aboutsummaryrefslogtreecommitdiffstats
path: root/correlate_with_ref.py
blob: 44e5a16deddb47551390d9a7b462a33cc0b559a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python
#
# Find NULL symbols in file, then correlate with the phase reference symbol and
# plot the resulting correlation result.
#
# This will display the Channel Impulse Reference
#
# Copyright (C) 2016
# Matthias P. Braendli, matthias.braendli@mpb.li
# http://www.opendigitalradio.org
# Licence: The MIT License, see LICENCE file

import numpy as np
import matplotlib.pyplot as pp
import sys

# T = 1/2048000 s
# NULL symbol is 2656 T (about 1.3ms) long.
T_NULL = 2656
# Full transmission frame in TM1 is 96ms = 196608 T.
T_TF = 196608

class CIR_Correlate:
    def __init__(self, iq_filename, iq_format):
        """Read phase reference from fixed file and load IQ data from
        iq_filename. iq_format must be fc64 or u8"""
        self.phase_ref = np.fromfile("phasereference.2048000.fc64.iq", np.complex64)

        if iq_format == "u8":
            channel_u8_interleaved = np.fromfile(iq_filename, np.uint8)
            channel_u8_iq = channel_u8_interleaved.reshape(int(len(channel_u8_interleaved)/2), 2)
            # This directly converts to fc64
            channel_fc64_unscaled = channel_u8_iq[...,0] + np.complex64(1j) * channel_u8_iq[...,1]
            channel_fc64_scaled = (channel_fc64_unscaled - 127.0) / 128.0
            channel_fc64_dc_comp = channel_fc64_scaled - np.average(channel_fc64_scaled)
            self.channel_out = channel_fc64_dc_comp
        elif iq_format == "fc64":
            self.channel_out = np.fromfile(iq_filename, np.complex64)
        else:
            raise ValueError("Unsupported format {}".format(iq_format))

        print("  File contains {} samples ({}ms, {} transmission frames)".format(
            len(self.channel_out),
            len(self.channel_out) / 2048000.0,
            len(self.channel_out) / T_TF))

        # Keep track of where the NULL symbols are located
        self.null_symbol_ixs = []

    def calc_one_cir_(self, start_ix):
        """Calculate correlation with phase reference for one start index"""

        channel = self.channel_out

        # As we do not want to correlate of the whole recording that might be
        # containing several transmission frames, we first look for the null symbol in the
        # first 96ms

        # Calculate power on blocks of length 2656 over the first 96ms. To gain speed,
        # we move the blocks by N samples.
        N = 20
        channel_out_power = np.array([np.abs(channel[start_ix+t:start_ix+t+T_NULL]).sum() for t in range(0, T_TF-T_NULL, N)])

        # Look where the power is smallest, this gives the index where the NULL starts.
        # Because if the subsampling, we need to multiply the index.
        t_null = N * channel_out_power.argmin()

        self.null_symbol_ixs.append(t_null)

        # The synchronisation channel occupies 5208 T and contains NULL symbol and
        # phase reference symbol. The phase reference symbol is 5208 - 2656 = 2552 T
        # long.
        if len(self.phase_ref) != 2552:
            print("Warning: phase ref len is {} != 2552".format(len(self.phase_ref)))

        # We want to correlate our known phase reference symbol against the received
        # signal, and give us some more margin about the exact position of the NULL
        # symbol.

        # We start a bit earlier than the end of the null symbol
        corr_start_ix = t_null + T_NULL - 50

        # In TM1, the longest spacing between carrier components one can allow is
        # around 504 T (246us, or 74km at speed of light). This gives us a limit
        # on the number of correlations it makes sense to do.
        max_component_delay = 1000 # T

        cir = np.array([np.abs(
            np.corrcoef(channel[
                start_ix + corr_start_ix + i:
                start_ix + corr_start_ix + self.phase_ref.size + i
                ] , self.phase_ref)[0,1]
            ) for i in range(max_component_delay)])

        # In order to be able to compare measurements accross transmission frames,
        # we normalise the CIR against channel power
        channel_power = np.abs(channel[start_ix:start_ix+T_TF]).sum()

        return cir / channel_power

    def plot(self, plot_file):
        num_correlations = int(len(self.channel_out) / T_TF)

        cirs = np.array([
            self.calc_one_cir_(i * T_TF)
            for i in range(num_correlations) ])

        pp.subplot(211)
        pp.plot(cirs.sum(axis=0))
        pp.subplot(212)
        pp.imshow(cirs, aspect='auto')

        if plot_file:
            pp.savefig(plot_file)
        else:
            pp.show()


if __name__ == "__main__":
    if len(sys.argv) < 2:
        print("Usage")
        print(" script [fc64|u8] <filename> [<figure filename>]")
        print(" fc64: file is 32-bit float I + 32-bit float Q")
        print(" u8:   file is 8-bit signed I + 8-bit signed Q")
        print(" if <figure filename> is given, save the figure instead of showing it")
        sys.exit(1)

    print("Reading file")

    file_format = sys.argv[1]
    file_in = sys.argv[2]
    file_figure = None
    if len(sys.argv) == 4:
        file_figure = sys.argv[3]

    cir_corr = CIR_Correlate(file_in, file_format)

    cir_corr.plot(file_figure)

    print("Null symbols at:")
    print("  " + " ".join("{}".format(t_null)
        for t_null in cir_corr.null_symbol_ixs))

    print("Done")