aboutsummaryrefslogtreecommitdiffstats
path: root/edi/reedsolo.py
blob: 1ba02437cddfda84cad789567888f8d11d73fb50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
r"""
Reed Solomon
============

A pure-python `Reed Solomon <http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction>`_
encoder/decoder, based on the wonderful tutorial at 
`wikiversity <http://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders>`_,
written by "Bobmath".

I only consolidated the code a little and added exceptions and a simple API. 
To my understanding, the algorithm can correct up to ``nsym/2`` of the errors in 
the message, where ``nsym`` is the number of bytes in the error correction code (ECC).
The code should work on pretty much any reasonable version of python (2.4-3.2), 
but I'm only testing on 2.5-3.2.

.. note::
   I claim no authorship of the code, and take no responsibility for the correctness 
   of the algorithm. It's way too much finite-field algebra for me :)
   
   I've released this package as I needed an ECC codec for another project I'm working on, 
   and I couldn't find anything on the web (that still works).
   
   The algorithm itself can handle messages up to 255 bytes, including the ECC bytes. The
   ``RSCodec`` class will split longer messages into chunks and encode/decode them separately;
   it shouldn't make a difference from an API perspective.

::

    >>> rs = RSCodec(10)
    >>> rs.encode([1,2,3,4])
    b'\x01\x02\x03\x04,\x9d\x1c+=\xf8h\xfa\x98M'
    >>> rs.encode(b'hello world')
    b'hello world\xed%T\xc4\xfd\xfd\x89\xf3\xa8\xaa'
    >>> rs.decode(b'hello world\xed%T\xc4\xfd\xfd\x89\xf3\xa8\xaa')
    b'hello world'
    >>> rs.decode(b'heXlo worXd\xed%T\xc4\xfdX\x89\xf3\xa8\xaa')     # 3 errors
    b'hello world'
    >>> rs.decode(b'hXXXo worXd\xed%T\xc4\xfdX\x89\xf3\xa8\xaa')     # 5 errors
    b'hello world'
    >>> rs.decode(b'hXXXo worXd\xed%T\xc4\xfdXX\xf3\xa8\xaa')        # 6 errors - fail
    Traceback (most recent call last):
      ...
    ReedSolomonError: Could not locate error

    >>> rs = RSCodec(12)
    >>> rs.encode(b'hello world')
    b'hello world?Ay\xb2\xbc\xdc\x01q\xb9\xe3\xe2='
    >>> rs.decode(b'hello worXXXXy\xb2XX\x01q\xb9\xe3\xe2=')         # 6 errors - ok
    b'hello world'
"""

try:
    bytearray
except NameError:
    from array import array
    def bytearray(obj = 0, encoding = "utf8"):
        if isinstance(obj, str):
            obj = [ord(ch) for ch in obj.encode("utf8")]
        elif isinstance(obj, int):
            obj = [0] * obj
        return array("B", obj)


class ReedSolomonError(Exception):
    pass


gf_exp = [0] * 512
gf_exp[0] = 1
gf_log = [0] * 256
x = 1
for i in range(1, 255):
    x <<= 1
    if x & 0x100:
        x ^= 0x11d
    gf_exp[i] = x
    gf_log[x] = i
for i in range(255, 512):
    gf_exp[i] = gf_exp[i - 255]

def gf_mul(x, y):
    if x == 0 or y == 0:
        return 0
    return gf_exp[gf_log[x] + gf_log[y]]

def gf_div(x, y):
    if y == 0:
        raise ZeroDivisionError()
    if x == 0:
        return 0
    return gf_exp[gf_log[x] + 255 - gf_log[y]]

def gf_poly_scale(p, x):
    return [gf_mul(p[i], x) for i in range(0, len(p))]

def gf_poly_add(p, q):
    r = [0] * max(len(p), len(q))
    for i in range(0, len(p)):
        r[i + len(r) - len(p)] = p[i]
    for i in range(0, len(q)):
        r[i + len(r) - len(q)] ^= q[i]
    return r

def gf_poly_mul(p, q):
    r = [0] * (len(p) + len(q) - 1)
    for j in range(0, len(q)):
        for i in range(0, len(p)):
            r[i + j] ^= gf_mul(p[i], q[j])
    return r

def gf_poly_eval(p, x):
    y = p[0]
    for i in range(1, len(p)):
        y = gf_mul(y, x) ^ p[i]
    return y

def rs_generator_poly(nsym, fcr=0):
    g = [1]
    for i in range(fcr, nsym+fcr):
        g = gf_poly_mul(g, [1, gf_exp[i]])
    return g

def rs_encode_msg(msg_in, nsym, fcr=0):
    if len(msg_in) + nsym > 255:
        raise ValueError("message too long")
    gen = rs_generator_poly(nsym, fcr)
    msg_out = bytearray(len(msg_in) + nsym)
    msg_out[:len(msg_in)] = msg_in
    for i in range(0, len(msg_in)):
        coef = msg_out[i]
        if coef != 0:
            for j in range(0, len(gen)):
                msg_out[i + j] ^= gf_mul(gen[j], coef)
    msg_out[:len(msg_in)] = msg_in
    return msg_out

def rs_calc_syndromes(msg, nsym):
    return [gf_poly_eval(msg, gf_exp[i]) for i in range(nsym)]

def rs_correct_errata(msg, synd, pos):
    # calculate error locator polynomial
    q = [1]
    for i in range(0, len(pos)):
        x = gf_exp[len(msg) - 1 - pos[i]]
        q = gf_poly_mul(q, [x, 1])
    # calculate error evaluator polynomial
    p = synd[0:len(pos)]
    p.reverse()
    p = gf_poly_mul(p, q)
    p = p[len(p) - len(pos):len(p)]
    # formal derivative of error locator eliminates even terms
    q = q[len(q) & 1:len(q):2]
    # compute corrections
    for i in range(0, len(pos)):
        x = gf_exp[pos[i] + 256 - len(msg)]
        y = gf_poly_eval(p, x)
        z = gf_poly_eval(q, gf_mul(x, x))
        msg[pos[i]] ^= gf_div(y, gf_mul(x, z))

def rs_find_errors(synd, nmess):
    # find error locator polynomial with Berlekamp-Massey algorithm
    err_poly = [1]
    old_poly = [1]
    for i in range(0, len(synd)):
        old_poly.append(0)
        delta = synd[i]
        for j in range(1, len(err_poly)):
            delta ^= gf_mul(err_poly[len(err_poly) - 1 - j], synd[i - j])
        if delta != 0:
            if len(old_poly) > len(err_poly):
                new_poly = gf_poly_scale(old_poly, delta)
                old_poly = gf_poly_scale(err_poly, gf_div(1, delta))
                err_poly = new_poly
            err_poly = gf_poly_add(err_poly, gf_poly_scale(old_poly, delta))
    errs = len(err_poly) - 1
    if errs * 2 > len(synd):
        raise ReedSolomonError("Too many errors to correct")
    # find zeros of error polynomial
    err_pos = []
    for i in range(0, nmess):
        if gf_poly_eval(err_poly, gf_exp[255 - i]) == 0:
            err_pos.append(nmess - 1 - i)
    if len(err_pos) != errs:
        return None    # couldn't find error locations
    return err_pos

def rs_forney_syndromes(synd, pos, nmess):
    fsynd = list(synd)      # make a copy
    for i in range(0, len(pos)):
        x = gf_exp[nmess - 1 - pos[i]]
        for i in range(0, len(fsynd) - 1):
            fsynd[i] = gf_mul(fsynd[i], x) ^ fsynd[i + 1]
        fsynd.pop()
    return fsynd

def rs_correct_msg(msg_in, nsym):
    if len(msg_in) > 255:
        raise ValueError("message too long")
    msg_out = list(msg_in)     # copy of message
    # find erasures
    erase_pos = []
    for i in range(0, len(msg_out)):
        if msg_out[i] < 0:
            msg_out[i] = 0
            erase_pos.append(i)
    if len(erase_pos) > nsym:
        raise ReedSolomonError("Too many erasures to correct")
    synd = rs_calc_syndromes(msg_out, nsym)
    if max(synd) == 0:
        return msg_out[:-nsym]  # no errors
    fsynd = rs_forney_syndromes(synd, erase_pos, len(msg_out))
    err_pos = rs_find_errors(fsynd, len(msg_out))
    if err_pos is None:
        raise ReedSolomonError("Could not locate error")
    rs_correct_errata(msg_out, synd, erase_pos + err_pos)
    synd = rs_calc_syndromes(msg_out, nsym)
    if max(synd) > 0:
        raise ReedSolomonError("Could not correct message")
    return msg_out[:-nsym]


#===================================================================================================
# API
#===================================================================================================
class RSCodec(object):
    """
    A Reed Solomon encoder/decoder. After initializing the object, use ``encode`` to encode a 
    (byte)string to include the RS correction code, and pass such an encoded (byte)string to
    ``decode`` to extract the original message (if the number of errors allows for correct decoding).
    The ``nsym`` argument is the length of the correction code, and it determines the number of 
    error bytes (if I understand this correctly, half of ``nsym`` is correctable)
    """
    def __init__(self, nsym=10, fcr=0):
        self.nsym = nsym
        self.fcr = fcr

    def encode(self, data):
        if isinstance(data, str):
            data = bytearray(data, "utf-8")
        chunk_size = 255 - self.nsym
        enc = bytearray()
        for i in range(0, len(data), chunk_size):
            chunk = data[i:i+chunk_size]
            enc.extend(rs_encode_msg(chunk, self.nsym, self.fcr))
        return enc
    
    def decode(self, data):
        if isinstance(data, str):
            data = bytearray(data, "utf-8")
        dec = bytearray()
        for i in range(0, len(data), 255):
            chunk = data[i:i+255]
            dec.extend(rs_correct_msg(chunk, self.nsym))
        return dec