1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
/*
Copyright (C) 2015
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DPD.
ODR-DPD is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DPD is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DPD. If not, see <http://www.gnu.org/licenses/>.
*/
#include "OutputUHD.hpp"
#include "utils.hpp"
#include <zmq.hpp>
#include <thread>
#include <vector>
#include <deque>
#include <mutex>
#include <atomic>
#include <csignal>
#include <iostream>
#include <future>
std::atomic<bool> running;
void sig_int_handler(int) {
running = false;
}
const size_t samps_per_buffer = 20480;
const size_t samplerate = 2048000;
size_t read_samples(FILE* fd, std::vector<complexf>& samples, size_t count)
{
if (samples.size() < count) {
MDEBUG("HAD TO RESIZE BUFFER!\n");
samples.resize(count);
}
size_t num_read = fread(&samples.front(), sizeof(complexf), count, fd);
if (num_read == 0) {
rewind(fd);
num_read = fread(&samples.front(), sizeof(complexf), count, fd);
}
return num_read;
}
class AlignSample {
public:
AlignSample() {
m_rx_sample_time = 0;
m_tx_sample_time = 0;
}
void push_tx_samples(complexf* samps, size_t len, double first_sample_time) {
std::lock_guard<std::mutex> lock(m_mutex);
std::copy(samps, samps + len, std::back_inserter(m_txsamples));
if (m_tx_sample_time == 0) {
m_tx_sample_time = first_sample_time;
}
}
void push_rx_samples(complexf* samps, size_t len, double first_sample_time) {
std::lock_guard<std::mutex> lock(m_mutex);
std::copy(samps, samps + len, std::back_inserter(m_rxsamples));
if (m_rx_sample_time == 0) {
m_rx_sample_time = first_sample_time;
}
}
bool ready() {
std::lock_guard<std::mutex> lock(m_mutex);
return aligned() and m_rxsamples.size() > 8000 and m_txsamples.size() > 8000;
}
void debug() {
MDEBUG("Aligner\n");
MDEBUG(" RX: %f %zu\n", m_rx_sample_time, m_rxsamples.size());
MDEBUG(" TX: %f %zu\n", m_tx_sample_time, m_txsamples.size());
}
std::vector<complexf> crosscorrelate(size_t max_offset, size_t len) {
std::vector<complexf> rxsamps;
std::vector<complexf> txsamps;
// Do a quick copy, so as to free the mutex
{
std::lock_guard<std::mutex> lock(m_mutex);
if (m_rxsamples.size() < len or
m_txsamples.size() < len + max_offset) {
return {};
}
std::copy(m_rxsamples.begin(), m_rxsamples.begin() + len, std::back_inserter(rxsamps));
std::copy(m_txsamples.begin(), m_txsamples.begin() + len + max_offset, std::back_inserter(txsamps));
}
std::vector<complexf> xcorrs(max_offset);
for (size_t offset = 0; offset < max_offset; offset++) {
complexf xcorr(0, 0);
for (size_t i = 0; i < len; i++) {
xcorr += rxsamps[i] * std::conj(txsamps[i+offset]);
}
xcorrs[offset] = xcorr;
}
return xcorrs;
}
void consume(size_t samples)
{
std::lock_guard<std::mutex> lock(m_mutex);
if (aligned() and m_rxsamples.size() > samples and m_txsamples.size() > samples) {
m_rxsamples.erase(m_rxsamples.begin(), m_rxsamples.begin() + samples);
m_rx_sample_time += (double)samples / samplerate;
m_txsamples.erase(m_txsamples.begin(), m_txsamples.begin() + samples);
m_tx_sample_time += (double)samples / samplerate;
}
}
private:
bool aligned() {
if (std::abs(m_rx_sample_time - m_tx_sample_time) < 1e-6) {
return true;
}
else if (m_rx_sample_time < m_tx_sample_time) {
size_t rx_samples_to_skip = (m_tx_sample_time - m_rx_sample_time) * samplerate;
if (rx_samples_to_skip > m_rxsamples.size()) {
return false;
}
m_rxsamples.erase(m_rxsamples.begin(), m_rxsamples.begin() + rx_samples_to_skip);
m_rx_sample_time += (double)rx_samples_to_skip / samplerate;
return true;
}
else if (m_rx_sample_time > m_tx_sample_time) {
size_t tx_samples_to_skip = (m_rx_sample_time - m_tx_sample_time) * samplerate;
if (tx_samples_to_skip > m_txsamples.size()) {
return false;
}
m_txsamples.erase(m_txsamples.begin(), m_txsamples.begin() + tx_samples_to_skip);
m_tx_sample_time += (double)tx_samples_to_skip / samplerate;
return true;
}
return false;
}
std::mutex m_mutex;
double m_rx_sample_time;
std::deque<complexf> m_rxsamples;
double m_tx_sample_time;
std::deque<complexf> m_txsamples;
};
AlignSample aligner;
size_t do_receive(OutputUHD* output_uhd)
{
std::vector<complexf> samps(samps_per_buffer);
double first_sample_time = 0;
size_t total_received = 0;
double last_print_time = 0;
MDEBUG("Starting do_receive\n");
while (running) {
size_t received = output_uhd->Receive(&samps.front(), samps.size(), &first_sample_time);
aligner.push_rx_samples(&samps.front(), received, first_sample_time);
total_received += received;
if (first_sample_time - last_print_time > 1) {
//MDEBUG("Rx %zu samples at t=%f\n", received, first_sample_time);
last_print_time = first_sample_time;
}
}
MDEBUG("Leaving do_receive\n");
return total_received;
}
void find_peak_correlation()
{
while (running) {
if (aligner.ready()) {
const size_t max_offset = 100000; // 48ms at 2048000
const size_t correlation_length = 100;
std::vector<complexf> correlations(max_offset);
double max_ampl = 0.0;
size_t pos_max = 0;
auto xcs = aligner.crosscorrelate(max_offset, correlation_length);
for (size_t offset = 0; offset < xcs.size(); offset++) {
complexf xc = xcs[offset];
if (std::abs(xc) >= max_ampl) {
max_ampl = std::abs(xc);
pos_max = offset;
}
}
MDEBUG("Max correlation is %f at %zu\n", max_ampl, pos_max);
std::this_thread::sleep_for(std::chrono::microseconds(1));
// Eat much more than we correlate, because correlation is slow
aligner.consume(2048000);
aligner.debug();
}
else {
MDEBUG("Waiting for correlation\n");
aligner.debug();
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}
}
int main(int argc, char **argv)
{
double txgain = 0;
double rxgain = 0;
if (argc >= 3) {
txgain = strtod(argv[2], nullptr);
if (!(0 <= txgain and txgain < 80)) {
MDEBUG("txgain wrong: %f\n", txgain);
return -1;
}
}
if (argc >= 4) {
rxgain = strtod(argv[3], nullptr);
if (!(0 <= rxgain and rxgain < 80)) {
MDEBUG("rxgain wrong: %f\n", rxgain);
return -1;
}
}
MDEBUG("TX Gain is %f\n", txgain);
MDEBUG("RX Gain is %f\n", rxgain);
if (argc < 2) {
MDEBUG("Require input file or url\n");
return -1;
}
std::string uri = argv[1];
OutputUHD output_uhd(txgain, rxgain, samplerate);
zmq::context_t ctx;
zmq::socket_t zmq_sock(ctx, ZMQ_SUB);
FILE* fd = nullptr;
if (uri.find("tcp://") != 0) {
fd = fopen(uri.c_str(), "rb");
if (!fd) {
MDEBUG("Could not open file\n");
return -1;
}
}
else {
zmq_sock.connect(uri);
zmq_sock.setsockopt(ZMQ_SUBSCRIBE, NULL, 0);
}
std::vector<complexf> input_samples(samps_per_buffer);
size_t samps_read = 0;
size_t total_samps_read = samps_read;
double last_print_time = 0;
size_t sent = 0;
std::signal(SIGINT, &sig_int_handler);
running = true;
std::thread receive_thread(do_receive, &output_uhd);
std::thread correlator_thread(find_peak_correlation);
do {
double first_sample_time = 0;
if (fd) {
samps_read = read_samples(fd, input_samples, samps_per_buffer);
sent = output_uhd.Transmit(&input_samples.front(), samps_read, &first_sample_time);
aligner.push_tx_samples(&input_samples.front(), samps_read, first_sample_time);
}
else {
zmq::message_t msg;
if (not zmq_sock.recv(&msg)) {
MDEBUG("zmq recv error\n");
return -1;
}
if (msg.size() % sizeof(complexf) != 0) {
MDEBUG("Received incomplete size %zu\n", msg.size());
return -1;
}
samps_read = msg.size() / sizeof(complexf);
sent = output_uhd.Transmit((complexf*)msg.data(), samps_read, &first_sample_time);
aligner.push_tx_samples((complexf*)msg.data(), samps_read, first_sample_time);
}
if (first_sample_time - last_print_time > 1) {
//MDEBUG("Tx %zu samples at t=%f\n", samps_read, first_sample_time);
last_print_time = first_sample_time;
}
total_samps_read += samps_read;
}
while (samps_read and sent and running);
MDEBUG("Leaving main loop with running=%d\n", running ? 1 : 0);
running = false;
receive_thread.join();
correlator_thread.join();
}
|