1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
/*
* Copyright (C) 2014 Bastian Bloessl <bloessl@ccs-labs.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <iomanip>
#define dout debug && std::cout
#define lout log && std::cout
#include "decoder_impl.h"
#include "constants.h"
#include <boost/format.hpp>
using namespace rds;
decoder_impl::decoder_impl(bool log, bool debug) :
log(log),
debug(debug)
{
//set_output_multiple(104); // 1 RDS datagroup = 104 bits
enter_no_sync();
}
void decoder_impl::decode_group(unsigned int *group) {
#define HEX(a) std::hex << std::setfill('0') << std::setw(4) << long(a) << std::dec
for(int i = 0; i < 4; i++) {
dout << " " << HEX(group[i]);
}
dout << std::endl;
}
////////////////////////// HELPER FUNTIONS /////////////////////////
void decoder_impl::enter_no_sync() {
presync = false;
d_state = NO_SYNC;
}
void decoder_impl::enter_sync(unsigned int sync_block_number) {
wrong_blocks_counter = 0;
blocks_counter = 0;
block_bit_counter = 0;
block_number = (sync_block_number + 1) % 4;
group_assembly_started = false;
d_state = SYNC;
}
/* see Annex B, page 64 of the standard */
unsigned int decoder_impl::calc_syndrome(unsigned long message,
unsigned char mlen) {
unsigned long reg = 0;
unsigned int i;
const unsigned long poly = 0x5B9;
const unsigned char plen = 10;
for (i = mlen; i > 0; i--) {
reg = (reg << 1) | ((message >> (i-1)) & 0x01);
if (reg & (1 << plen)) reg = reg ^ poly;
}
for (i = plen; i > 0; i--) {
reg = reg << 1;
if (reg & (1<<plen)) reg = reg ^ poly;
}
return (reg & ((1<<plen)-1)); // select the bottom plen bits of reg
}
int decoder_impl::work (int noutput_items,
const int *in)
{
dout << "RDS data decoder at work: input_items = "
<< noutput_items << ", /104 = "
<< noutput_items / 104 << std::endl;
int i=0,j;
unsigned long bit_distance, block_distance;
unsigned int block_calculated_crc, block_received_crc, checkword,dataword;
unsigned int reg_syndrome;
/* the synchronization process is described in Annex C, page 66 of the standard */
while (i<noutput_items) {
reg=(reg<<1)|in[i]; // reg contains the last 26 rds bits
switch (d_state) {
case NO_SYNC:
reg_syndrome = calc_syndrome(reg,26);
for (j=0;j<5;j++) {
if (reg_syndrome==syndrome[j]) {
if (!presync) {
lastseen_offset=j;
lastseen_offset_counter=bit_counter;
presync=true;
lout << "@@@@@ presync" << std::endl;
}
else {
bit_distance=bit_counter-lastseen_offset_counter;
if (offset_pos[lastseen_offset]>=offset_pos[j]) {
block_distance=offset_pos[j]+4-offset_pos[lastseen_offset];
}
else {
block_distance=offset_pos[j]-offset_pos[lastseen_offset];
}
if ((block_distance*26)!=bit_distance) {
presync=false;
lout << "@@@@@ presync lost " << j << " " <<
block_distance*26 << " " <<
bit_distance << " " <<
std::endl;
}
else {
lout << "@@@@@ Sync State Detected" << std::endl;
enter_sync(j);
}
}
break; //syndrome found, no more cycles
}
}
break;
case SYNC:
/* wait until 26 bits enter the buffer */
if (block_bit_counter<25) block_bit_counter++;
else {
good_block=false;
dataword=(reg>>10) & 0xffff;
block_calculated_crc=calc_syndrome(dataword,16);
checkword=reg & 0x3ff;
/* manage special case of C or C' offset word */
if (block_number==2) {
block_received_crc=checkword^offset_word[block_number];
if (block_received_crc==block_calculated_crc)
good_block=true;
else {
block_received_crc=checkword^offset_word[4];
if (block_received_crc==block_calculated_crc)
good_block=true;
else {
wrong_blocks_counter++;
good_block=false;
}
}
}
else {
block_received_crc=checkword^offset_word[block_number];
if (block_received_crc==block_calculated_crc)
good_block=true;
else {
wrong_blocks_counter++;
good_block=false;
lout << "@@@@@ CRC " <<
std::hex << std::setfill('0') << std::setw(4) <<
block_received_crc << " " <<
std::hex << std::setfill('0') << std::setw(4) <<
block_calculated_crc << std::dec << std::endl;
}
}
/* done checking CRC */
if (block_number==0 && good_block) {
group_assembly_started=true;
group_good_blocks_counter=1;
}
if (group_assembly_started) {
if (!good_block) group_assembly_started=false;
else {
group[block_number]=dataword;
group_good_blocks_counter++;
}
if (group_good_blocks_counter==5) decode_group(group);
}
block_bit_counter=0;
block_number=(block_number+1) % 4;
blocks_counter++;
/* 1187.5 bps / 104 bits = 11.4 groups/sec, or 45.7 blocks/sec */
if (blocks_counter==50) {
if (wrong_blocks_counter>35) {
lout << "@@@@@ Lost Sync (Got " << wrong_blocks_counter
<< " bad blocks on " << blocks_counter
<< " total)" << std::endl;
enter_no_sync();
} else {
lout << "@@@@@ Still Sync-ed (Got " << wrong_blocks_counter
<< " bad blocks on " << blocks_counter
<< " total)" << std::endl;
}
blocks_counter=0;
wrong_blocks_counter=0;
}
}
break;
default:
d_state=NO_SYNC;
break;
}
i++;
bit_counter++;
}
return noutput_items;
}
|