diff options
author | Matthias P. Braendli <matthias.braendli@mpb.li> | 2017-02-04 17:59:20 +0100 |
---|---|---|
committer | Matthias P. Braendli <matthias.braendli@mpb.li> | 2017-02-04 17:59:20 +0100 |
commit | 936db3485eabc692e29f4249349fc351aad18675 (patch) | |
tree | 05583c1846b706bf3867cdf38a8cc5a5fd1f121c /align/GenerateExampleTxRxIQ.ipynb | |
parent | ce8ae723cf496b698a0f6395e43bc3b993081d5b (diff) | |
download | odr-dpd-936db3485eabc692e29f4249349fc351aad18675.tar.gz odr-dpd-936db3485eabc692e29f4249349fc351aad18675.tar.bz2 odr-dpd-936db3485eabc692e29f4249349fc351aad18675.zip |
Replace jupyter notebook by script file
Diffstat (limited to 'align/GenerateExampleTxRxIQ.ipynb')
-rw-r--r-- | align/GenerateExampleTxRxIQ.ipynb | 255 |
1 files changed, 0 insertions, 255 deletions
diff --git a/align/GenerateExampleTxRxIQ.ipynb b/align/GenerateExampleTxRxIQ.ipynb deleted file mode 100644 index 9ded3ec..0000000 --- a/align/GenerateExampleTxRxIQ.ipynb +++ /dev/null @@ -1,255 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Generate an example RX and TX dataset, with a subsample delay and try to resolve it afterwards" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configuration" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# whether to correct for delays larger than one sample\n", - "# Not necessary unless you have delay larger than oversample/2\n", - "do_integer_compensation = 0\n", - "\n", - "# by how much to oversample the signal before applying the delay\n", - "oversample = 16\n", - "\n", - "# Add a delay of delay/oversample samples to the input signal\n", - "delay = 7\n", - "\n", - "print(\"Expecting a delay of {} samples\".format(delay/oversample))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generate signal" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "%matplotlib notebook\n", - "\n", - "import matplotlib.pyplot as plt\n", - "import scipy.signal\n", - "import numpy as np\n", - "\n", - "\n", - "iq_file = \"/home/bram/dab/aux/odr-dab-cir/phasereference.2048000.fc64.iq\"\n", - "\n", - "iq_data = np.fromfile(iq_file, np.complex64)\n", - "\n", - "# oversampling the input signal doesn't make much of a difference\n", - "phase_ref_iq = scipy.signal.resample(iq_data, 2 * len(iq_data))\n", - "\n", - "# make the signal periodic by duplicating the signal\n", - "phase_ref_iq = np.concatenate((phase_ref_iq, phase_ref_iq))\n", - "\n", - "noise_iq = np.random.normal(scale = np.max(np.abs(phase_ref_iq)) * 0.02,\n", - " size=len(phase_ref_iq))\n", - "\n", - "phase_ref_iq = phase_ref_iq + noise_iq\n", - "\n", - "# exp(-2i pi f) is the Fourier transform of a unity delay.\n", - "# exp(2i pi f) is a negative delay.\n", - "bin_frequencies = np.concatenate(\n", - " (np.linspace(0, 0.5, len(phase_ref_iq)/2, endpoint=False),\n", - " np.linspace(-0.5, 0, len(phase_ref_iq)/2, endpoint=False)))\n", - "\n", - "phase_ref_uc = scipy.signal.resample(phase_ref_iq, oversample * len(phase_ref_iq))\n", - "\n", - "\n", - "phase_ref_uc_delayed = np.roll(phase_ref_uc, delay)\n", - "\n", - "phase_ref_delayed = scipy.signal.resample(phase_ref_uc_delayed, len(phase_ref_iq))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 1: integer delay" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [], - "source": [ - "corr_begin_ix = -32\n", - "corr_end_ix = 32\n", - "\n", - "corr = [np.abs(np.corrcoef(phase_ref_delayed, np.roll(phase_ref_iq, i))[0,1]) \n", - " for i in range(corr_begin_ix, corr_end_ix)]\n", - "# TODO check for negative real correlation peak\n", - "if do_integer_compensation:\n", - " delay_in = np.argmax(corr) + corr_begin_ix\n", - "else:\n", - " delay_in = 0\n", - "\n", - "phase_ref_int_delay_removed = np.roll(phase_ref_delayed, -delay_in)\n", - "\n", - "print(\"Integer delay corrected: {}\".format(delay_in))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 2: factional delay" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Calculate fractional delay" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [], - "source": [ - "signal_fft = np.fft.fft(phase_ref_int_delay_removed)\n", - "reference_fft = np.fft.fft(phase_ref_iq)\n", - "\n", - "# rotate each bin backwards with the phase of the reference. As we have already resolved the\n", - "# integer delay, we should find at most one 2*pi wrapping.\n", - "u = signal_fft * np.conj(reference_fft)\n", - "\n", - "\n", - "\n", - "# the phase signal will still wrap around, and will have values between -pi/4 and pi/4\n", - "phase_wrapping = np.angle(u)\n", - "\n", - "unwrap_with_deriv_integrate = True\n", - "if unwrap_with_deriv_integrate:\n", - " # to unwrap, take the derivative, remove peaks, integrate\n", - " phase_deriv = phase_wrapping - np.roll(phase_wrapping, 1)\n", - "\n", - " def filter_phase_deriv(p):\n", - " if np.abs(p) < 0.5:\n", - " return p\n", - " else:\n", - " return 0\n", - " \n", - " phase_deriv_nopeaks = [filter_phase_deriv(p) for p in phase_deriv]\n", - " phase_unwrapped = np.cumsum(phase_deriv_nopeaks)\n", - "else:\n", - " # doesn't always work, sometimes there are smaller jumps in phase\n", - " phase_unwrapped = np.mod(phase_wrapping + np.pi/2, np.ones(len(phase_wrapping)) * np.pi / 2)\n", - "\n", - "\n", - "# Find the slope using a linear regression\n", - "slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(phase_unwrapped,range(len(phase_unwrapped)))\n", - "\n", - "if p_value < 0.05:\n", - " frac_delay = slope / len(phase_unwrapped)\n", - " frac_rotate = intercept / len(phase_unwrapped)\n", - " print(\"Applying subsample correction: {} {}\".format(frac_delay, frac_rotate))\n", - " print(slope, intercept, r_value, p_value, std_err) \n", - "else:\n", - " print(\"Skipping subsample correction\")\n", - " print(slope, intercept, r_value, p_value, std_err)\n", - " frac_delay = None\n", - "\n", - "plt.figure()\n", - "plt.plot(phase_wrapping)\n", - "plt.plot(phase_unwrapped)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [], - "source": [ - "if frac_delay:\n", - " fine_shift_fft = np.exp((0+2j * np.pi * frac_delay) * bin_frequencies) * np.exp(0+2j * np.pi * frac_rotate)\n", - " sig_delay_removed_fft = signal_fft * fine_shift_fft\n", - " \n", - " sig_delay_removed = np.fft.ifft(sig_delay_removed_fft)\n", - " \n", - " plt.figure()\n", - " plt.plot(np.angle(np.fft.fftshift(fine_shift_fft)))\n", - " \n", - " plt.figure()\n", - " plt.plot(np.abs(np.fft.fftshift(np.fft.fft(phase_ref_iq))))\n", - " plt.plot(np.abs(np.fft.fftshift(np.fft.fft(sig_delay_removed-phase_ref_iq))))\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.0" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} |