diff options
author | Ben Hilburn <ben.hilburn@ettus.com> | 2014-02-14 12:05:07 -0800 |
---|---|---|
committer | Ben Hilburn <ben.hilburn@ettus.com> | 2014-02-14 12:05:07 -0800 |
commit | ff1546f8137f7f92bb250f685561b0c34cc0e053 (patch) | |
tree | 7fa6fd05c8828df256a1b20e2935bd3ba9899e2c /fpga/usrp3/lib/axi/axi_dram_fifo.v | |
parent | 4f691d88123784c2b405816925f1a1aef69d18c1 (diff) | |
download | uhd-ff1546f8137f7f92bb250f685561b0c34cc0e053.tar.gz uhd-ff1546f8137f7f92bb250f685561b0c34cc0e053.tar.bz2 uhd-ff1546f8137f7f92bb250f685561b0c34cc0e053.zip |
Pushing the bulk of UHD-3.7.0 code.
Diffstat (limited to 'fpga/usrp3/lib/axi/axi_dram_fifo.v')
-rw-r--r-- | fpga/usrp3/lib/axi/axi_dram_fifo.v | 816 |
1 files changed, 816 insertions, 0 deletions
diff --git a/fpga/usrp3/lib/axi/axi_dram_fifo.v b/fpga/usrp3/lib/axi/axi_dram_fifo.v new file mode 100644 index 000000000..52626123e --- /dev/null +++ b/fpga/usrp3/lib/axi/axi_dram_fifo.v @@ -0,0 +1,816 @@ + +// +// There are various obligations put on this code not present in regular BRAM based FIFO's +// +// 1) Bursts are way more efficient, use local small FIFO's to interact with DRAM +// 2) Never cross a 4KByte address boundry within a single transaction, this is an AXI4 rule. +// 3) 2^SIZE must be greater than 4KB so that the 4KByte page protection also deals with FIFO wrap corner case. +// +module axi_dram_fifo + // NOTE: SIZE is log2 of size of FIFO buffer in bytes. i.e 13 for 8KBytes which is 1kx64 + #(parameter BASE=0, SIZE=16, TIMEOUT=64) + ( + input bus_clk, + input bus_reset, + input clear, + input dram_clk, + input dram_reset, + // + // AXI Write address channel + // + output [0 : 0] m_axi_awid, // Write address ID. This signal is the identification tag for the write address signals + output [31 : 0] m_axi_awaddr, // Write address. The write address gives the address of the first transfer in a write burst + output [7 : 0] m_axi_awlen, // Burst length. The burst length gives the exact number of transfers in a burst. + output [2 : 0] m_axi_awsize, // Burst size. This signal indicates the size of each transfer in the burst. + output [1 : 0] m_axi_awburst, // Burst type. The burst type and the size information, determine how the address is calculated + output [0 : 0] m_axi_awlock, // Lock type. Provides additional information about the atomic characteristics of the transfer. + output [3 : 0] m_axi_awcache, // Memory type. This signal indicates how transactions are required to progress + output [2 : 0] m_axi_awprot, // Protection type. This signal indicates the privilege and security level of the transaction + output [3 : 0] m_axi_awqos, // Quality of Service, QoS. The QoS identifier sent for each write transaction + output [3 : 0] m_axi_awregion, // Region identifier. Permits a single physical interface on a slave to be re-used. + output [0 : 0] m_axi_awuser, // User signal. Optional User-defined signal in the write address channel. + output m_axi_awvalid, // Write address valid. This signal indicates that the channel is signaling valid write addr + input m_axi_awready, // Write address ready. This signal indicates that the slave is ready to accept an address + // + // AXI Write data channel. + // + output [63 : 0] m_axi_wdata, // Write data + output [7 : 0] m_axi_wstrb, // Write strobes. This signal indicates which byte lanes hold valid data. + output m_axi_wlast, // Write last. This signal indicates the last transfer in a write burst + output [0 : 0] m_axi_wuser, // User signal. Optional User-defined signal in the write data channel. + output m_axi_wvalid, // Write valid. This signal indicates that valid write data and strobes are available. + input m_axi_wready, // Write ready. This signal indicates that the slave can accept the write data. + // + // AXI Write response channel signals + // + input [0 : 0] m_axi_bid, // Response ID tag. This signal is the ID tag of the write response. + input [1 : 0] m_axi_bresp, // Write response. This signal indicates the status of the write transaction. + input [0 : 0] m_axi_buser, // User signal. Optional User-defined signal in the write response channel. + input m_axi_bvalid, // Write response valid. This signal indicates that the channel is signaling a valid response + output m_axi_bready, // Response ready. This signal indicates that the master can accept a write response + // + // AXI Read address channel + // + output [0 : 0] m_axi_arid, // Read address ID. This signal is the identification tag for the read address group of signals + output [31 : 0] m_axi_araddr, // Read address. The read address gives the address of the first transfer in a read burst + output [7 : 0] m_axi_arlen, // Burst length. This signal indicates the exact number of transfers in a burst. + output [2 : 0] m_axi_arsize, // Burst size. This signal indicates the size of each transfer in the burst. + output [1 : 0] m_axi_arburst, // Burst type. The burst type and the size information determine how the address for each transfer + output [0 : 0] m_axi_arlock, // Lock type. This signal provides additional information about the atomic characteristics + output [3 : 0] m_axi_arcache, // Memory type. This signal indicates how transactions are required to progress + output [2 : 0] m_axi_arprot, // Protection type. This signal indicates the privilege and security level of the transaction + output [3 : 0] m_axi_arqos, // Quality of Service, QoS. QoS identifier sent for each read transaction. + output [3 : 0] m_axi_arregion, // Region identifier. Permits a single physical interface on a slave to be re-used + output [0 : 0] m_axi_aruser, // User signal. Optional User-defined signal in the read address channel. + output m_axi_arvalid, // Read address valid. This signal indicates that the channel is signaling valid read addr + input m_axi_arready, // Read address ready. This signal indicates that the slave is ready to accept an address + // + // AXI Read data channel + // + input [0 : 0] m_axi_rid, // Read ID tag. This signal is the identification tag for the read data group of signals + input [63 : 0] m_axi_rdata, // Read data. + input [1 : 0] m_axi_rresp, // Read response. This signal indicates the status of the read transfer + input m_axi_rlast, // Read last. This signal indicates the last transfer in a read burst. + input [0 : 0] m_axi_ruser, // User signal. Optional User-defined signal in the read data channel. + input m_axi_rvalid, // Read valid. This signal indicates that the channel is signaling the required read data. + output m_axi_rready, // Read ready. This signal indicates that the master can accept the read data and response + // + // CHDR friendly AXI stream input + // + input [63:0] i_tdata, + input i_tlast, + input i_tvalid, + output i_tready, + // + // CHDR friendly AXI Stream output + // + output [63:0] o_tdata, + output o_tlast, + output o_tvalid, + input o_tready, + // + // + // + input [15:0] supress_threshold, + input supress_enable, + // + // Debug Bus + // + output [197:0] debug + ); + + // + // We are only solving for width 64bits here, since it's our standard CHDR quanta + // + localparam WIDTH=64; + + // + // Input side declarations + // + localparam INPUT_IDLE = 0; + localparam INPUT1 = 1; + localparam INPUT2 = 2; + localparam INPUT3 = 3; + localparam INPUT4 = 4; + localparam INPUT5 = 5; + localparam INPUT6 = 6; + + reg [2:0] input_state; + reg input_timeout_triggered; + reg input_timeout_reset; + reg [8:0] input_timeout_count; + reg [31:0] write_addr; + reg write_ctrl_valid; + wire write_ctrl_ready; + reg [7:0] write_count; + reg update_write; + wire [63:0] write_data; + wire write_data_valid; + wire write_data_ready; + + // + // Output side declarations + // + localparam OUTPUT_IDLE = 0; + localparam OUTPUT1 = 1; + localparam OUTPUT2 = 2; + localparam OUTPUT3 = 3; + localparam OUTPUT4 = 4; + localparam OUTPUT5 = 5; + localparam OUTPUT6 = 6; + + reg [2:0] output_state; + reg output_timeout_triggered; + reg output_timeout_reset; + reg [8:0] output_timeout_count; + reg [31:0] read_addr; + reg read_ctrl_valid; + wire read_ctrl_ready; + reg [7:0] read_count; + reg update_read; + wire [63:0] read_data; + wire read_data_valid; + wire read_data_ready; + + // Track main FIFO active size. + reg [SIZE-3:0] space, occupied; + wire [11:0] input_page_boundry, output_page_boundry; + + + // + // Buffer input in FIFO's. Embeded tlast signal using ESCape code. + // + wire [WIDTH-1:0] i_tdata_i0; + wire i_tvalid_i0, i_tready_i0, i_tlast_i0; + + wire [WIDTH-1:0] i_tdata_i1; + wire i_tvalid_i1, i_tready_i1; + + wire [WIDTH-1:0] i_tdata_i2; + wire i_tvalid_i2, i_tready_i2; + + wire [WIDTH-1:0] i_tdata_input; + wire i_tvalid_input, i_tready_input; + wire [15:0] space_input, occupied_input; + reg [15:0] space_input_reg; + reg supress_reads; + + /////////////////////////// + // DEBUG + /////////////////////////// + wire [31:0] debug_axi_dma_master; + + //assign debug = {18'h0, input_state[2:0], output_state[2:0], debug_axi_dma_master[7:0]}; + + /////////////////////////////////////////////////////////////////////////////// + + wire write_in, read_in, empty_in, full_in; + assign i_tready = ~full_in; + assign write_in = i_tvalid & i_tready; + assign i_tvalid_i0 = ~empty_in; + assign read_in = i_tvalid_i0 & i_tready_i0; + wire [6:0] discard_i0; + + fifo_short_2clk fifo_short_2clk_i0 + (.rst(bus_reset), + .wr_clk(bus_clk), + .din({7'h0,i_tlast,i_tdata}), // input [71 : 0] din + .wr_en(write_in), // input wr_en + .full(full_in), // output full + .wr_data_count(), // output [9 : 0] wr_data_count + + .rd_clk(dram_clk), // input rd_clk + .dout({discard_i0,i_tlast_i0,i_tdata_i0}), // output [71 : 0] dout + .rd_en(read_in), // input rd_en + .empty(empty_in), // output empty + .rd_data_count() // output [9 : 0] rd_data_count + ); + + axi_embed_tlast axi_embed_tlast_i + ( + .clk(dram_clk), + .reset(dram_reset), + .clear(clear), + // + .i_tdata(i_tdata_i0), + .i_tlast(i_tlast_i0), + .i_tvalid(i_tvalid_i0), + .i_tready(i_tready_i0), + // + .o_tdata(i_tdata_i1), + .o_tvalid(i_tvalid_i1), + .o_tready(i_tready_i1) + ); + + + axi_fast_fifo #(.WIDTH(WIDTH)) fast_fifo_i0 + ( + .clk(dram_clk), + .reset(dram_reset), + .clear(clear), + // + .i_tdata(i_tdata_i1), + .i_tvalid(i_tvalid_i1), + .i_tready(i_tready_i1), + // + .o_tdata(i_tdata_i2), + .o_tvalid(i_tvalid_i2), + .o_tready(i_tready_i2) + ); + + axi_fifo #(.WIDTH(WIDTH),.SIZE(12)) fifo_i1 + ( + .clk(dram_clk), + .reset(dram_reset), + .clear(clear), + // + .i_tdata(i_tdata_i2), + .i_tvalid(i_tvalid_i2), + .i_tready(i_tready_i2), + // + .o_tdata(i_tdata_input), + .o_tvalid(i_tvalid_input), + .o_tready(i_tready_input), + // + .space(space_input), + .occupied(occupied_input) + ); + + // + // Monitor occupied_input to deduce when DRAM FIFO is running short of bandwidth and there is a danger of backpressure + // passing upstream of the DRAM FIFO. + // In this situation supress read requests to the DRAM FIFO so that more bandwidth is available to writes. + // + + + always @(posedge dram_clk) + begin + space_input_reg <= space_input; + if ((space_input_reg < supress_threshold[15:0]) && supress_enable) + supress_reads <= 1'b1; + else + supress_reads <= 1'b0; + end + + // + // Buffer output in 32entry FIFO's. Extract embeded tlast signal. + // + wire [WIDTH-1:0] o_tdata_output; + wire o_tvalid_output, o_tready_output; + wire [15:0] space_output, occupied_output; + + wire [WIDTH-1:0] o_tdata_i0; + wire o_tvalid_i0, o_tready_i0; + + wire [WIDTH-1:0] o_tdata_i1; + wire o_tvalid_i1, o_tready_i1, o_tlast_i1; + + wire [WIDTH-1:0] o_tdata_i2; + wire o_tvalid_i2, o_tready_i2, o_tlast_i2; + + wire [WIDTH-1:0] o_tdata_i3; + wire o_tvalid_i3, o_tready_i3, o_tlast_i3; + + wire checksum_error; + + + axi_fifo #(.WIDTH(WIDTH),.SIZE(9)) fifo_i2 + ( + .clk(dram_clk), + .reset(dram_reset), + .clear(clear), + // + .i_tdata(o_tdata_output), + .i_tvalid(o_tvalid_output), + .i_tready(o_tready_output), + // + .o_tdata(o_tdata_i0), + .o_tvalid(o_tvalid_i0), + .o_tready(o_tready_i0), + // + .space(space_output), + .occupied(occupied_output) + ); + + // Place FLops straight after SRAM read access for timing. + axi_fast_fifo #(.WIDTH(WIDTH)) fast_fifo_i1 + ( + .clk(dram_clk), + .reset(dram_reset), + .clear(clear), + // + .i_tdata(o_tdata_i0), + .i_tvalid(o_tvalid_i0), + .i_tready(o_tready_i0), + // + .o_tdata(o_tdata_i1), + .o_tvalid(o_tvalid_i1), + .o_tready(o_tready_i1 && ~supress_reads) + ); + + // More pipeline flops to meet timing + axi_fast_fifo #(.WIDTH(WIDTH)) fast_fifo_i2 + ( + .clk(dram_clk), + .reset(dram_reset), + .clear(clear), + // + .i_tdata(o_tdata_i1), + .i_tvalid(o_tvalid_i1 && ~supress_reads), + .i_tready(o_tready_i1), + // + .o_tdata(o_tdata_i2), + .o_tvalid(o_tvalid_i2), + .o_tready(o_tready_i2) + ); + + axi_fast_extract_tlast axi_fast_extract_tlast_i0 + ( + .clk(dram_clk), + .reset(dram_reset), + .clear(clear), + // + .i_tdata(o_tdata_i2), + .i_tvalid(o_tvalid_i2), + .i_tready(o_tready_i2), + // + .o_tdata(o_tdata_i3), + .o_tlast(o_tlast_i3), + .o_tvalid(o_tvalid_i3), + .o_tready(o_tready_i3) + // + // .checksum_error_reg(checksum_error) + ); + + + wire write_out, read_out, empty_out, full_out; + assign o_tready_i3 = ~full_out; + assign write_out = o_tvalid_i3 & o_tready_i3; + assign o_tvalid = ~empty_out; + assign read_out = o_tvalid & o_tready; + wire [6:0] discard_i1; + + fifo_short_2clk fifo_short_2clk_i1 + ( + .rst(bus_reset), + .wr_clk(dram_clk), + .din({7'h0,o_tlast_i3,o_tdata_i3}), // input [71 : 0] din + .wr_en(write_out), // input wr_en + .full(full_out), // output full + .wr_data_count(), // output [9 : 0] wr_data_count + + .rd_clk(bus_clk), // input rd_clk + .dout({discard_i1,o_tlast,o_tdata}), // output [71 : 0] dout + .rd_en(read_out), // input rd_en + .empty(empty_out), // output empty + .rd_data_count() // output [9 : 0] rd_data_count + ); + + // + // Simple input timeout counter for now. + // Timeout count only increments when there is some data waiting to be written. + // + always @(posedge dram_clk) + if (dram_reset | clear) begin + input_timeout_count <= 0; + input_timeout_triggered <= 1'b0; + end else if (input_timeout_reset) begin + input_timeout_count <= 0; + input_timeout_triggered <= 1'b0; + end else if (input_timeout_count == TIMEOUT) begin + input_timeout_triggered <= 1'b1; + end else if (input_state == INPUT_IDLE) begin + input_timeout_count <= input_timeout_count + (occupied_input != 0); + end + + + // + // Wait for 16 entries in input FIFO to trigger DRAM write burst. + // Timeout can also trigger burst so fragments of data are not left to rot in the input FIFO. + // Also if enough data is present in the input FIFO to complete a burst upto the edge + // of a 4KByte page then immediately start the burst. + // + always @(posedge dram_clk) + if (dram_reset | clear) begin + input_state <= INPUT_IDLE; + write_addr[31:SIZE] <= BASE >> SIZE; + write_addr[SIZE-1:0] <= 0; + input_timeout_reset <= 1'b0; + write_ctrl_valid <= 1'b0; + write_count <= 8'd0; + update_write <= 1'b0; + end else + case (input_state) + // + // INPUT_IDLE. + // To start an input transfer to DRAM need: + // 1) Space in the DRAM FIFO + // and either + // 2) 256 entrys in the input FIFO + // or + // 3) Timeout waiting for more data. + // + INPUT_IDLE: begin + write_ctrl_valid <= 1'b0; + update_write <= 1'b0; + if (space > 255) begin // Space in the DRAM FIFO + if (occupied_input > 255) begin // 256 or more entrys in input FIFO + input_state <= INPUT1; + input_timeout_reset <= 1'b1; + end else if (input_timeout_triggered) begin // input FIFO timeout waiting for new data. + input_state <= INPUT2; + input_timeout_reset <= 1'b1; + end else begin + input_timeout_reset <= 1'b0; + input_state <= INPUT_IDLE; + end + end else begin + input_timeout_reset <= 1'b0; + input_state <= INPUT_IDLE; + end + end + // + // INPUT1. + // Caused by input FIFO reaching 256 entries. + // Request write burst of lesser of: + // 1) Entrys until page boundry crossed + // 2) 256. + // + INPUT1: begin + write_count <= (input_page_boundry < 255) ? input_page_boundry[7:0] : 8'd255; + write_ctrl_valid <= 1'b1; + if (write_ctrl_ready) + input_state <= INPUT4; // Pre-emptive ACK + else + input_state <= INPUT3; // Wait for ACK + end + // + // INPUT2. + // Caused by timeout of input FIFO. (occupied_input was implicitly less than 256 last cycle) + // Request write burst of lesser of: + // 1) Entries until page boundry crossed + // 2) Entries in input FIFO + // + INPUT2: begin + write_count <= (input_page_boundry < ({3'h0,occupied_input[8:0]} - 12'd1)) ? input_page_boundry[7:0] : (occupied_input[8:0] - 7'd1); + write_ctrl_valid <= 1'b1; + if (write_ctrl_ready) + input_state <= INPUT4; // Pre-emptive ACK + else + input_state <= INPUT3; // Wait for ACK + end + // + // INPUT3. + // Wait in this state for AXI4_DMA engine to accept transaction. + // + INPUT3: begin + if (write_ctrl_ready) begin + write_ctrl_valid <= 1'b0; + input_state <= INPUT4; // ACK + end else begin + write_ctrl_valid <= 1'b1; + input_state <= INPUT3; // Wait for ACK + end + end + // + // INPUT4. + // Wait here until write_ctrl_ready_deasserts. + // This is important as the next time it asserts we know that a write response was receieved. + INPUT4: begin + write_ctrl_valid <= 1'b0; + if (!write_ctrl_ready) + input_state <= INPUT5; // Move on + else + input_state <= INPUT4; // Wait for deassert + end + // + // INPUT5. + // Transaction has been accepted by AXI4 DMA engine. Now we wait for the re-assertion + // of write_ctrl_ready which signals that the AXI4 DMA engine has receieved a response + // for the whole write transaction and we assume that this means it is commited to DRAM. + // We are now free to update write_addr pointer and go back to idle state. + // + INPUT5: begin + write_ctrl_valid <= 1'b0; + if (write_ctrl_ready) begin + write_addr[SIZE-1:0] <= write_addr[SIZE-1:0] + ((write_count + 1) << 3); + input_state <= INPUT6; + update_write <= 1'b1; + end else begin + input_state <= INPUT5; + end + end + // + // INPUT6: + // Need to let space update before looking if there's more to do. + // + INPUT6: begin + input_state <= INPUT_IDLE; + update_write <= 1'b0; + end + // Ass covering. + default: input_state <= INPUT_IDLE; + + endcase // case(input_state) + + + // + // Simple output timeout counter for now + // + always @(posedge dram_clk) + if (dram_reset | clear) begin + output_timeout_count <= 0; + output_timeout_triggered <= 1'b0; + end else if (output_timeout_reset) begin + output_timeout_count <= 0; + output_timeout_triggered <= 1'b0; + end else if (output_timeout_count == TIMEOUT) begin + output_timeout_triggered <= 1'b1; + end else if (output_state == OUTPUT_IDLE) begin + output_timeout_count <= output_timeout_count + (occupied != 0 ); + end + + + // + // Wait for 64 entries in main FIFO to trigger DRAM read burst. + // Timeout can also trigger burst so fragments of data are not left to rot in the main FIFO. + // Also if enough data is present in the main FIFO to complete a burst upto the edge + // of a 4KByte page then immediately start the burst. + // + always @(posedge dram_clk) + if (dram_reset | clear) begin + output_state <= OUTPUT_IDLE; + read_addr[31:SIZE] <= BASE >> SIZE; + read_addr[SIZE-1:0] <= 0; + output_timeout_reset <= 1'b0; + read_ctrl_valid <= 1'b0; + read_count <= 8'd0; + update_read <= 1'b0; + end else + case (output_state) + // + // OUTPUT_IDLE. + // To start an output tranfer from DRAM + // 1) Space in the small output FIFO + // and either + // 2) 256 entrys in the DRAM FIFO + // or + // 3) Timeout waiting for more data. + // + OUTPUT_IDLE: begin + read_ctrl_valid <= 1'b0; + update_read <= 1'b0; + if (space_output > 255) begin // Space in the output FIFO. + if (occupied > 255) begin // 64 or more entrys in main FIFO + output_state <= OUTPUT1; + output_timeout_reset <= 1'b1; + end else if (output_timeout_triggered) begin // output FIFO timeout waiting for new data. + output_state <= OUTPUT2; + output_timeout_reset <= 1'b1; + end else begin + output_timeout_reset <= 1'b0; + output_state <= OUTPUT_IDLE; + end + end else begin + output_timeout_reset <= 1'b0; + output_state <= OUTPUT_IDLE; + end + end // case: OUTPUT_IDLE + // + // OUTPUT1. + // Caused by main FIFO reaching 256 entries. + // Request read burst of lesser of lesser of: + // 1) Entrys until page boundry crossed + // 2) 256. + // + OUTPUT1: begin + read_count <= (output_page_boundry < 255) ? output_page_boundry : 8'd255; + read_ctrl_valid <= 1'b1; + if (read_ctrl_ready) + output_state <= OUTPUT4; // Pre-emptive ACK + else + output_state <= OUTPUT3; // Wait for ACK + end + // + // OUTPUT2. + // Caused by timeout of main FIFO + // Request read burst of lesser of: + // 1) Entries until page boundry crossed + // 2) Entries in main FIFO + // + OUTPUT2: begin + read_count <= (output_page_boundry < (occupied - 1)) ? output_page_boundry : (occupied - 1); + read_ctrl_valid <= 1'b1; + if (read_ctrl_ready) + output_state <= OUTPUT4; // Pre-emptive ACK + else + output_state <= OUTPUT3; // Wait for ACK + end + // + // OUTPUT3. + // Wait in this state for AXI4_DMA engine to accept transaction. + // + OUTPUT3: begin + if (read_ctrl_ready) begin + read_ctrl_valid <= 1'b0; + output_state <= OUTPUT4; // ACK + end else begin + read_ctrl_valid <= 1'b1; + output_state <= OUTPUT3; // Wait for ACK + end + end + // + // OUTPUT4. + // Wait here unitl read_ctrl_ready_deasserts. + // This is important as the next time it asserts we know that a read response was receieved. + OUTPUT4: begin + read_ctrl_valid <= 1'b0; + if (!read_ctrl_ready) + output_state <= OUTPUT5; // Move on + else + output_state <= OUTPUT4; // Wait for deassert + end + // + // OUTPUT5. + // Transaction has been accepted by AXI4 DMA engine. Now we wait for the re-assertion + // of read_ctrl_ready which signals that the AXI4 DMA engine has receieved a last signal and good response + // for the whole read transaction. + // We are now free to update read_addr pointer and go back to idle state. + // + OUTPUT5: begin + read_ctrl_valid <= 1'b0; + if (read_ctrl_ready) begin + read_addr[SIZE-1:0] <= read_addr[SIZE-1:0] + ((read_count + 1) << 3); + output_state <= OUTPUT6; + update_read <= 1'b1; + + end else begin + output_state <= OUTPUT5; + end + end // case: OUTPUT5 + // + // OUTPUT6. + // Need to get occupied value updated before checking if there's more to do. + // + OUTPUT6: begin + update_read <= 1'b0; + output_state <= OUTPUT_IDLE; + end + // Ass covering. + default: output_state <= OUTPUT_IDLE; + + endcase // case(output_state) + + // + // Calculate number of entries remaining until next 4KB page boundry is crossed minus 1. + // Note, units of calculation are 64bit wide words. Address is always 64bit alligned. + // + assign input_page_boundry = {write_addr[31:12],9'h1ff} - write_addr[31:3]; + assign output_page_boundry = {read_addr[31:12],9'h1ff} - read_addr[31:3]; + + // + // Count number of used entries in main DRAM FIFO. + // Note that this is expressed in units of 64bit wide words. + // + always @(posedge dram_clk) + if (dram_reset | clear) + occupied <= 0; + else + occupied <= occupied + (update_write ? write_count + 1 : 0) - (update_read ? read_count + 1 : 0); + + always @(posedge dram_clk) + if (dram_reset | clear) + space <= (1 << SIZE-3) - 'd64; // Subtract 64 from space to make allowance for read/write reordering in DRAM controller confuing pointer math. + else + space <= space - (update_write ? write_count + 1 : 0) + (update_read ? read_count + 1 : 0); + + // + // Instamce of axi_dma_master + // + + + axi_dma_master axi_dma_master_i + ( + .aclk(dram_clk), // input aclk + .areset(dram_reset | clear), // input aresetn + // Write control + .m_axi_awid(m_axi_awid), // input [0 : 0] m_axi_awid + .m_axi_awaddr(m_axi_awaddr), // input [31 : 0] m_axi_awaddr + .m_axi_awlen(m_axi_awlen), // input [7 : 0] m_axi_awlen + .m_axi_awsize(m_axi_awsize), // input [2 : 0] m_axi_awsize + .m_axi_awburst(m_axi_awburst), // input [1 : 0] m_axi_awburst + .m_axi_awvalid(m_axi_awvalid), // input m_axi_awvalid + .m_axi_awready(m_axi_awready), // output m_axi_awready + .m_axi_awlock(m_axi_awlock), + .m_axi_awcache(m_axi_awcache), + .m_axi_awprot(m_axi_awprot), + .m_axi_awqos(m_axi_awqos), + .m_axi_awregion(m_axi_awregion), + .m_axi_awuser(m_axi_awuser), + // Write Data + .m_axi_wdata(m_axi_wdata), // input [63 : 0] m_axi_wdata + .m_axi_wstrb(m_axi_wstrb), // input [7 : 0] m_axi_wstrb + .m_axi_wlast(m_axi_wlast), // input m_axi_wlast + .m_axi_wvalid(m_axi_wvalid), // input m_axi_wvalid + .m_axi_wready(m_axi_wready), // output m_axi_wready + .m_axi_wuser(), + // Write Response + .m_axi_bid(m_axi_bid), // output [0 : 0] m_axi_bid + .m_axi_bresp(m_axi_bresp), // output [1 : 0] m_axi_bresp + .m_axi_bvalid(m_axi_bvalid), // output m_axi_bvalid + .m_axi_bready(m_axi_bready), // input m_axi_bready + .m_axi_buser(), + // Read Control + .m_axi_arid(m_axi_arid), // input [0 : 0] m_axi_arid + .m_axi_araddr(m_axi_araddr), // input [31 : 0] m_axi_araddr + .m_axi_arlen(m_axi_arlen), // input [7 : 0] m_axi_arlen + .m_axi_arsize(m_axi_arsize), // input [2 : 0] m_axi_arsize + .m_axi_arburst(m_axi_arburst), // input [1 : 0] m_axi_arburst + .m_axi_arvalid(m_axi_arvalid), // input m_axi_arvalid + .m_axi_arready(m_axi_arready), // output m_axi_arready + .m_axi_arlock(m_axi_arlock), + .m_axi_arcache(m_axi_arcache), + .m_axi_arprot(m_axi_arprot), + .m_axi_arqos(m_axi_arqos), + .m_axi_arregion(m_axi_arregion), + .m_axi_aruser(m_axi_aruser), + // Read Data + .m_axi_rid(m_axi_rid), // output [0 : 0] m_axi_rid + .m_axi_rdata(m_axi_rdata), // output [63 : 0] m_axi_rdata + .m_axi_rresp(m_axi_rresp), // output [1 : 0] m_axi_rresp + .m_axi_rlast(m_axi_rlast), // output m_axi_rlast + .m_axi_rvalid(m_axi_rvalid), // output m_axi_rvalid + .m_axi_rready(m_axi_rready), // input m_axi_rready + .m_axi_ruser(), + // + // DMA interface for Write transaction + // + .write_addr(write_addr), // Byte address for start of write transaction (should be 64bit alligned) + .write_count(write_count), // Count of 64bit words to write. + .write_ctrl_valid(write_ctrl_valid), + .write_ctrl_ready(write_ctrl_ready), + .write_data(i_tdata_input), + .write_data_valid(i_tvalid_input), + .write_data_ready(i_tready_input), + // + // DMA interface for Read + // + .read_addr(read_addr), // Byte address for start of read transaction (should be 64bit alligned) + .read_count(read_count), // Count of 64bit words to read. + .read_ctrl_valid(read_ctrl_valid), + .read_ctrl_ready(read_ctrl_ready), + .read_data(o_tdata_output), + .read_data_valid(o_tvalid_output), + .read_data_ready(o_tready_output), + // + // Debug + // + .debug(debug_axi_dma_master) + ); + + // + // Debug + // + assign debug = { checksum_error, + /*debug_axi_dma_master[7:0]*/ + input_timeout_triggered, // 195 + input_state[2:0], // 194-192 + output_timeout_triggered, // 191 + output_state[2:0], // 190-188 + space_output[15:0], // 187-172 + occupied[21:0], // 171-150 + occupied_input[15:0], // 149-134 + + i_tvalid_i0, // 133 + i_tready_i0, // 132 + i_tlast_i0, // 131 + i_tdata_i0[63:0],// 130-67 + o_tvalid_i1, // 66 + o_tready_i1, // 65 + o_tlast_i1, // 64 + o_tdata_i1[63:0] // 63-0 + }; + + + endmodule // axi_dram_fifo + |