1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
/*
Copyright (C) 2015
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DPD.
ODR-DPD is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DPD is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DPD. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AlignSample.hpp"
#include <cstring>
namespace fftw {
class plan {
public:
template <class T>
plan(size_t N, T& in, T& out, int direction)
{
m_plan = fftwf_plan_dft_1d(N,
reinterpret_cast<fftwf_complex*>(&in.front()),
reinterpret_cast<fftwf_complex*>(&out.front()),
FFTW_FORWARD, FFTW_MEASURE);
}
plan(const plan& other) = delete;
const plan& operator=(const plan& other) = delete;
void execute(void) {
fftwf_execute(m_plan);
}
~plan() {
fftwf_destroy_plan(m_plan);
}
private:
fftwf_plan m_plan;
};
}
void AlignSample::push_tx_samples(complexf* samps, size_t len, double first_sample_time)
{
std::lock_guard<std::mutex> lock(m_mutex);
std::copy(samps, samps + len, std::back_inserter(m_txsamples));
if (m_first_tx_sample_time == 0) {
m_first_tx_sample_time = first_sample_time;
}
}
void AlignSample::push_rx_samples(complexf* samps, size_t len, double first_sample_time)
{
std::lock_guard<std::mutex> lock(m_mutex);
if (m_first_rx_sample_time == 0 and first_sample_time != 0) {
std::copy(samps, samps + len, std::back_inserter(m_rxsamples));
m_first_rx_sample_time = first_sample_time;
m_num_rx_samples_dropped = 0;
}
else if (m_first_rx_sample_time != 0) {
// We have previously received samples with valid timestamp
double delta = m_rx_sample_time(m_rxsamples.size()) - first_sample_time;
if (std::fabs(delta) > 1e-3) {
fprintf(stderr, "RX sample time %f expected %f. Delta of %f(%zu)."
" Resetting RX\n",
m_rx_sample_time(m_rxsamples.size()),
first_sample_time,
delta,
(size_t)std::fabs(delta * (double)samplerate));
m_first_rx_sample_time = 0;
m_num_rx_samples_dropped = 0;
m_rxsamples.clear();
}
std::copy(samps, samps + len, std::back_inserter(m_rxsamples));
}
else if (first_sample_time == 0) {
MDEBUG("RX timestamp missing\n");
throw std::runtime_error("RX timestamp missing");
}
}
void AlignSample::reset_rx()
{
std::lock_guard<std::mutex> lock(m_mutex);
m_first_rx_sample_time = 0;
m_num_rx_samples_dropped = 0;
m_rxsamples.clear();
}
bool AlignSample::ready(size_t min_samples)
{
std::lock_guard<std::mutex> lock(m_mutex);
return align() and m_rxsamples.size() > min_samples and m_txsamples.size() > min_samples;
}
CorrelationResult AlignSample::crosscorrelate(size_t len)
{
double rx_ts = 0;
double tx_ts = 0;
/* The size of the FFT is twice as long as the desired
* correlation length, because the FFT does a circular
* correlation, and we therefore pad half with zeros
*/
const size_t N = 2 * len;
std::vector<complexf> rx_fft_in(N);
std::vector<complexf> rx_fft_out(N);
std::vector<complexf> tx_fft_in(N);
std::vector<complexf> tx_fft_out(N);
std::vector<complexf> ifft_in(N);
std::vector<complexf> ifft_out(N);
fftw::plan rx_fft_plan(N,
rx_fft_in,
rx_fft_out,
FFTW_FORWARD);
fftw::plan tx_fft_plan(N,
tx_fft_in,
tx_fft_out,
FFTW_FORWARD);
fftw::plan ifft_plan(N,
ifft_in,
ifft_out,
FFTW_BACKWARD);
// Do a quick copy, so as to free the mutex
{
std::lock_guard<std::mutex> lock(m_mutex);
if (!align() or
m_rxsamples.size() < len or
m_txsamples.size() < len) {
CorrelationResult result(0);
return result;
}
std::copy(m_rxsamples.begin(), m_rxsamples.begin() + len, rx_fft_in.begin());
std::copy(m_txsamples.begin(), m_txsamples.begin() + len, tx_fft_in.begin());
// the other half of the buffers are set to 0
m_drop_rx_samples(len);
m_drop_tx_samples(len);
rx_ts = m_rx_sample_time();
tx_ts = m_tx_sample_time();
}
CorrelationResult result(len);
result.rx_timestamp = rx_ts;
result.tx_timestamp = tx_ts;
// Calculate power
for (size_t i = 0; i < len; i++) {
result.rx_power += std::norm(rx_fft_in[i]);
}
result.rx_power = std::sqrt(result.rx_power);
for (size_t i = 0; i < len; i++) {
result.tx_power += std::norm(tx_fft_in[i]);
}
result.tx_power = std::sqrt(result.tx_power);
// Implement
// corr(a, b) = ifft(fft(a) * conj(fft(b)))
// Attention: circular correlation !
rx_fft_plan.execute();
tx_fft_plan.execute();
for (size_t i = 0; i < len; i++) {
ifft_in[i] = tx_fft_out[i] * std::conj(rx_fft_out[i]);
}
ifft_plan.execute();
for (size_t i = 0; i < len; i++) {
result.correlation[i] = ifft_out[i];
}
return result;
}
std::pair<std::vector<complexf>, std::vector<complexf> > AlignSample::get_samples(
size_t len, size_t rx_delay)
{
std::pair<std::vector<complexf>, std::vector<complexf> > rval;
std::lock_guard<std::mutex> lock(m_mutex);
if (align() and
m_rxsamples.size() > len + rx_delay
and m_txsamples.size() > len) {
rval.first.reserve(len);
rval.second.reserve(len);
std::copy(m_rxsamples.begin() + rx_delay,
m_rxsamples.begin() + rx_delay + len,
std::back_inserter(rval.first));
std::copy(m_txsamples.begin(),
m_txsamples.begin() + len,
std::back_inserter(rval.second));
}
return rval;
}
void AlignSample::consume(size_t samples)
{
std::lock_guard<std::mutex> lock(m_mutex);
if (align() and m_rxsamples.size() > samples and m_txsamples.size() > samples) {
m_drop_rx_samples(samples);
m_drop_tx_samples(samples);
}
}
bool AlignSample::align()
{
if (std::abs(m_rx_sample_time() - m_tx_sample_time()) < 1e-6) {
return true;
}
else if (m_rx_sample_time() < m_tx_sample_time()) {
size_t rx_samples_to_skip =
(m_tx_sample_time() - m_rx_sample_time()) * samplerate;
if (rx_samples_to_skip > m_rxsamples.size()) {
return false;
}
m_drop_rx_samples(rx_samples_to_skip);
return true;
}
else if (m_rx_sample_time() > m_tx_sample_time()) {
size_t tx_samples_to_skip =
(m_rx_sample_time() - m_tx_sample_time()) * samplerate;
if (tx_samples_to_skip > m_txsamples.size()) {
return false;
}
m_drop_tx_samples(tx_samples_to_skip);
return true;
}
return false;
}
|