diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2022-01-09 20:02:59 +0100 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2022-01-09 20:02:59 +0100 |
commit | 36276e45cc3dbca2e954515bd7b6b3b4498ddbb2 (patch) | |
tree | 4ec57160a6b6ec14974e44b5beabf8103907aa1e /src/fl2k_garage.c | |
parent | 2cf0eaffddab2457fc81d672599c0f58eb6950f9 (diff) | |
parent | a0e7a58447006cdb1e10f781323c88bd08e66eea (diff) | |
download | osmo-fl2k-36276e45cc3dbca2e954515bd7b6b3b4498ddbb2.tar.gz osmo-fl2k-36276e45cc3dbca2e954515bd7b6b3b4498ddbb2.tar.bz2 osmo-fl2k-36276e45cc3dbca2e954515bd7b6b3b4498ddbb2.zip |
Merge branch 'iq' into interleaved_rg
Diffstat (limited to 'src/fl2k_garage.c')
-rw-r--r-- | src/fl2k_garage.c | 545 |
1 files changed, 545 insertions, 0 deletions
diff --git a/src/fl2k_garage.c b/src/fl2k_garage.c new file mode 100644 index 0000000..d50922e --- /dev/null +++ b/src/fl2k_garage.c @@ -0,0 +1,545 @@ +/* + * osmo-fl2k, turns FL2000-based USB 3.0 to VGA adapters into + * low cost DACs + * + * Copyright (C) 2019 by Felix Erckenbrecht <eligs@eligs.de> + * + * based on fl2k_fm code by: + * Copyright (C) 2016-2018 by Steve Markgraf <steve@steve-m.de> + * + * based on FM modulator code from VGASIG: + * Copyright (C) 2009 by Bartek Kania <mbk@gnarf.org> + * + * SPDX-License-Identifier: GPL-2.0+ + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <stdio.h> +#include <stdlib.h> +#include <signal.h> +#include <string.h> +#include <errno.h> +#include <stdint.h> + +#ifndef _WIN32 +#include <unistd.h> +#include <fcntl.h> +#include <getopt.h> +#else +#include <windows.h> +#include <io.h> +#include <fcntl.h> +#include "getopt/getopt.h" +#endif + +#include <math.h> +#include <pthread.h> + +#include "osmo-fl2k.h" +#include "rds_mod.h" + +#define BUFFER_SAMPLES_SHIFT 16 +#define BUFFER_SAMPLES (1 << BUFFER_SAMPLES_SHIFT) +#define BUFFER_SAMPLES_MASK ((1 << BUFFER_SAMPLES_SHIFT)-1) + +#define AUDIO_BUF_SIZE 4096 + +#define BASEBAND_SAMPLES_PER_CHIP 3 +#define BASEBAND_WORD_BITS 12 +#define BASEBAND_CHIPS_PER_BIT 3 +#define BASEBAND_CHIPS_PER_WORD (BASEBAND_WORD_BITS * BASEBAND_CHIPS_PER_BIT) +#define BASEBAND_CHIPS_PER_SPACE BASEBAND_CHIPS_PER_WORD +#define BASEBAND_SPACE_HIGH_CHIPS 1 +#define BASEBAND_SPACE_LOW_CHIPS (BASEBAND_CHIPS_PER_SPACE - BASEBAND_SPACE_HIGH_CHIPS) +#define BASEBAND_CHIPS_TOTAL (BASEBAND_CHIPS_PER_SPACE + BASEBAND_CHIPS_PER_WORD) + +fl2k_dev_t *dev = NULL; +int do_exit = 0; + +pthread_t am_thread; +pthread_mutex_t cb_mutex; +pthread_mutex_t am_mutex; +pthread_cond_t cb_cond; +pthread_cond_t am_cond; + +int16_t *sample_buf; +int sample_buf_size; + +int8_t *txbuf = NULL; +int8_t *ambuf = NULL; +int8_t *buf1 = NULL; +int8_t *buf2 = NULL; + +uint32_t samp_rate = 100000000; + +double mod_index = 0.9; +int carrier_freq = 40685000; +int carrier_per_signal; + +double *ampbuf; +double *slopebuf; +int writepos, readpos; + +void usage(void) +{ + fprintf(stderr, + "fl2k_garage, a garage door opener for FL2K VGA dongles\n\n" + "Usage:" + "\t[-d device index (default: 0)]\n" + "\t[-f carrier frequency (default: 40.685 MHz)]\n" + "\t[-c garage door code (12 Bit)]\n" + "\t[-b chip period in us (default 320 us)]\n" + "\t[-s samplerate in Hz (default: 100 MS/s)]\n" + ); + exit(1); +} + +#ifdef _WIN32 +BOOL WINAPI +sighandler(int signum) +{ + if (CTRL_C_EVENT == signum) { + fprintf(stderr, "Signal caught, exiting!\n"); + fl2k_stop_tx(dev); + do_exit = 1; + pthread_cond_signal(&am_cond); + return TRUE; + } + return FALSE; +} +#else +static void sighandler(int signum) +{ + fprintf(stderr, "Signal caught, exiting!\n"); + fl2k_stop_tx(dev); + do_exit = 1; + pthread_cond_signal(&am_cond); +} +#endif + +/* DDS Functions */ + +#ifndef M_PI +# define M_PI 3.14159265358979323846 /* pi */ +# define M_PI_2 1.57079632679489661923 /* pi/2 */ +# define M_PI_4 0.78539816339744830962 /* pi/4 */ +# define M_1_PI 0.31830988618379067154 /* 1/pi */ +# define M_2_PI 0.63661977236758134308 /* 2/pi */ +#endif +#define DDS_2PI (M_PI * 2) /* 2 * Pi */ +#define DDS_3PI2 (M_PI_2 * 3) /* 3/2 * pi */ + +#define SIN_TABLE_ORDER 8 +#define SIN_TABLE_SHIFT (32 - SIN_TABLE_ORDER) +#define SIN_TABLE_LEN (1 << SIN_TABLE_ORDER) +#define ANG_INCR (0xffffffff / DDS_2PI) + +int16_t sine_table[SIN_TABLE_LEN]; +int sine_table_init = 0; + +typedef struct { + double sample_freq; + double freq; + unsigned long int phase; + unsigned long int phase_step; + double amplitude; + double ampslope; +} dds_t; + +static inline void dds_set_freq(dds_t *dds, double freq) +{ + dds->freq = freq; + dds->phase_step = (freq / dds->sample_freq) * 2 * M_PI * ANG_INCR; +} + +static inline void dds_set_amp(dds_t *dds, double amplitude, double ampslope) +{ + dds->amplitude = amplitude; + dds->ampslope = ampslope; +} + +dds_t dds_init(double sample_freq, double freq, double phase, double amp) +{ + dds_t dds; + int i; + + dds.sample_freq = sample_freq; + dds.phase = phase * ANG_INCR; + dds_set_freq(&dds, freq); + dds_set_amp(&dds, amp, 0); + /* Initialize sine table, prescaled for 16 bit signed integer */ + if (!sine_table_init) { + double incr = 1.0 / (double)SIN_TABLE_LEN; + for (i = 0; i < SIN_TABLE_LEN; i++) + sine_table[i] = sin(incr * i * DDS_2PI) * 32767; + + sine_table_init = 1; + } + + return dds; +} + +static inline int8_t dds_real(dds_t *dds) +{ + int tmp; + int32_t amp; + + // advance dds generator + tmp = dds->phase >> SIN_TABLE_SHIFT; + dds->phase += dds->phase_step; + dds->phase &= 0xffffffff; + + amp = (int32_t)(dds->amplitude * 255) * sine_table[tmp]; + dds->amplitude += dds->ampslope; + + return (int8_t)(amp >> 16) ; +} + +static inline void dds_real_buf(dds_t *dds, int8_t *buf, int count) +{ + int i; + for (i = 0; i < count; i++) + buf[i] = dds_real(dds); +} + +/* Signal generation and some helpers */ + +/* Generate the radio signal using the pre-calculated amplitude information + * in the amp buffer */ +static void *am_worker(void *arg) +{ + register double freq; + register double tmp; + dds_t carrier; + int8_t *tmp_ptr; + uint32_t len = 0; + uint32_t readlen, remaining; + int buf_prefilled = 0; + + /* Prepare the oscillators */ + carrier = dds_init(samp_rate, carrier_freq, 1, 0); + + while (!do_exit) { + dds_set_amp(&carrier, ampbuf[readpos], slopebuf[readpos]); + readpos++; + readpos &= BUFFER_SAMPLES_MASK; + + /* check if we reach the end of the buffer */ + if ((len + carrier_per_signal) > FL2K_BUF_LEN) { + readlen = FL2K_BUF_LEN - len; + remaining = carrier_per_signal - readlen; + dds_real_buf(&carrier, &ambuf[len], readlen); + + if (buf_prefilled) { + /* swap buffers */ + tmp_ptr = ambuf; + ambuf = txbuf; + txbuf = tmp_ptr; + pthread_cond_wait(&cb_cond, &cb_mutex); + } + + dds_real_buf(&carrier, ambuf, remaining); + len = remaining; + + buf_prefilled = 1; + } else { + dds_real_buf(&carrier, &ambuf[len], carrier_per_signal); + len += carrier_per_signal; + } + + pthread_cond_signal(&am_cond); + } + + pthread_exit(NULL); +} + +static inline int writelen(int maxlen) +{ + int rp = readpos; + int len; + int r; + + if (rp < writepos) + rp += BUFFER_SAMPLES; + + len = rp - writepos; + + r = len > maxlen ? maxlen : len; + + return r; +} + +static inline int32_t modulate_sample_am(int lastwritepos, double lastamp, int16_t sample) +{ + double amp, slope; + + /* Calculate modulator amplitude at this point to lessen + * the calculations needed in the signal generator */ + amp = 1 - ((double)sample * mod_index); + + /* What we do here is calculate a linear "slope" from + the previous sample to this one. This is then used by + the modulator to gently increase/decrease the amplitude + with each sample without the need to recalculate + the dds parameters. In fact this gives us a very + efficient and pretty good interpolation filter. */ + slope = amp - lastamp; + slope /= carrier_per_signal; + slopebuf[lastwritepos] = slope; + ampbuf[writepos] = amp; + + return amp; +} + +void am_modulator(const int code_input) +{ + int counter = 0; + int code; + unsigned int i; + unsigned int b = 0; + size_t len; + int32_t lastamp = 0; + uint32_t lastwritepos = writepos; + int16_t sample = 0; + int samplebuf_pos = 0; + + /* + * 3*640 us = 1,92 ms pro Symbol + * 12 Symbole Daten (12 Bit) + * 11 Symbole Pause, 1 Symbol 1 (synch) + * + * 1 = __- + * 0 = _-- + */ + while (!do_exit) { + len = writelen(AUDIO_BUF_SIZE); + if (len > 1) { + if (len == 0) + do_exit = 1; + + for (i = 0; i < len; i++) { + /* Modulate and buffer the sample */ + sample = sample_buf[samplebuf_pos++]; + if(samplebuf_pos >= BASEBAND_SAMPLES_PER_CHIP * BASEBAND_CHIPS_TOTAL){ + samplebuf_pos = 0; + } + lastamp = modulate_sample_am(lastwritepos, lastamp, sample); + lastwritepos = writepos++; + writepos %= BUFFER_SAMPLES; + } + } else { + pthread_cond_wait(&am_cond, &am_mutex); + } + } +} + +void prepare_baseband(const int code_input, int16_t * sbuf){ + int counter; + int b; + int sample_no; + int16_t sample; + int msb_first_code; + + msb_first_code = 0; + // change to msb first and invert + for(b = 0;b<12;b++){ + msb_first_code <<= 1; + msb_first_code |= code_input & (1<<b) ? 0 : 1; + } + + sample_no = 0; + for(counter=0;counter < (BASEBAND_CHIPS_PER_SPACE + BASEBAND_CHIPS_PER_WORD) ; counter++){ + for(b=0 ; b<BASEBAND_SAMPLES_PER_CHIP ; b++){ + if(counter < (BASEBAND_SPACE_LOW_CHIPS)){ + sample = 0; + } + else if(counter < (BASEBAND_CHIPS_PER_SPACE)){ + // synch symbol + sample = 1; + } + else{ + int m; + m = counter % BASEBAND_CHIPS_PER_BIT; + if(m == 0){ + sample = 0; + } + else if(m == 1){ + sample = (msb_first_code & 1); + } + else{ + sample = 1; + if(b == BASEBAND_SAMPLES_PER_CHIP-1){ + msb_first_code >>= 1; + } + } + } + sbuf[counter * BASEBAND_SAMPLES_PER_CHIP + b] = sample; + } + } +} + +void fl2k_callback(fl2k_data_info_t *data_info) +{ + if (data_info->device_error) { + fprintf(stderr, "Device error, exiting.\n"); + do_exit = 1; + pthread_cond_signal(&am_cond); + } + + pthread_cond_signal(&cb_cond); + + data_info->sampletype_signed = 1; + data_info->r_buf = (char *)txbuf; +} + +int main(int argc, char **argv) +{ + int r, opt; + uint32_t buf_num = 0; + int dev_index = 0; + pthread_attr_t attr; + char *filename = NULL; + int option_index = 0; + int code = 0; + int chiptime_us = 320; + +#ifndef _WIN32 + struct sigaction sigact, sigign; +#endif + + static struct option long_options[] = + { + {0, 0, 0, 0} + }; + + while (1) { + opt = getopt_long(argc, argv, "b:c:f:m:s:", long_options, &option_index); + /* end of options reached */ + if (opt == -1) + break; + + switch (opt) { + case 0: + break; + case 'b': + chiptime_us = atoi(optarg); + break; + case 'c': + code = atoi(optarg); + code &= 4095; + break; + case 'f': + carrier_freq = (uint32_t)atof(optarg); + break; + case 'm': + mod_index = atof(optarg); + break; + case 's': + samp_rate = (uint32_t)atof(optarg); + break; + default: + usage(); + break; + } + } + + if (argc < optind) { + usage(); + } + + /* allocate buffer */ + buf1 = malloc(FL2K_BUF_LEN); + buf2 = malloc(FL2K_BUF_LEN); + if (!buf1 || !buf2) { + fprintf(stderr, "malloc error!\n"); + exit(1); + } + + ambuf = buf1; + txbuf = buf2; + + /* Decoded audio */ + slopebuf = malloc(BUFFER_SAMPLES * sizeof(double)); + ampbuf = malloc(BUFFER_SAMPLES * sizeof(double)); + slopebuf = malloc(BUFFER_SAMPLES * sizeof(double)); + sample_buf = malloc((BASEBAND_SAMPLES_PER_CHIP * BASEBAND_CHIPS_TOTAL) * sizeof(int16_t)); + readpos = 0; + writepos = 1; + + fprintf(stderr, "Samplerate:\t%3.2f MHz\n", (double)samp_rate/1000000); + fprintf(stderr, "Carrier:\t%3.3f MHz\n", (double)carrier_freq/1000000); + fprintf(stderr, "Mod Index:\t%3.1f %%\n", + (double)(mod_index * 100)); + fprintf(stderr, "Chip period:\t%d us\n", chiptime_us); + + pthread_mutex_init(&cb_mutex, NULL); + pthread_mutex_init(&am_mutex, NULL); + pthread_cond_init(&cb_cond, NULL); + pthread_cond_init(&am_cond, NULL); + pthread_attr_init(&attr); + + prepare_baseband(code, sample_buf); + + fl2k_open(&dev, (uint32_t)dev_index); + if (NULL == dev) { + fprintf(stderr, "Failed to open fl2k device #%d.\n", dev_index); + goto out; + } + + r = pthread_create(&am_thread, &attr, am_worker, NULL); + if (r < 0) { + fprintf(stderr, "Error spawning AM worker thread!\n"); + goto out; + } + + pthread_attr_destroy(&attr); + r = fl2k_start_tx(dev, fl2k_callback, NULL, 0); + + /* Set the sample rate */ + r = fl2k_set_sample_rate(dev, samp_rate); + if (r < 0) + fprintf(stderr, "WARNING: Failed to set sample rate. %d\n", r); + + /* read back actual frequency */ + samp_rate = fl2k_get_sample_rate(dev); + + /* Calculate needed constants */ + carrier_per_signal = (int)((double) samp_rate * chiptime_us/(1000000*BASEBAND_SAMPLES_PER_CHIP) + 0.5); + printf("Cps :\t%d\n", carrier_per_signal); +#ifndef _WIN32 + sigact.sa_handler = sighandler; + sigemptyset(&sigact.sa_mask); + sigact.sa_flags = 0; + sigign.sa_handler = SIG_IGN; + sigaction(SIGINT, &sigact, NULL); + sigaction(SIGTERM, &sigact, NULL); + sigaction(SIGQUIT, &sigact, NULL); + sigaction(SIGPIPE, &sigign, NULL); +#else + SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); +#endif + + am_modulator(code); + +out: + fl2k_close(dev); + + free(ampbuf); + free(slopebuf); + free(buf1); + free(buf2); + + return 0; +} |