diff options
author | Balint Seeber <balint@ettus.com> | 2013-11-19 12:47:59 -0800 |
---|---|---|
committer | Balint Seeber <balint@ettus.com> | 2013-11-19 12:47:59 -0800 |
commit | db6541583a9c42df79600b47ab2184ee59c46e6a (patch) | |
tree | c564313162b0731e89bd8918dd7095481dd1a949 | |
parent | 2ab579a3036fcdb4739510fa2f919f54ce660586 (diff) | |
parent | c6657b831da9b4ee01bfd85f6dd356717c5f0c35 (diff) | |
download | uhd-db6541583a9c42df79600b47ab2184ee59c46e6a.tar.gz uhd-db6541583a9c42df79600b47ab2184ee59c46e6a.tar.bz2 uhd-db6541583a9c42df79600b47ab2184ee59c46e6a.zip |
Merge remote-tracking branch 'origin/b200/sc12-master' into b200/kitchen_sink
-rw-r--r-- | host/lib/convert/convert_unpack_sc12.cpp | 61 |
1 files changed, 57 insertions, 4 deletions
diff --git a/host/lib/convert/convert_unpack_sc12.cpp b/host/lib/convert/convert_unpack_sc12.cpp index f578b6c95..e98ab73f1 100644 --- a/host/lib/convert/convert_unpack_sc12.cpp +++ b/host/lib/convert/convert_unpack_sc12.cpp @@ -32,6 +32,17 @@ struct item32_sc12_3x item32_t line2; }; +/* + * convert_sc12_item32_3_to_star_4 takes in 3 lines with 32 bit each + * and converts them 4 samples of type 'std::complex<type>'. + * The structure of the 3 lines is as follows: + * _ _ _ _ _ _ _ _ + * |_ _ _1_ _ _|_ _| + * |_2_ _ _|_ _ _3_| + * |_ _|_ _ _4_ _ _| + * + * The numbers mark the position of one complex sample. + */ template <typename type, tohost32_type tohost> void convert_sc12_item32_3_to_star_4 ( @@ -84,17 +95,48 @@ struct convert_sc12_item32_1_to_star_1 : public converter _scalar = scalar/unpack_growth; } + /* + * This converter takes in 24 bits complex samples, 12 bits I and 12 bits Q, and converts them to type 'std::complex<type>'. + * 'type' is usually 'float'. + * For the converter to work correctly the used managed_buffer which holds all samples of one packet has to be 32 bits aligned. + * We assume 32 bits to be one line. This said the converter must be aware where it is supposed to start within 3 lines. + * + */ void operator()(const input_type &inputs, const output_type &outputs, const size_t nsamps) { - const item32_sc12_3x *input = reinterpret_cast<const item32_sc12_3x *>(size_t(inputs[0]) & ~0x3); + /* + * Looking at the line structure above we can identify 4 cases. + * Each corresponds to the start of a different sample within a 3 line block. + * head_samps derives the number of samples left within one block. + * Then the number of bytes the converter has to rewind are calculated. + */ + const size_t head_samps = size_t(inputs[0]) & 0x3; + size_t rewind = 0; + switch(head_samps) + { + case 0: break; + case 1: rewind = 9; break; + case 2: rewind = 6; break; + case 3: rewind = 3; break; + } + + /* + * The pointer *input now points to the head of a 3 line block. + */ + const item32_sc12_3x *input = reinterpret_cast<const item32_sc12_3x *>(size_t(inputs[0]) - rewind); std::complex<type> *output = reinterpret_cast<std::complex<type> *>(outputs[0]); //helper variables std::complex<type> dummy0, dummy1, dummy2; size_t i = 0, o = 0; - //handle the head case - const size_t head_samps = size_t(inputs[0]) & 0x3; + /* + * handle the head case + * head_samps holds the number of samples left in a block. + * The 3 line converter is called for the whole block and already processed samples are dumped. + * We don't run into the risk of a SIGSEGV because input will always point to valid memory within a managed_buffer. + * Furthermore the bytes in a buffer remain unchanged after they have been copied into it. + */ switch (head_samps) { case 0: break; //no head @@ -111,7 +153,18 @@ struct convert_sc12_item32_1_to_star_1 : public converter i++; o += 4; } - //handle the tail case + /* + * handle the tail case + * The converter can be called with any number of samples to be converted. + * This can end up in only a part of a block to be converted in one call. + * We never have to worry about SIGSEGVs here as long as we end in the middle of a managed_buffer. + * If we are at the end of managed_buffer there are 2 precautions to prevent SIGSEGVs. + * Firstly only a read operation is performed. + * Secondly managed_buffers allocate a fixed size memory which is always larger than the actually used size. + * e.g. The current sample maximum is 2000 samples in a packet over USB. + * With sc12 samples a packet consists of 6000kb but managed_buffers allocate 16kb each. + * Thus we don't run into problems here either. + */ const size_t tail_samps = nsamps - o; switch (tail_samps) { |