1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
/*
* The MIT License (MIT)
*
* Copyright (c) 2015 Matthias P. Braendli
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "i2c.h"
#include "common.h"
#include "stm32f4xx_conf.h"
#include "stm32f4xx_i2c.h"
#include "stm32f4xx.h"
#include "FreeRTOS.h"
#include "FreeRTOSConfig.h"
#include "task.h"
#include "semphr.h"
#include "usart.h"
/* I2C 1 on PB9 and PB6
* See pio.txt for PIO allocation details */
const uint16_t GPIOB_PIN_SDA = GPIO_Pin_9;
const uint16_t GPIOB_PIN_SCL = GPIO_Pin_6;
static int i2c_init_done = 0;
static int i2c_error = 0;
static I2C_TypeDef* const I2Cx = I2C1;
static SemaphoreHandle_t i2c_semaphore;
static void i2c_device_init(void);
/* According to I2C spec UM10204:
* 3.1.16 Bus clear
* In the unlikely event where the clock (SCL) is stuck LOW, the preferential
* procedure is to reset the bus using the HW reset signal if your I2C devices
* have HW reset inputs. If the I2C devices do not have HW reset inputs, cycle
* power to the devices to activate the mandatory internal Power-On Reset (POR)
* circuit.
*
* If the data line (SDA) is stuck LOW, the master should send nine clock
* pulses. The device that held the bus LOW should release it sometime within
* those nine clocks. If not, then use the HW reset or cycle power to clear the
* bus.
*/
static void i2c_recover_from_lockup(void)
{
usart_debug_puts("ERROR: I2C lockup\r\n");
I2C_SoftwareResetCmd(I2Cx, ENABLE);
// Configure I2C SCL and SDA pins.
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIOB_PIN_SCL | GPIOB_PIN_SDA;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
const TickType_t delay = 5 / portTICK_PERIOD_MS;
GPIO_SetBits(GPIOB, GPIOB_PIN_SDA | GPIOB_PIN_SCL);
vTaskDelay(delay);
for (int i = 0; i < 10; i++) {
GPIO_ResetBits(GPIOB, GPIOB_PIN_SCL);
vTaskDelay(delay);
GPIO_SetBits(GPIOB, GPIOB_PIN_SCL);
vTaskDelay(delay);
}
I2C_SoftwareResetCmd(I2Cx, DISABLE);
i2c_device_init();
}
static void i2c_device_init(void)
{
// Configure I2C SCL and SDA pins.
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIOB_PIN_SCL | GPIOB_PIN_SDA;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_I2C1);
GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_I2C1);
// Reset I2C.
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1Periph_I2C1, DISABLE);
// configure I2C1
I2C_InitTypeDef I2C_InitStruct;
I2C_InitStruct.I2C_ClockSpeed = 100000; //Hz
I2C_InitStruct.I2C_Mode = I2C_Mode_I2C;
I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2; // 50% duty cycle
I2C_InitStruct.I2C_OwnAddress1 = 0x00; // not relevant in master mode
// disable acknowledge when reading (can be changed later on)
I2C_InitStruct.I2C_Ack = I2C_Ack_Disable;
I2C_InitStruct.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
I2C_Init(I2C1, &I2C_InitStruct);
// enable I2C1
I2C_Cmd(I2C1, ENABLE);
}
void i2c_init()
{
if (i2c_init_done == 1) {
return;
}
i2c_semaphore = xSemaphoreCreateBinary();
if ( i2c_semaphore == NULL ) {
trigger_fault(FAULT_SOURCE_I2C);
}
else {
xSemaphoreGive(i2c_semaphore);
}
RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
i2c_device_init();
i2c_init_done = 1;
}
static int i2c_check_busy_flag(void)
{
const TickType_t i2c_timeout = 1000ul / portTICK_PERIOD_MS;
const TickType_t time_start = xTaskGetTickCount();
while (I2C_GetFlagStatus(I2Cx, I2C_FLAG_BUSY)) {
const TickType_t time_now = xTaskGetTickCount();
if (time_now - time_start > i2c_timeout) {
i2c_error = 1;
return 0;
}
}
return 1;
}
static int i2c_check_event(uint32_t event)
{
const TickType_t i2c_timeout = 1000ul / portTICK_PERIOD_MS;
const TickType_t time_start = xTaskGetTickCount();
while (!I2C_CheckEvent(I2Cx, event)) {
const TickType_t time_now = xTaskGetTickCount();
if (time_now - time_start > i2c_timeout) {
i2c_error = 1;
return 0;
}
}
return 1;
}
static int i2c_start(uint8_t device, uint8_t direction)
{
I2C_GenerateSTART(I2Cx, ENABLE);
// wait for bus free
if (!i2c_check_event(I2C_EVENT_MASTER_MODE_SELECT)) {
I2C_GenerateSTART(I2Cx, DISABLE);
return 0;
}
I2C_Send7bitAddress(I2Cx, device << 1, direction);
/* wait for I2C1 EV6, check if
* either Slave has acknowledged Master transmitter or
* Master receiver mode, depending on the transmission
* direction
*/
uint32_t event = 0;
if (direction == I2C_Direction_Transmitter) {
event = I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED;
}
else if (direction == I2C_Direction_Receiver) {
event = I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED;
}
else {
trigger_fault(FAULT_SOURCE_I2C);
}
if (!i2c_check_event(event)) {
return 0;
}
return 1;
}
static int i2c_send(uint8_t data)
{
I2C_SendData(I2Cx, data);
// wait for I2C1 EV8_2 --> byte has been transmitted
return i2c_check_event(I2C_EVENT_MASTER_BYTE_TRANSMITTED);
}
int i2c_write(uint8_t device, const uint8_t *txbuf, int len)
{
if (i2c_init_done == 0) {
trigger_fault(FAULT_SOURCE_I2C);
}
int success = i2c_check_busy_flag();
if (success) {
success = i2c_start(device, I2C_Direction_Transmitter);
}
if (success) {
for (int i = 0; i < len; i++) {
success = i2c_send(txbuf[i]);
if (!success) {
break;
}
}
I2C_GenerateSTOP(I2Cx, ENABLE);
success = i2c_check_event(I2C_EVENT_MASTER_BYTE_TRANSMITTED);
}
return success;
}
static int i2c_read_nobuscheck(uint8_t device, uint8_t *rxbuf, int len)
{
if (i2c_init_done == 0) {
trigger_fault(FAULT_SOURCE_I2C);
}
if (i2c_start(device, I2C_Direction_Receiver)) {
for (int i = 0; i < len; i++) {
if (i == len-1) {
I2C_AcknowledgeConfig(I2Cx, DISABLE);
}
else {
I2C_AcknowledgeConfig(I2Cx, ENABLE);
}
// wait until one byte has been received, possibly timout
if (!i2c_check_event(I2C_EVENT_MASTER_BYTE_RECEIVED)) {
I2C_GenerateSTOP(I2Cx, ENABLE);
return 0;
}
if (i == len-1) {
I2C_GenerateSTOP(I2Cx, ENABLE);
}
rxbuf[i] = I2C_ReceiveData(I2Cx);
}
return len;
}
return 0;
}
int i2c_read(uint8_t device, uint8_t *rxbuf, int len)
{
int success = i2c_check_busy_flag();
if (success) {
success = i2c_read_nobuscheck(device, rxbuf, len);
}
return success;
}
int i2c_read_from(uint8_t device, uint8_t address, uint8_t *rxbuf, int len)
{
if (i2c_init_done == 0) {
trigger_fault(FAULT_SOURCE_I2C);
}
int success = i2c_check_busy_flag();
if (success) {
success = i2c_start(device, I2C_Direction_Transmitter);
}
if (success) {
success = i2c_send(address);
}
// Don't do a STOP
if (success) {
success = i2c_read_nobuscheck(device, rxbuf, len);
}
return success;
}
void i2c_transaction_start()
{
if (i2c_init_done == 0) {
trigger_fault(FAULT_SOURCE_I2C);
}
xSemaphoreTake(i2c_semaphore, portMAX_DELAY);
}
void i2c_transaction_end()
{
if (i2c_init_done == 0) {
trigger_fault(FAULT_SOURCE_I2C);
}
if ( i2c_error ) {
i2c_recover_from_lockup();
i2c_error = 0;
}
xSemaphoreGive(i2c_semaphore);
}
|