aboutsummaryrefslogtreecommitdiffstats
path: root/viterbi615_av.c
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2014-01-02 21:55:13 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2014-01-02 21:55:13 +0100
commita31630e0d5b9880c716d9004ef4154396ba41ebc (patch)
treeaebbd3b132e5f2dd31bc34750ccded2378fc687a /viterbi615_av.c
parent9aaac5be9db5e1537badc65242412ef14c5096e3 (diff)
downloadka9q-fec-a31630e0d5b9880c716d9004ef4154396ba41ebc.tar.gz
ka9q-fec-a31630e0d5b9880c716d9004ef4154396ba41ebc.tar.bz2
ka9q-fec-a31630e0d5b9880c716d9004ef4154396ba41ebc.zip
Extract fec-3.0.1
Diffstat (limited to 'viterbi615_av.c')
-rw-r--r--viterbi615_av.c257
1 files changed, 257 insertions, 0 deletions
diff --git a/viterbi615_av.c b/viterbi615_av.c
new file mode 100644
index 0000000..4a6ce9c
--- /dev/null
+++ b/viterbi615_av.c
@@ -0,0 +1,257 @@
+/* K=15 r=1/6 Viterbi decoder for PowerPC G4/G5 Altivec vector instructions
+ * 8-bit offset-binary soft decision samples
+ * Copyright Mar 2004, Phil Karn, KA9Q
+ * May be used under the terms of the GNU Lesser General Public License (LGPL)
+ */
+#include <stdio.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <limits.h>
+#include "fec.h"
+
+typedef union { unsigned char c[128][16]; vector unsigned char v[128]; } decision_t;
+typedef union { unsigned short s[16384]; vector unsigned short v[2048]; } metric_t;
+
+static union branchtab615 { unsigned short s[8192]; vector unsigned short v[1024];} Branchtab615[6];
+static int Init = 0;
+
+/* State info for instance of Viterbi decoder */
+struct v615 {
+ metric_t metrics1; /* path metric buffer 1 */
+ metric_t metrics2; /* path metric buffer 2 */
+ void *dp; /* Pointer to current decision */
+ metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */
+ void *decisions; /* Beginning of decisions for block */
+};
+
+/* Initialize Viterbi decoder for start of new frame */
+int init_viterbi615_av(void *p,int starting_state){
+ struct v615 *vp = p;
+ int i;
+
+ if(p == NULL)
+ return -1;
+
+ for(i=0;i<2048;i++)
+ vp->metrics1.v[i] = (vector unsigned short)(5000);
+
+ vp->old_metrics = &vp->metrics1;
+ vp->new_metrics = &vp->metrics2;
+ vp->dp = vp->decisions;
+ vp->old_metrics->s[starting_state & 16383] = 0; /* Bias known start state */
+ return 0;
+}
+
+/* Create a new instance of a Viterbi decoder */
+void *create_viterbi615_av(int len){
+ struct v615 *vp;
+
+ if(!Init){
+ int polys[6] = { V615POLYA,V615POLYB,V615POLYC,V615POLYD,V615POLYE,V615POLYF };
+ set_viterbi615_polynomial_av(polys);
+ }
+ vp = (struct v615 *)malloc(sizeof(struct v615));
+ vp->decisions = malloc(sizeof(decision_t)*(len+14));
+ init_viterbi615_av(vp,0);
+ return vp;
+}
+
+void set_viterbi615_polynomial_av(int polys[6]){
+ int state;
+ int i;
+
+ for(state=0;state < 8192;state++){
+ for(i=0;i<6;i++)
+ Branchtab615[i].s[state] = (polys[i] < 0) ^ parity((2*state) & abs(polys[i])) ? 255 : 0;
+ }
+ Init++;
+}
+
+
+/* Viterbi chainback */
+int chainback_viterbi615_av(
+ void *p,
+ unsigned char *data, /* Decoded output data */
+ unsigned int nbits, /* Number of data bits */
+ unsigned int endstate){ /* Terminal encoder state */
+ struct v615 *vp = p;
+ decision_t *d = (decision_t *)vp->decisions;
+ int path_metric;
+
+ endstate %= 16384;
+
+ path_metric = vp->old_metrics->s[endstate];
+
+ /* The store into data[] only needs to be done every 8 bits.
+ * But this avoids a conditional branch, and the writes will
+ * combine in the cache anyway
+ */
+ d += 14; /* Look past tail */
+ while(nbits-- != 0){
+ int k;
+
+ k = (d[nbits].c[endstate >> 7][endstate & 15] & (0x80 >> ((endstate>>4)&7)) ) ? 1 : 0;
+ endstate = (k << 13) | (endstate >> 1);
+ data[nbits>>3] = endstate >> 6;
+ }
+ return path_metric;
+}
+
+/* Delete instance of a Viterbi decoder */
+void delete_viterbi615_av(void *p){
+ struct v615 *vp = p;
+
+ if(vp != NULL){
+ free(vp->decisions);
+ free(vp);
+ }
+}
+
+int update_viterbi615_blk_av(void *p,unsigned char *syms,int nbits){
+ struct v615 *vp = p;
+ decision_t *d = (decision_t *)vp->dp;
+ int path_metric = 0;
+ vector unsigned char decisions = (vector unsigned char)(0);
+
+ while(nbits--){
+ vector unsigned short symv,sym0v,sym1v,sym2v,sym3v,sym4v,sym5v;
+ vector unsigned char s;
+ void *tmp;
+ int i;
+
+ /* Splat the 0th symbol across sym0v, the 1st symbol across sym1v, etc */
+ s = (vector unsigned char)vec_perm(vec_ld(0,syms),vec_ld(5,syms),vec_lvsl(0,syms));
+
+ symv = (vector unsigned short)vec_mergeh((vector unsigned char)(0),s); /* Unsigned byte->word unpack */
+ sym0v = vec_splat(symv,0);
+ sym1v = vec_splat(symv,1);
+ sym2v = vec_splat(symv,2);
+ sym3v = vec_splat(symv,3);
+ sym4v = vec_splat(symv,4);
+ sym5v = vec_splat(symv,5);
+ syms += 6;
+
+ for(i=0;i<1024;i++){
+ vector bool short decision0,decision1;
+ vector unsigned short metric,m_metric,m0,m1,m2,m3,survivor0,survivor1;
+
+ /* Form branch metrics
+ * Because Branchtab takes on values 0 and 255, and the values of sym?v are offset binary in the range 0-255,
+ * the XOR operations constitute conditional negation.
+ * metric and m_metric (-metric) are in the range 0-1530
+ */
+ m0 = vec_add(vec_xor(Branchtab615[0].v[i],sym0v),vec_xor(Branchtab615[1].v[i],sym1v));
+ m1 = vec_add(vec_xor(Branchtab615[2].v[i],sym2v),vec_xor(Branchtab615[3].v[i],sym3v));
+ m2 = vec_add(vec_xor(Branchtab615[4].v[i],sym4v),vec_xor(Branchtab615[5].v[i],sym5v));
+ metric = vec_add(m0,m1);
+ metric = vec_add(metric,m2);
+ m_metric = vec_sub((vector unsigned short)(1530),metric);
+
+ /* Add branch metrics to path metrics */
+ m0 = vec_adds(vp->old_metrics->v[i],metric);
+ m3 = vec_adds(vp->old_metrics->v[1024+i],metric);
+ m1 = vec_adds(vp->old_metrics->v[1024+i],m_metric);
+ m2 = vec_adds(vp->old_metrics->v[i],m_metric);
+
+ /* Compare and select */
+ decision0 = vec_cmpgt(m0,m1);
+ decision1 = vec_cmpgt(m2,m3);
+ survivor0 = vec_min(m0,m1);
+ survivor1 = vec_min(m2,m3);
+
+ /* Store decisions and survivors.
+ * To save space without SSE2's handy PMOVMSKB instruction, we pack and store them in
+ * a funny interleaved fashion that we undo in the chainback function.
+ */
+ decisions = vec_add(decisions,decisions); /* Shift each byte 1 bit to the left */
+
+ /* Booleans are either 0xff or 0x00. Subtracting 0x00 leaves the lsb zero; subtracting
+ * 0xff is equivalent to adding 1, which sets the lsb.
+ */
+ decisions = vec_sub(decisions,(vector unsigned char)vec_pack(vec_mergeh(decision0,decision1),vec_mergel(decision0,decision1)));
+
+ vp->new_metrics->v[2*i] = vec_mergeh(survivor0,survivor1);
+ vp->new_metrics->v[2*i+1] = vec_mergel(survivor0,survivor1);
+
+ if((i % 8) == 7){
+ /* We've accumulated a total of 128 decisions, stash and start again */
+ d->v[i>>3] = decisions; /* No need to clear, the new bits will replace the old */
+ }
+ }
+#if 0
+ /* Experimentally determine metric spread
+ * The results are fixed for a given code and input symbol size
+ */
+ {
+ int i;
+ vector unsigned short min_metric;
+ vector unsigned short max_metric;
+ union { vector unsigned short v; unsigned short s[8];} t;
+ int minimum,maximum;
+ static int max_spread = 0;
+
+ min_metric = max_metric = vp->new_metrics->v[0];
+ for(i=1;i<2048;i++){
+ min_metric = vec_min(min_metric,vp->new_metrics->v[i]);
+ max_metric = vec_max(max_metric,vp->new_metrics->v[i]);
+ }
+ min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,8));
+ max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,8));
+ min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,4));
+ max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,4));
+ min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,2));
+ max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,2));
+
+ t.v = min_metric;
+ minimum = t.s[0];
+ t.v = max_metric;
+ maximum = t.s[0];
+ if(maximum-minimum > max_spread){
+ max_spread = maximum-minimum;
+ printf("metric spread = %d\n",max_spread);
+ }
+ }
+#endif
+
+ /* Renormalize if necessary. This deserves some explanation.
+
+ * The maximum possible spread, found by experiment, for 4-bit symbols is 405; for 8 bit symbols, it's 12750.
+ * So by looking at one arbitrary metric we can tell if any of them have possibly saturated.
+ * However, this is very conservative. Large spreads occur only at very high Eb/No, where
+ * saturating a bad path metric doesn't do much to increase its chances of being erroneously chosen as a survivor.
+
+ * At more interesting (low) Eb/No ratios, the spreads are much smaller so our chances of saturating a metric
+ * by not not normalizing when we should are extremely low. So either way, the risk to performance is small.
+
+ * All this is borne out by experiment.
+ */
+ if(vp->new_metrics->s[0] >= USHRT_MAX-12750){
+ vector unsigned short scale;
+ union { vector unsigned short v; unsigned short s[8];} t;
+
+ /* Find smallest metric and splat */
+ scale = vp->new_metrics->v[0];
+ for(i=1;i<2048;i++)
+ scale = vec_min(scale,vp->new_metrics->v[i]);
+
+ scale = vec_min(scale,vec_sld(scale,scale,8));
+ scale = vec_min(scale,vec_sld(scale,scale,4));
+ scale = vec_min(scale,vec_sld(scale,scale,2));
+
+ /* Subtract it from all metrics
+ * Work backwards to try to improve the cache hit ratio, assuming LRU
+ */
+ for(i=2047;i>=0;i--)
+ vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i],scale);
+ t.v = scale;
+ path_metric += t.s[0];
+ }
+ d++;
+ /* Swap pointers to old and new metrics */
+ tmp = vp->old_metrics;
+ vp->old_metrics = vp->new_metrics;
+ vp->new_metrics = tmp;
+ }
+ vp->dp = d;
+ return path_metric;
+}