1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
/*
* osmo-fl2k, turns FL2000-based USB 3.0 to VGA adapters into
* low cost DACs
*
* fl2k-iq
* Copyright (C) 2020 by Felix Erckenbrecht <eligs@eligs.de>
*
* based on fl2k-fm code:
* Copyright (C) 2016-2018 by Steve Markgraf <steve@steve-m.de>
*
* based on FM modulator code from VGASIG:
* Copyright (C) 2009 by Bartek Kania <mbk@gnarf.org>
*
* SPDX-License-Identifier: GPL-2.0+
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
#ifndef _WIN32
#include <unistd.h>
#include <fcntl.h>
#include <getopt.h>
#else
#include <windows.h>
#include <io.h>
#include <fcntl.h>
#include "getopt/getopt.h"
#endif
#include <math.h>
#include <complex.h>
#include <pthread.h>
#include "osmo-fl2k.h"
#include "rds_mod.h"
#define BUFFER_SAMPLES_SHIFT 16
#define BUFFER_SAMPLES (1 << BUFFER_SAMPLES_SHIFT)
#define BUFFER_SAMPLES_MASK ((1 << BUFFER_SAMPLES_SHIFT)-1)
#define BASEBAND_BUF_SIZE 2048
fl2k_dev_t *dev = NULL;
volatile int do_exit = 0;
pthread_t iq_thread;
pthread_mutex_t cb_mutex;
pthread_mutex_t iq_mutex;
pthread_cond_t cb_cond;
pthread_cond_t iq_cond;
FILE *file;
int8_t *txbuf = NULL;
int8_t *ambuf = NULL;
int8_t *buf1 = NULL;
int8_t *buf2 = NULL;
uint32_t samp_rate = 96000000;
int base_freq = 1440000;
int rf_to_baseband_sample_ratio;
int input_freq = 48000;
complex float *ampbuf;
complex float *slopebuf;
int writepos, readpos;
int swap_iq = 0;
void usage(void)
{
fprintf(stderr,
"fl2k_iq, an IQ modulator for FL2K VGA dongles\n\n"
"Usage:"
"\t[-d device index (default: 0)]\n"
"\t[-c center frequency (default: 1440 kHz)]\n"
"\t[-i input baseband sample rate (default: 48000 Hz)]\n"
"\t[-s samplerate in Hz (default: 96 MS/s)]\n"
"\t[-w swap I & Q (invert spectrum)\n"
"\tfilename (use '-' to read from stdin)\n\n"
);
exit(1);
}
#ifdef _WIN32
BOOL WINAPI
sighandler(int signum)
{
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Signal caught, exiting!\n");
fl2k_stop_tx(dev);
do_exit = 1;
pthread_cond_signal(&iq_cond);
return TRUE;
}
return FALSE;
}
#else
static void sighandler(int signum)
{
fprintf(stderr, "Signal caught, exiting!\n");
fl2k_stop_tx(dev);
do_exit = 1;
pthread_cond_signal(&iq_cond);
}
#endif
/* DDS Functions */
#ifndef M_PI
# define M_PI 3.14159265358979323846 /* pi */
# define M_PI_2 1.57079632679489661923 /* pi/2 */
# define M_PI_4 0.78539816339744830962 /* pi/4 */
# define M_1_PI 0.31830988618379067154 /* 1/pi */
# define M_2_PI 0.63661977236758134308 /* 2/pi */
#endif
#define DDS_2PI (M_PI * 2) /* 2 * Pi */
#define DDS_3PI2 (M_PI_2 * 3) /* 3/2 * pi */
#define TRIG_TABLE_ORDER 8
#define TRIG_TABLE_SHIFT (32 - TRIG_TABLE_ORDER)
#define TRIG_TABLE_LEN (1 << TRIG_TABLE_ORDER)
#define ANG_INCR (0xffffffff / DDS_2PI)
struct trigonometric_table_S {
int initialized;
int16_t sine[TRIG_TABLE_LEN];
int16_t cosine[TRIG_TABLE_LEN];
};
static struct trigonometric_table_S trig_table = { .initialized = 0 };
typedef struct {
float sample_freq;
float freq;
unsigned long int phase;
unsigned long int phase_step;
complex float amplitude;
complex float ampslope;
} dds_t;
static inline void dds_set_freq(dds_t *dds, float freq)
{
dds->freq = freq;
dds->phase_step = (freq / dds->sample_freq) * 2 * M_PI * ANG_INCR;
}
static inline void dds_set_amp(dds_t *dds, complex float amplitude, complex float ampslope)
{
dds->amplitude = amplitude;
dds->ampslope = ampslope;
}
dds_t dds_init(float sample_freq, float freq, float phase, float amp)
{
dds_t dds;
int i;
dds.sample_freq = sample_freq;
dds.phase = phase * ANG_INCR;
dds_set_freq(&dds, freq);
dds_set_amp(&dds, amp, 0);
/* Initialize sine table, prescaled for 16 bit signed integer */
if (!trig_table.initialized) {
float incr = 1.0 / (float)TRIG_TABLE_LEN;
for (i = 0; i < TRIG_TABLE_LEN; i++){
trig_table.sine[i] = sin(incr * i * DDS_2PI) * 32767;
trig_table.cosine[i] = cos(incr * i * DDS_2PI) * 32767;
}
trig_table.initialized = 1;
}
return dds;
}
static inline int8_t dds_real(dds_t *dds)
{
int tmp;
int32_t amp_i, amp_q;
int8_t amp8;
// advance dds generator
tmp = dds->phase >> TRIG_TABLE_SHIFT;
dds->phase += dds->phase_step;
dds->phase &= 0xffffffff;
//amp = 255;
amp_i = creal(dds->amplitude) * 23170.0; // 0..15, * 1/SQRT(2)
amp_q = cimag(dds->amplitude) * 23170.0;
amp_i = amp_i * trig_table.sine[tmp]; // 0..31, * 1/SQRT(2)
amp_q = amp_q * trig_table.cosine[tmp]; // 0..31, * 1/SQRT(2)
amp8 = (int8_t) ((amp_i + amp_q) >> 24); // 0..31 >> 24 => 0..8
dds->amplitude += dds->ampslope;
return amp8;
}
static inline void dds_real_buf(dds_t *dds, int8_t *buf, int count)
{
int i;
for (i = 0; i < count; i++)
buf[i] = dds_real(dds);
}
/* Signal generation and some helpers */
/* Generate the radio signal using the pre-calculated amplitude information
* in the amp buffer */
static void *iq_worker(void *arg)
{
register float freq;
register float tmp;
dds_t base_signal;
int8_t *tmp_ptr;
uint32_t len = 0;
uint32_t readlen, remaining;
int buf_prefilled = 0;
/* Prepare the oscillators */
base_signal = dds_init(samp_rate, base_freq, 0, 1);
while (!do_exit) {
dds_set_amp(&base_signal, ampbuf[readpos], slopebuf[readpos]);
readpos++;
readpos &= BUFFER_SAMPLES_MASK;
/* check if we reach the end of the buffer */
if ((len + rf_to_baseband_sample_ratio) > FL2K_BUF_LEN) {
readlen = FL2K_BUF_LEN - len;
remaining = rf_to_baseband_sample_ratio - readlen;
dds_real_buf(&base_signal, &ambuf[len], readlen);
if (buf_prefilled) {
/* swap buffers */
tmp_ptr = ambuf;
ambuf = txbuf;
txbuf = tmp_ptr;
pthread_mutex_lock(&cb_mutex);
pthread_cond_wait(&cb_cond, &cb_mutex);
pthread_mutex_unlock(&cb_mutex);
}
dds_real_buf(&base_signal, ambuf, remaining);
len = remaining;
buf_prefilled = 1;
} else {
dds_real_buf(&base_signal, &ambuf[len], rf_to_baseband_sample_ratio);
len += rf_to_baseband_sample_ratio;
}
pthread_mutex_lock(&iq_mutex);
pthread_cond_signal(&iq_cond);
pthread_mutex_unlock(&iq_mutex);
}
pthread_exit(NULL);
}
static inline int writelen(int maxlen)
{
int rp = readpos;
int len;
int r;
if (rp < writepos)
rp += BUFFER_SAMPLES;
len = rp - writepos;
r = len > maxlen ? maxlen : len;
return r;
}
static inline float complex modulate_sample_iq(const int lastwritepos, const float complex lastamp, const float complex sample)
{
float complex amp;
float complex slope;
/* Calculate modulator amplitudes at this point to lessen
* the calculations needed in the signal generator */
amp = sample;
/* What we do here is calculate a linear "slope" from
the previous sample to this one. This is then used by
the modulator to gently increase/decrease the amplitude
with each sample without the need to recalculate
the dds parameters. In fact this gives us a very
efficient and pretty good interpolation filter. */
slope = amp - lastamp;
slope = slope * 1.0/ (float) rf_to_baseband_sample_ratio;
slopebuf[writepos] = slope;
ampbuf[writepos] = lastamp;
return amp;
}
void iq_modulator()
{
unsigned int i;
size_t len;
float freq;
float complex lastamp = 0;
int16_t baseband_buf[BASEBAND_BUF_SIZE][2];
uint32_t lastwritepos = writepos;
float complex sample;
while (!do_exit) {
int swap = swap_iq;
len = writelen(BASEBAND_BUF_SIZE);
if (len > 1) {
len = fread(baseband_buf, 4, len, file);
if (len == 0){
if(ferror(file)){
do_exit = 1;
}
}
for (i = 0; i < len; i++) {
sample = (float) baseband_buf[i][0+swap] / 32768.0 + I * (float) baseband_buf[i][1-swap] / 32768.0;
/* Modulate and buffer the sample */
lastamp = modulate_sample_iq(lastwritepos, lastamp, sample);
lastwritepos = writepos++;
writepos %= BUFFER_SAMPLES;
}
} else {
pthread_mutex_lock(&iq_mutex);
pthread_cond_wait(&iq_cond, &iq_mutex);
pthread_mutex_unlock(&iq_mutex);
}
}
}
void fl2k_callback(fl2k_data_info_t *data_info)
{
if (data_info->device_error) {
fprintf(stderr, "Device error, exiting.\n");
do_exit = 1;
pthread_mutex_lock(&iq_mutex);
pthread_cond_signal(&iq_cond);
pthread_mutex_unlock(&iq_mutex);
}
pthread_cond_signal(&cb_cond);
data_info->sampletype_signed = 1;
data_info->r_buf = (char *)txbuf;
}
int main(int argc, char **argv)
{
int r, opt;
uint32_t buf_num = 0;
int dev_index = 0;
pthread_attr_t attr;
char *filename = NULL;
int option_index = 0;
int input_freq_specified = 0;
#ifndef _WIN32
struct sigaction sigact, sigign;
#endif
static struct option long_options[] =
{
{0, 0, 0, 0}
};
while (1) {
opt = getopt_long(argc, argv, "wd:c:i:s:", long_options, &option_index);
/* end of options reached */
if (opt == -1)
break;
switch (opt) {
case 0:
break;
case 'd':
dev_index = (uint32_t)atoi(optarg);
break;
case 'c':
base_freq = (uint32_t)atof(optarg);
break;
case 'i':
input_freq = (uint32_t)atof(optarg);
input_freq_specified = 1;
break;
case 's':
samp_rate = (uint32_t)atof(optarg);
break;
case 'w':
swap_iq = 1;
break;
default:
usage();
break;
}
}
if (argc <= optind) {
usage();
} else {
filename = argv[optind];
}
if (dev_index < 0) {
exit(1);
}
if (strcmp(filename, "-") == 0) { /* Read samples from stdin */
file = stdin;
#ifdef _WIN32
_setmode(_fileno(stdin), _O_BINARY);
#endif
} else {
file = fopen(filename, "rb");
if (!file) {
fprintf(stderr, "Failed to open %s\n", filename);
return -ENOENT;
}
}
/* allocate buffer */
buf1 = malloc(FL2K_BUF_LEN);
buf2 = malloc(FL2K_BUF_LEN);
if (!buf1 || !buf2) {
fprintf(stderr, "malloc error!\n");
exit(1);
}
ambuf = buf1;
txbuf = buf2;
/* Decoded audio */
slopebuf = malloc(BUFFER_SAMPLES * sizeof(float complex));
ampbuf = malloc(BUFFER_SAMPLES * sizeof(float complex));
readpos = 0;
writepos = 1;
fprintf(stderr, "Samplerate: %3.2f MHz\n", (float)samp_rate/1000000);
fprintf(stderr, "Center frequency: %5.0f kHz\n", (float)base_freq/1000);
if(swap_iq)
fprintf(stderr, "Spectral inversion active.\n");
pthread_mutex_init(&cb_mutex, NULL);
pthread_mutex_init(&iq_mutex, NULL);
pthread_cond_init(&cb_cond, NULL);
pthread_cond_init(&iq_cond, NULL);
pthread_attr_init(&attr);
fl2k_open(&dev, (uint32_t)dev_index);
if (NULL == dev) {
fprintf(stderr, "Failed to open fl2k device #%d.\n", dev_index);
goto out;
}
r = pthread_create(&iq_thread, &attr, iq_worker, NULL);
if (r < 0) {
fprintf(stderr, "Error spawning IQ worker thread!\n");
goto out;
}
pthread_attr_destroy(&attr);
r = fl2k_start_tx(dev, fl2k_callback, NULL, 0);
/* Set the sample rate */
r = fl2k_set_sample_rate(dev, samp_rate);
if (r < 0)
fprintf(stderr, "WARNING: Failed to set sample rate. %d\n", r);
/* read back actual frequency */
samp_rate = fl2k_get_sample_rate(dev);
/* Calculate needed constants */
rf_to_baseband_sample_ratio = samp_rate / input_freq;
#ifndef _WIN32
sigact.sa_handler = sighandler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigign.sa_handler = SIG_IGN;
sigaction(SIGINT, &sigact, NULL);
sigaction(SIGTERM, &sigact, NULL);
sigaction(SIGQUIT, &sigact, NULL);
sigaction(SIGPIPE, &sigign, NULL);
#else
SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#endif
iq_modulator();
out:
fl2k_close(dev);
if (file != stdin)
fclose(file);
free(ampbuf);
free(slopebuf);
free(buf1);
free(buf2);
return 0;
}
|