aboutsummaryrefslogtreecommitdiffstats
path: root/correlate_with_ref.py
blob: 23c9c5c1f2210509b7a262a8dc06c37770f1e058 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python
#
# Find NULL symbols in file, then correlate with the phase reference symbol and
# plot the resulting correlation result.
#
# This will display the Channel Impulse Reference
#
# Copyright (C) 2016
# Matthias P. Braendli, matthias.braendli@mpb.li
# http://www.opendigitalradio.org
# Licence: The MIT License, see LICENCE file

import numpy as np
import matplotlib

# When running on a machine that has no X server running, the normal
# matplotlib backend won't work. In case we are running as a module by cir_measure,
# switch to the Agg backend
# See http://matplotlib.org/faq/howto_faq.html#matplotlib-in-a-web-application-server
# And http://matplotlib.org/examples/api/agg_oo.html#api-agg-oo
if __name__ != "__main__":
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
else:
    import matplotlib.pyplot as pp

import matplotlib.figure
import sys

# T = 1/2048000 s
# NULL symbol is 2656 T (about 1.3ms) long.
T_NULL = 2656
# Full transmission frame in TM1 is 96ms = 196608 T.
T_TF = 196608

class CIR_Correlate:
    def __init__(self, iq_filename="", iq_format=None, iq_data=None):
        """Either call with iq_filename, or with iq_data containing
        a np.array with the data.

        This class will then read phase reference from fixed file and
        load IQ data from iq_filename, or use iq_data directly.

        iq_format must be fc64 or u8"""

        if iq_format is None:
            raise ValueError("Incorrect initialisation")

        self.phase_ref = np.fromfile("phasereference.2048000.fc64.iq", np.complex64)

        if iq_format == "u8":
            if iq_filename:
                channel_u8_interleaved = np.fromfile(iq_filename, np.uint8)
            elif iq_data is not None:
                channel_u8_interleaved = iq_data
            else:
                raise ValueError("Must give iq_filename or iq_data")
            channel_u8_iq = channel_u8_interleaved.reshape(int(len(channel_u8_interleaved)/2), 2)
            # This directly converts to fc64
            channel_fc64_unscaled = channel_u8_iq[...,0] + np.complex64(1j) * channel_u8_iq[...,1]
            channel_fc64_scaled = (channel_fc64_unscaled - 127.0) / 128.0
            channel_fc64_dc_comp = channel_fc64_scaled - np.average(channel_fc64_scaled)
            self.channel_out = channel_fc64_dc_comp
        elif iq_format == "fc64":
            if iq_filename:
                self.channel_out = np.fromfile(iq_filename, np.complex64)
            elif iq_data is not None:
                self.channel_out = iq_data
            else:
                raise ValueError("Must give iq_filename or iq_data")
        else:
            raise ValueError("Unsupported format {}".format(iq_format))

        print("  File contains {} samples ({}ms, {} transmission frames)".format(
            len(self.channel_out),
            len(self.channel_out) / 2048000.0,
            len(self.channel_out) / T_TF))

        # Keep track of where the NULL symbols are located
        self.null_symbol_ixs = []

    def calc_one_cir_(self, start_ix):
        """Calculate correlation with phase reference for one start index"""

        print("Correlation at {}".format(start_ix))
        channel = self.channel_out

        # As we do not want to correlate of the whole recording that might be
        # containing several transmission frames, we first look for the null symbol in the
        # first 96ms

        # Calculate power on blocks of length 2656 over the first 96ms. To gain speed,
        # we move the blocks by N samples.
        N = 20
        channel_out_power = np.array([np.abs(channel[start_ix+t:start_ix+t+T_NULL]).sum() for t in range(0, T_TF-T_NULL, N)])

        # Look where the power is smallest, this gives the index where the NULL starts.
        # Because if the subsampling, we need to multiply the index.
        t_null = N * channel_out_power.argmin()

        self.null_symbol_ixs.append(t_null)

        # The synchronisation channel occupies 5208 T and contains NULL symbol and
        # phase reference symbol. The phase reference symbol is 5208 - 2656 = 2552 T
        # long.
        if len(self.phase_ref) != 2552:
            print("Warning: phase ref len is {} != 2552".format(len(self.phase_ref)))

        # We want to correlate our known phase reference symbol against the received
        # signal, and give us some more margin about the exact position of the NULL
        # symbol.

        # We start a bit earlier than the end of the null symbol
        corr_start_ix = t_null + T_NULL - 50

        # In TM1, the longest spacing between carrier components one can allow is
        # around 504 T (246us, or 74km at speed of light). This gives us a limit
        # on the number of correlations it makes sense to do.
        max_component_delay = 1000 # T

        cir = np.array([np.abs(
            np.corrcoef(channel[
                start_ix + corr_start_ix + i:
                start_ix + corr_start_ix + self.phase_ref.size + i
                ] , self.phase_ref)[0,1]
            ) for i in range(max_component_delay)])

        # In order to be able to compare measurements accross transmission frames,
        # we normalise the CIR against channel power
        channel_power = np.abs(channel[start_ix:start_ix+T_TF]).sum()

        return cir / channel_power

    def plot(self, plot_file, title):
        num_correlations = int(len(self.channel_out) / T_TF)

        self.null_symbol_ixs = []

        cirs = np.array([
            self.calc_one_cir_(i * T_TF)
            for i in range(num_correlations) ])

        if plot_file:
            fig = matplotlib.figure.Figure()
            canvas = FigureCanvas(fig)
        else:
            fig = pp.figure()

        fig.suptitle(title)
        ax1 = fig.add_subplot(211)
        ax1.plot(cirs.sum(axis=0))
        ax2 = fig.add_subplot(212)
        ax2.imshow(cirs, aspect='auto')

        if plot_file:
            print("Save to file {}".format(plot_file))
            canvas.print_figure(plot_file)
        else:
            print("Plotting to screen")
            pp.show()


if __name__ == "__main__":
    if len(sys.argv) < 2:
        print("Usage")
        print(" script [fc64|u8] <filename> [<figure filename>]")
        print(" fc64: file is 32-bit float I + 32-bit float Q")
        print(" u8:   file is 8-bit signed I + 8-bit signed Q")
        print(" if <figure filename> is given, save the figure instead of showing it")
        sys.exit(1)

    print("Reading file")

    file_format = sys.argv[1]
    file_in = sys.argv[2]
    file_figure = None
    if len(sys.argv) == 4:
        file_figure = sys.argv[3]

    cir_corr = CIR_Correlate(file_in, file_format)

    cir_corr.plot(file_figure, "Correlation")

    print("Null symbols at:")
    print("  " + " ".join("{}".format(t_null)
        for t_null in cir_corr.null_symbol_ixs))

    print("Done")