1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
#include "audio.h"
#include "i2c.h"
#include "stm32f4xx_conf.h"
#include "stm32f4xx.h"
#include <stdlib.h>
static void WriteRegister(uint8_t address, uint8_t value);
static void StartAudioDMAAndRequestBuffers();
static void StopAudioDMA();
static AudioCallbackFunction *CallbackFunction;
static void *CallbackContext;
static int16_t * volatile NextBufferSamples;
static volatile int NextBufferLength;
static volatile int BufferNumber;
static volatile bool DMARunning;
void InitializeAudio(int plln, int pllr, int i2sdiv, int i2sodd) {
GPIO_InitTypeDef GPIO_InitStructure;
// Intitialize state.
CallbackFunction = NULL;
CallbackContext = NULL;
NextBufferSamples = NULL;
NextBufferLength = 0;
BufferNumber = 0;
DMARunning = false;
// Turn on peripherals.
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
// Assume I2C is set up
// Configure reset pin.
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOD, &GPIO_InitStructure);
// Configure I2S MCK, SCK, SD pins.
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_10 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource7, GPIO_AF_SPI3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_SPI3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_SPI3);
// Configure I2S WS pin.
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource4, GPIO_AF_SPI3);
// Reset the codec.
GPIO_ResetBits(GPIOD, GPIO_Pin_4);
for (volatile int i = 0; i < 0x4fff; i++) {
__asm__ volatile("nop");
}
GPIO_SetBits(GPIOD, GPIO_Pin_4);
// Configure codec.
WriteRegister(0x02, 0x01); // Keep codec powered off.
WriteRegister(0x04, 0xaf); // SPK always off and HP always on.
WriteRegister(0x05, 0x81); // Clock configuration: Auto detection.
WriteRegister(0x06, 0x04); // Set slave mode and Philips audio standard.
SetAudioVolume(0xff);
// Power on the codec.
WriteRegister(0x02, 0x9e);
// Configure codec for fast shutdown.
WriteRegister(0x0a, 0x00); // Disable the analog soft ramp.
WriteRegister(0x0e, 0x04); // Disable the digital soft ramp.
WriteRegister(0x27, 0x00); // Disable the limiter attack level.
WriteRegister(0x1f, 0x0f); // Adjust bass and treble levels.
WriteRegister(0x1a, 0x0a); // Adjust PCM volume level.
WriteRegister(0x1b, 0x0a);
// Disable I2S.
SPI3 ->I2SCFGR = 0;
// I2S clock configuration
RCC ->CFGR &= ~RCC_CFGR_I2SSRC; // PLLI2S clock used as I2S clock source.
RCC ->PLLI2SCFGR = (pllr << 28) | (plln << 6);
// Enable PLLI2S and wait until it is ready.
RCC ->CR |= RCC_CR_PLLI2SON;
while (!(RCC ->CR & RCC_CR_PLLI2SRDY ))
;
// Configure I2S.
SPI3 ->I2SPR = i2sdiv | (i2sodd << 8) | SPI_I2SPR_MCKOE;
SPI3 ->I2SCFGR = SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SCFG_1
| SPI_I2SCFGR_I2SE; // Master transmitter, Phillips mode, 16 bit values, clock polarity low, enable.
}
void AudioOn() {
WriteRegister(0x02, 0x9e);
SPI3 ->I2SCFGR = SPI_I2SCFGR_I2SMOD | SPI_I2SCFGR_I2SCFG_1
| SPI_I2SCFGR_I2SE; // Master transmitter, Phillips mode, 16 bit values, clock polarity low, enable.
}
void AudioOff() {
WriteRegister(0x02, 0x9f);
SPI3 ->I2SCFGR = 0;
}
void SetAudioVolume(int volume) {
WriteRegister(0x20, (volume + 0x19) & 0xff);
WriteRegister(0x21, (volume + 0x19) & 0xff);
}
void OutputAudioSample(int16_t sample) {
while (!(SPI3 ->SR & SPI_SR_TXE ))
;
SPI3 ->DR = sample;
}
void OutputAudioSampleWithoutBlocking(int16_t sample) {
SPI3 ->DR = sample;
}
void PlayAudioWithCallback(AudioCallbackFunction *callback, void *context) {
StopAudioDMA();
NVIC_EnableIRQ(DMA1_Stream7_IRQn);
NVIC_SetPriority(DMA1_Stream7_IRQn, 5);
SPI3 ->CR2 |= SPI_CR2_TXDMAEN; // Enable I2S TX DMA request.
CallbackFunction = callback;
CallbackContext = context;
BufferNumber = 0;
if (CallbackFunction)
CallbackFunction(CallbackContext, BufferNumber);
}
void StopAudio() {
StopAudioDMA();
SPI3 ->CR2 &= ~SPI_CR2_TXDMAEN; // Disable I2S TX DMA request.
NVIC_DisableIRQ(DMA1_Stream7_IRQn);
CallbackFunction = NULL;
}
void ProvideAudioBuffer(void *samples, int numsamples) {
while (!ProvideAudioBufferWithoutBlocking(samples, numsamples))
__asm__ volatile ("wfi");
}
bool ProvideAudioBufferWithoutBlocking(void *samples, int numsamples) {
if (NextBufferSamples)
return false;
NVIC_DisableIRQ(DMA1_Stream7_IRQn);
NextBufferSamples = samples;
NextBufferLength = numsamples;
if (!DMARunning)
StartAudioDMAAndRequestBuffers();
NVIC_EnableIRQ(DMA1_Stream7_IRQn);
return true;
}
static void StartAudioDMAAndRequestBuffers() {
// Configure DMA stream.
DMA1_Stream7 ->CR = (0 * DMA_SxCR_CHSEL_0 ) | // Channel 0
(1 * DMA_SxCR_PL_0 ) | // Priority 1
(1 * DMA_SxCR_PSIZE_0 ) | // PSIZE = 16 bit
(1 * DMA_SxCR_MSIZE_0 ) | // MSIZE = 16 bit
DMA_SxCR_MINC | // Increase memory address
(1 * DMA_SxCR_DIR_0 ) | // Memory to peripheral
DMA_SxCR_TCIE; // Transfer complete interrupt
DMA1_Stream7 ->NDTR = NextBufferLength;
DMA1_Stream7 ->PAR = (uint32_t) &SPI3 ->DR;
DMA1_Stream7 ->M0AR = (uint32_t) NextBufferSamples;
DMA1_Stream7 ->FCR = DMA_SxFCR_DMDIS;
DMA1_Stream7 ->CR |= DMA_SxCR_EN;
// Update state.
NextBufferSamples = NULL;
BufferNumber ^= 1;
DMARunning = true;
// Invoke callback if it exists to queue up another buffer.
if (CallbackFunction)
CallbackFunction(CallbackContext, BufferNumber);
}
static void StopAudioDMA() {
DMA1_Stream7 ->CR &= ~DMA_SxCR_EN; // Disable DMA stream.
while (DMA1_Stream7 ->CR & DMA_SxCR_EN )
; // Wait for DMA stream to stop.
DMARunning = false;
}
void DMA1_Stream7_IRQHandler() {
DMA1 ->HIFCR |= DMA_HIFCR_CTCIF7; // Clear interrupt flag.
if (NextBufferSamples) {
StartAudioDMAAndRequestBuffers();
} else {
DMARunning = false;
}
}
// Warning: don't i2c_write call from IRQ handler !
static void WriteRegister(uint8_t address, uint8_t value)
{
const uint8_t device = 0x4a;
const uint8_t data[2] = {address, value};
i2c_transaction_start();
i2c_write(device, data, 2);
i2c_transaction_end();
}
|