tlast(i_tlast_i0),
+ .i_tvalid(i_tvalid_i0),
+ .i_tready(i_tready_i0),
+ //
+ .o_tdata(i_tdata_i1),
+ .o_tvalid(i_tvalid_i1),
+ .o_tready(i_tready_i1)
+ );
+
+
+ axi_fast_fifo #(.WIDTH(WIDTH)) fast_fifo_i0
+ (
+ .clk(dram_clk),
+ .reset(dram_reset),
+ .clear(clear),
+ //
+ .i_tdata(i_tdata_i1),
+ .i_tvalid(i_tvalid_i1),
+ .i_tready(i_tready_i1),
+ //
+ .o_tdata(i_tdata_i2),
+ .o_tvalid(i_tvalid_i2),
+ .o_tready(i_tready_i2)
+ );
+
+ axi_fifo #(.WIDTH(WIDTH),.SIZE(12)) fifo_i1
+ (
+ .clk(dram_clk),
+ .reset(dram_reset),
+ .clear(clear),
+ //
+ .i_tdata(i_tdata_i2),
+ .i_tvalid(i_tvalid_i2),
+ .i_tready(i_tready_i2),
+ //
+ .o_tdata(i_tdata_input),
+ .o_tvalid(i_tvalid_input),
+ .o_tready(i_tready_input),
+ //
+ .space(space_input),
+ .occupied(occupied_input)
+ );
+
+ //
+ // Monitor occupied_input to deduce when DRAM FIFO is running short of bandwidth and there is a danger of backpressure
+ // passing upstream of the DRAM FIFO.
+ // In this situation supress read requests to the DRAM FIFO so that more bandwidth is available to writes.
+ //
+
+
+ always @(posedge dram_clk)
+ begin
+ space_input_reg <= space_input;
+ if ((space_input_reg < supress_threshold[15:0]) && supress_enable)
+ supress_reads <= 1'b1;
+ else
+ supress_reads <= 1'b0;
+ end
+
+ //
+ // Buffer output in 32entry FIFO's. Extract embeded tlast signal.
+ //
+ wire [WIDTH-1:0] o_tdata_output;
+ wire o_tvalid_output, o_tready_output;
+ wire [15:0] space_output, occupied_output;
+
+ wire [WIDTH-1:0] o_tdata_i0;
+ wire o_tvalid_i0, o_tready_i0;
+
+ wire [WIDTH-1:0] o_tdata_i1;
+ wire o_tvalid_i1, o_tready_i1, o_tlast_i1;
+
+ wire [WIDTH-1:0] o_tdata_i2;
+ wire o_tvalid_i2, o_tready_i2, o_tlast_i2;
+
+ wire [WIDTH-1:0] o_tdata_i3;
+ wire o_tvalid_i3, o_tready_i3, o_tlast_i3;
+
+ wire checksum_error;
+
+
+ axi_fifo #(.WIDTH(WIDTH),.SIZE(9)) fifo_i2
+ (
+ .clk(dram_clk),
+ .reset(dram_reset),
+ .clear(clear),
+ //
+ .i_tdata(o_tdata_output),
+ .i_tvalid(o_tvalid_output),
+ .i_tready(o_tready_output),
+ //
+ .o_tdata(o_tdata_i0),
+ .o_tvalid(o_tvalid_i0),
+ .o_tready(o_tready_i0),
+ //
+ .space(space_output),
+ .occupied(occupied_output)
+ );
+
+ // Place FLops straight after SRAM read access for timing.
+ axi_fast_fifo #(.WIDTH(WIDTH)) fast_fifo_i1
+ (
+ .clk(dram_clk),
+ .reset(dram_reset),
+ .clear(clear),
+ //
+ .i_tdata(o_tdata_i0),
+ .i_tvalid(o_tvalid_i0),
+ .i_tready(o_tready_i0),
+ //
+ .o_tdata(o_tdata_i1),
+ .o_tvalid(o_tvalid_i1),
+ .o_tready(o_tready_i1 && ~supress_reads)
+ );
+
+ // More pipeline flops to meet timing
+ axi_fast_fifo #(.WIDTH(WIDTH)) fast_fifo_i2
+ (
+ .clk(dram_clk),
+ .reset(dram_reset),
+ .clear(clear),
+ //
+ .i_tdata(o_tdata_i1),
+ .i_tvalid(o_tvalid_i1 && ~supress_reads),
+ .i_tready(o_tready_i1),
+ //
+ .o_tdata(o_tdata_i2),
+ .o_tvalid(o_tvalid_i2),
+ .o_tready(o_tready_i2)
+ );
+
+ axi_fast_extract_tlast axi_fast_extract_tlast_i0
+ (
+ .clk(dram_clk),
+ .reset(dram_reset),
+ .clear(clear),
+ //
+ .i_tdata(o_tdata_i2),
+ .i_tvalid(o_tvalid_i2),
+ .i_tready(o_tready_i2),
+ //
+ .o_tdata(o_tdata_i3),
+ .o_tlast(o_tlast_i3),
+ .o_tvalid(o_tvalid_i3),
+ .o_tready(o_tready_i3)
+ //
+ // .checksum_error_reg(checksum_error)
+ );
+
+
+ wire write_out, read_out, empty_out, full_out;
+ assign o_tready_i3 = ~full_out;
+ assign write_out = o_tvalid_i3 & o_tready_i3;
+ assign o_tvalid = ~empty_out;
+ assign read_out = o_tvalid & o_tready;
+ wire [6:0] discard_i1;
+
+ fifo_short_2clk fifo_short_2clk_i1
+ (
+ .rst(bus_reset),
+ .wr_clk(dram_clk),
+ .din({7'h0,o_tlast_i3,o_tdata_i3}), // input [71 : 0] din
+ .wr_en(write_out), // input wr_en
+ .full(full_out), // output full
+ .wr_data_count(), // output [9 : 0] wr_data_count
+
+ .rd_clk(bus_clk), // input rd_clk
+ .dout({discard_i1,o_tlast,o_tdata}), // output [71 : 0] dout
+ .rd_en(read_out), // input rd_en
+ .empty(empty_out), // output empty
+ .rd_data_count() // output [9 : 0] rd_data_count
+ );
+
+ //
+ // Simple input timeout counter for now.
+ // Timeout count only increments when there is some data waiting to be written.
+ //
+ always @(posedge dram_clk)
+ if (dram_reset | clear) begin
+ input_timeout_count <= 0;
+ input_timeout_triggered <= 1'b0;
+ end else if (input_timeout_reset) begin
+ input_timeout_count <= 0;
+ input_timeout_triggered <= 1'b0;
+ end else if (input_timeout_count == TIMEOUT) begin
+ input_timeout_triggered <= 1'b1;
+ end else if (input_state == INPUT_IDLE) begin
+ input_timeout_count <= input_timeout_count + (occupied_input != 0);
+ end
+
+
+ //
+ // Wait for 16 entries in input FIFO to trigger DRAM write burst.
+ // Timeout can also trigger burst so fragments of data are not left to rot in the input FIFO.
+ // Also if enough data is present in the input FIFO to complete a burst upto the edge
+ // of a 4KByte page then immediately start the burst.
+ //
+ always @(posedge dram_clk)
+ if (dram_reset | clear) begin
+ input_state <= INPUT_IDLE;
+ write_addr[31:SIZE] <= BASE >> SIZE;
+ write_addr[SIZE-1:0] <= 0;
+ input_timeout_reset <= 1'b0;
+ write_ctrl_valid <= 1'b0;
+ write_count <= 8'd0;
+ update_write <= 1'b0;
+ end else
+ case (input_state)
+ //
+ // INPUT_IDLE.
+ // To start an input transfer to DRAM need:
+ // 1) Space in the DRAM FIFO
+ // and either
+ // 2) 256 entrys in the input FIFO
+ // or
+ // 3) Timeout waiting for more data.
+ //
+ INPUT_IDLE: begin
+ write_ctrl_valid <= 1'b0;
+ update_write <= 1'b0;
+ if (space > 255) begin // Space in the DRAM FIFO
+ if (occupied_input > 255) begin // 256 or more entrys in input FIFO
+ input_state <= INPUT1;
+ input_timeout_reset <= 1'b1;
+ end else if (input_timeout_triggered) begin // input FIFO timeout waiting for new data.
+ input_state <= INPUT2;
+ input_timeout_reset <= 1'b1;
+ end else begin
+ input_timeout_reset <= 1'b0;
+ input_state <= INPUT_IDLE;
+ end
+ end else begin
+ input_timeout_reset <= 1'b0;
+ input_state <= INPUT_IDLE;
+ end
+ end
+ //
+ // INPUT1.
+ // Caused by input FIFO reaching 256 entries.
+ // Request write burst of lesser of:
+ // 1) Entrys until page boundry crossed
+ // 2) 256.
+ //
+ INPUT1: begin
+ write_count <= (input_page_boundry < 255) ? input_page_boundry[7:0] : 8'd255;
+ write_ctrl_valid <= 1'b1;
+ if (write_ctrl_ready)
+ input_state <= INPUT4; // Pre-emptive ACK
+ else
+ input_state <= INPUT3; // Wait for ACK
+ end
+ //
+ // INPUT2.
+ // Caused by timeout of input FIFO. (occupied_input was implicitly less than 256 last cycle)
+ // Request write burst of lesser of:
+ // 1) Entries until page boundry crossed
+ // 2) Entries in input FIFO
+ //
+ INPUT2: begin
+ write_count <= (input_page_boundry < ({3'h0,occupied_input[8:0]} - 12'd1)) ? input_page_boundry[7:0] : (occupied_input[8:0] - 7'd1);
+ write_ctrl_valid <= 1'b1;
+ if (write_ctrl_ready)
+ input_state <= INPUT4; // Pre-emptive ACK
+ else
+ input_state <= INPUT3; // Wait for ACK
+ end
+ //
+ // INPUT3.
+ // Wait in this state for AXI4_DMA engine to accept transaction.
+ //
+ INPUT3: begin
+ if (write_ctrl_ready) begin
+ write_ctrl_valid <= 1'b0;
+ input_state <= INPUT4; // ACK
+ end else begin
+ write_ctrl_valid <= 1'b1;
+ input_state <= INPUT3; // Wait for ACK
+ end
+ end
+ //
+ // INPUT4.
+ // Wait here until write_ctrl_ready_deasserts.
+ // This is important as the next time it asserts we know that a write response was receieved.
+ INPUT4: begin
+ write_ctrl_valid <= 1'b0;
+ if (!write_ctrl_ready)
+ input_state <= INPUT5; // Move on
+ else
+ input_state <= INPUT4; // Wait for deassert
+ end
+ //
+ // INPUT5.
+ // Transaction has been accepted by AXI4 DMA engine. Now we wait for the re-assertion
+ // of write_ctrl_ready which signals that the AXI4 DMA engine has receieved a response
+ // for the whole write transaction and we assume that this means it is commited to DRAM.
+ // We are now free to update write_addr pointer and go back to idle state.
+ //
+ INPUT5: begin
+ write_ctrl_valid <= 1'b0;
+ if (write_ctrl_ready) begin
+ write_addr[SIZE-1:0] <= write_addr[SIZE-1:0] + ((write_count + 1) << 3);
+ input_state <= INPUT6;
+ update_write <= 1'b1;
+ end else begin
+ input_state <= INPUT5;
+ end
+ end
+ //
+ // INPUT6:
+ // Need to let space update before looking if there's more to do.
+ //
+ INPUT6: begin
+ input_state <= INPUT_IDLE;
+ update_write <= 1'b0;
+ end
+ // Ass covering.
+ default: input_state <= INPUT_IDLE;
+
+ endcase // case(input_state)
+
+
+ //
+ // Simple output timeout counter for now
+ //
+ always @(posedge dram_clk)
+ if (dram_reset | clear) begin
+ output_timeout_count <= 0;
+ output_timeout_triggered <= 1'b0;
+ end else if (output_timeout_reset) begin
+ output_timeout_count <= 0;
+ output_timeout_triggered <= 1'b0;
+ end else if (output_timeout_count == TIMEOUT) begin
+ output_timeout_triggered <= 1'b1;
+ end else if (output_state == OUTPUT_IDLE) begin
+ output_timeout_count <= output_timeout_count + (occupied != 0 );
+ end
+
+
+ //
+ // Wait for 64 entries in main FIFO to trigger DRAM read burst.
+ // Timeout can also trigger burst so fragments of data are not left to rot in the main FIFO.
+ // Also if enough data is present in the main FIFO to complete a burst upto the edge
+ // of a 4KByte page then immediately start the burst.
+ //
+ always @(posedge dram_clk)
+ if (dram_reset | clear) begin
+ output_state <= OUTPUT_IDLE;
+ read_addr[31:SIZE] <= BASE >> SIZE;
+ read_addr[SIZE-1:0] <= 0;
+ output_timeout_reset <= 1'b0;
+ read_ctrl_valid <= 1'b0;
+ read_count <= 8'd0;
+ update_read <= 1'b0;
+ end else
+ case (output_state)
+ //
+ // OUTPUT_IDLE.
+ // To start an output tranfer from DRAM
+ // 1) Space in the small output FIFO
+ // and either
+ // 2) 256 entrys in the DRAM FIFO
+ // or
+ // 3) Timeout waiting for more data.
+ //
+ OUTPUT_IDLE: begin
+ read_ctrl_valid <= 1'b0;
+ update_read <= 1'b0;
+ if (space_output > 255) begin // Space in the output FIFO.
+ if (occupied > 255) begin // 64 or more entrys in main FIFO
+ output_state <= OUTPUT1;
+ output_timeout_reset <= 1'b1;
+ end else if (output_timeout_triggered) begin // output FIFO timeout waiting for new data.
+ output_state <= OUTPUT2;
+ output_timeout_reset <= 1'b1;
+ end else begin
+ output_timeout_reset <= 1'b0;
+ output_state <= OUTPUT_IDLE;
+ end
+ end else begin
+ output_timeout_reset <= 1'b0;
+ output_state <= OUTPUT_IDLE;
+ end
+ end // case: OUTPUT_IDLE
+ //
+ // OUTPUT1.
+ // Caused by main FIFO reaching 256 entries.
+ // Request read burst of lesser of lesser of:
+ // 1) Entrys until page boundry crossed
+ // 2) 256.
+ //
+ OUTPUT1: begin
+ read_count <= (output_page_boundry < 255) ? output_page_boundry : 8'd255;
+ read_ctrl_valid <= 1'b1;
+ if (read_ctrl_ready)
+ output_state <= OUTPUT4; // Pre-emptive ACK
+ else
+ output_state <= OUTPUT3; // Wait for ACK
+ end
+ //
+ // OUTPUT2.
+ // Caused by timeout of main FIFO
+ // Request read burst of lesser of:
+ // 1) Entries until page boundry crossed
+ // 2) Entries in main FIFO
+ //
+ OUTPUT2: begin
+ read_count <= (output_page_boundry < (occupied - 1)) ? output_page_boundry : (occupied - 1);
+ read_ctrl_valid <= 1'b1;
+ if (read_ctrl_ready)
+ output_state <= OUTPUT4; // Pre-emptive ACK
+ else
+ output_state <= OUTPUT3; // Wait for ACK
+ end
+ //
+ // OUTPUT3.
+ // Wait in this state for AXI4_DMA engine to accept transaction.
+ //
+ OUTPUT3: begin
+ if (read_ctrl_ready) begin
+ read_ctrl_valid <= 1'b0;
+ output_state <= OUTPUT4; // ACK
+ end else begin
+ read_ctrl_valid <= 1'b1;
+ output_state <= OUTPUT3; // Wait for ACK
+ end
+ end
+ //
+ // OUTPUT4.
+ // Wait here unitl read_ctrl_ready_deasserts.
+ // This is important as the next time it asserts we know that a read response was receieved.
+ OUTPUT4: begin
+ read_ctrl_valid <= 1'b0;
+ if (!read_ctrl_ready)
+ output_state <= OUTPUT5; // Move on
+ else
+ output_state <= OUTPUT4; // Wait for deassert
+ end
+ //
+ // OUTPUT5.
+ // Transaction has been accepted by AXI4 DMA engine. Now we wait for the re-assertion
+ // of read_ctrl_ready which signals that the AXI4 DMA engine has receieved a last signal and good response
+ // for the whole read transaction.
+ // We are now free to update read_addr pointer and go back to idle state.
+ //
+ OUTPUT5: begin
+ read_ctrl_valid <= 1'b0;
+ if (read_ctrl_ready) begin
+ read_addr[SIZE-1:0] <= read_addr[SIZE-1:0] + ((read_count + 1) << 3);
+ output_state <= OUTPUT6;
+ update_read <= 1'b1;
+
+ end else begin
+ output_state <= OUTPUT5;
+ end
+ end // case: OUTPUT5
+ //
+ // OUTPUT6.
+ // Need to get occupied value updated before checking if there's more to do.
+ //
+ OUTPUT6: begin
+ update_read <= 1'b0;
+ output_state <= OUTPUT_IDLE;
+ end
+ // Ass covering.
+ default: output_state <= OUTPUT_IDLE;
+
+ endcase // case(output_state)
+
+ //
+ // Calculate number of entries remaining until next 4KB page boundry is crossed minus 1.
+ // Note, units of calculation are 64bit wide words. Address is always 64bit alligned.
+ //
+ assign input_page_boundry = {write_addr[31:12],9'h1ff} - write_addr[31:3];
+ assign output_page_boundry = {read_addr[31:12],9'h1ff} - read_addr[31:3];
+
+ //
+ // Count number of used entries in main DRAM FIFO.
+ // Note that this is expressed in units of 64bit wide words.
+ //
+ always @(posedge dram_clk)
+ if (dram_reset | clear)
+ occupied <= 0;
+ else
+ occupied <= occupied + (update_write ? write_count + 1 : 0) - (update_read ? read_count + 1 : 0);
+
+ always @(posedge dram_clk)
+ if (dram_reset | clear)
+ space <= (1 << SIZE-3) - 'd64; // Subtract 64 from space to make allowance for read/write reordering in DRAM controller confuing pointer math.
+ else
+ space <= space - (update_write ? write_count + 1 : 0) + (update_read ? read_count + 1 : 0);
+
+ //
+ // Instamce of axi_dma_master
+ //
+
+
+ axi_dma_master axi_dma_master_i
+ (
+ .aclk(dram_clk), // input aclk
+ .areset(dram_reset | clear), // input aresetn
+ // Write control
+ .m_axi_awid(m_axi_awid), // input [0 : 0] m_axi_awid
+ .m_axi_awaddr(m_axi_awaddr), // input [31 : 0] m_axi_awaddr
+ .m_axi_awlen(m_axi_awlen), // input [7 : 0] m_axi_awlen
+ .m_axi_awsize(m_axi_awsize), // input [2 : 0] m_axi_awsize
+ .m_axi_awburst(m_axi_awburst), // input [1 : 0] m_axi_awburst
+ .m_axi_awvalid(m_axi_awvalid), // input m_axi_awvalid
+ .m_axi_awready(m_axi_awready), // output m_axi_awready
+ .m_axi_awlock(m_axi_awlock),
+ .m_axi_awcache(m_axi_awcache),
+ .m_axi_awprot(m_axi_awprot),
+ .m_axi_awqos(m_axi_awqos),
+ .m_axi_awregion(m_axi_awregion),
+ .m_axi_awuser(m_axi_awuser),
+ // Write Data
+ .m_axi_wdata(m_axi_wdata), // input [63 : 0] m_axi_wdata
+ .m_axi_wstrb(m_axi_wstrb), // input [7 : 0] m_axi_wstrb
+ .m_axi_wlast(m_axi_wlast), // input m_axi_wlast
+ .m_axi_wvalid(m_axi_wvalid), // input m_axi_wvalid
+ .m_axi_wready(m_axi_wready), // output m_axi_wready
+ .m_axi_wuser(),
+ // Write Response
+ .m_axi_bid(m_axi_bid), // output [0 : 0] m_axi_bid
+ .m_axi_bresp(m_axi_bresp), // output [1 : 0] m_axi_bresp
+ .m_axi_bvalid(m_axi_bvalid), // output m_axi_bvalid
+ .m_axi_bready(m_axi_bready), // input m_axi_bready
+ .m_axi_buser(),
+ // Read Control
+ .m_axi_arid(m_axi_arid), // input [0 : 0] m_axi_arid
+ .m_axi_araddr(m_axi_araddr), // input [31 : 0] m_axi_araddr
+ .m_axi_arlen(m_axi_arlen), // input [7 : 0] m_axi_arlen
+ .m_axi_arsize(m_axi_arsize), // input [2 : 0] m_axi_arsize
+ .m_axi_arburst(m_axi_arburst), // input [1 : 0] m_axi_arburst
+ .m_axi_arvalid(m_axi_arvalid), // input m_axi_arvalid
+ .m_axi_arready(m_axi_arready), // output m_axi_arready
+ .m_axi_arlock(m_axi_arlock),
+ .m_axi_arcache(m_axi_arcache),
+ .m_axi_arprot(m_axi_arprot),
+ .m_axi_arqos(m_axi_arqos),
+ .m_axi_arregion(m_axi_arregion),
+ .m_axi_aruser(m_axi_aruser),
+ // Read Data
+ .m_axi_rid(m_axi_rid), // output [0 : 0] m_axi_rid
+ .m_axi_rdata(m_axi_rdata), // output [63 : 0] m_axi_rdata
+ .m_axi_rresp(m_axi_rresp), // output [1 : 0] m_axi_rresp
+ .m_axi_rlast(m_axi_rlast), // output m_axi_rlast
+ .m_axi_rvalid(m_axi_rvalid), // output m_axi_rvalid
+ .m_axi_rready(m_axi_rready), // input m_axi_rready
+ .m_axi_ruser(),
+ //
+ // DMA interface for Write transaction
+ //
+ .write_addr(write_addr), // Byte address for start of write transaction (should be 64bit alligned)
+ .write_count(write_count), // Count of 64bit words to write.
+ .write_ctrl_valid(write_ctrl_valid),
+ .write_ctrl_ready(write_ctrl_ready),
+ .write_data(i_tdata_input),
+ .write_data_valid(i_tvalid_input),
+ .write_data_ready(i_tready_input),
+ //
+ // DMA interface for Read
+ //
+ .read_addr(read_addr), // Byte address for start of read transaction (should be 64bit alligned)
+ .read_count(read_count), // Count of 64bit words to read.
+ .read_ctrl_valid(read_ctrl_valid),
+ .read_ctrl_ready(read_ctrl_ready),
+ .read_data(o_tdata_output),
+ .read_data_valid(o_tvalid_output),
+ .read_data_ready(o_tready_output),
+ //
+ // Debug
+ //
+ .debug(debug_axi_dma_master)
+ );
+
+ //
+ // Debug
+ //
+ assign debug = { checksum_error,
+ /*debug_axi_dma_master[7:0]*/
+ input_timeout_triggered, // 195
+ input_state[2:0], // 194-192
+ output_timeout_triggered, // 191
+ output_state[2:0], // 190-188
+ space_output[15:0], // 187-172
+ occupied[21:0], // 171-150
+ occupied_input[15:0], // 149-134
+
+ i_tvalid_i0, // 133
+ i_tready_i0, // 132
+ i_tlast_i0, // 131
+ i_tdata_i0[63:0],// 130-67
+ o_tvalid_i1, // 66
+ o_tready_i1, // 65
+ o_tlast_i1, // 64
+ o_tdata_i1[63:0] // 63-0
+ };
+
+
+ endmodule // axi_dram_fifo
+