1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#include "stm32f4xx_conf.h"
#include "audio.h"
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "semphr.h"
#include "cw.h"
// Private variables
volatile uint32_t time_var1, time_var2;
// Private function prototypes
void init();
// Tasks
static void detect_button_press(void *pvParameters);
static void audio_task(void *pvParameters);
struct cw_msg_s {
const char* msg;
int freq;
int dit_duration;
};
void vApplicationStackOverflowHook( TaskHandle_t xTask,
signed char *pcTaskName )
{
while (1) {};
}
int main(void) {
init();
cw_init(16000);
InitializeAudio(Audio16000HzSettings);
SetAudioVolume(128);
xTaskCreate(
detect_button_press,
"TaskButton",
4*configMINIMAL_STACK_SIZE,
(void*) NULL,
tskIDLE_PRIORITY + 2UL,
NULL);
xTaskCreate(
audio_task,
"TaskAudio",
configMINIMAL_STACK_SIZE,
(void*) NULL,
tskIDLE_PRIORITY + 2UL,
NULL);
/* Start the RTOS Scheduler */
vTaskStartScheduler();
/* HALT */
while(1);
}
static void detect_button_press(void *pvParameters)
{
int message_select = 0;
struct cw_msg_s msg1 = { "HB9G 1628M", 400, 100 };
struct cw_msg_s msg2 = { "HB9G JN36BK", 500, 100 };
struct cw_msg_s msg3 = { "HB9G U 12.5 73", 400, 130 };
GPIO_SetBits(GPIOD, GPIO_Pin_12);
while (1) {
if (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0)>0) {
while (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) > 0) {
vTaskDelay(100 / portTICK_RATE_MS); /* Button Debounce Delay */
}
if (message_select == 0) {
GPIO_ResetBits(GPIOD, GPIO_Pin_12);
GPIO_SetBits(GPIOD, GPIO_Pin_15);
cw_push_message(msg1.msg, msg1.dit_duration, msg1.freq);
message_select++;
}
else if (message_select == 1) {
GPIO_SetBits(GPIOD, GPIO_Pin_12);
cw_push_message(msg2.msg, msg2.dit_duration, msg2.freq);
message_select++;
}
else if (message_select == 2) {
GPIO_ResetBits(GPIOD, GPIO_Pin_15);
cw_push_message(msg3.msg, msg3.dit_duration, msg3.freq);
message_select = 0;
}
while (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == 0) {
vTaskDelay(100 / portTICK_RATE_MS); /* Button Debounce Delay */
}
}
taskYIELD();
}
}
static void audio_callback(void* context, int select_buffer)
{
static int16_t audio_buffer0[AUDIO_BUF_LEN];
static int16_t audio_buffer1[AUDIO_BUF_LEN];
int16_t *samples;
if (select_buffer == 0) {
samples = audio_buffer0;
GPIO_SetBits(GPIOD, GPIO_Pin_13);
GPIO_ResetBits(GPIOD, GPIO_Pin_14);
select_buffer = 1;
} else {
samples = audio_buffer1;
GPIO_SetBits(GPIOD, GPIO_Pin_14);
GPIO_ResetBits(GPIOD, GPIO_Pin_13);
select_buffer = 0;
}
size_t samples_len = cw_fill_buffer(samples, AUDIO_BUF_LEN);
if (samples_len == 0) {
for (int i = 0; i < AUDIO_BUF_LEN; i++) {
samples[i] = 0;
}
samples_len = AUDIO_BUF_LEN;
}
ProvideAudioBufferWithoutBlocking(samples, samples_len);
}
static void audio_task(void *pvParameters)
{
int select_buffer = 0;
PlayAudioWithCallback(audio_callback, NULL);
while (1) {
taskYIELD();
}
}
void init() {
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
// ---------- SysTick timer -------- //
if (SysTick_Config(SystemCoreClock / 1000)) {
// Capture error
while (1){};
}
// Enable full access to FPU (Should be done automatically in system_stm32f4xx.c):
//SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); // set CP10 and CP11 Full Access
// GPIOD Periph clock enable
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
// Configure PD12, PD13, PD14 and PD15 in output pushpull mode
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13| GPIO_Pin_14| GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOD, &GPIO_InitStructure);
// Init PushButton
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// ------ UART ------ //
// Clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
// IO
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource5, GPIO_AF_USART1);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource6, GPIO_AF_USART1);
// Conf
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
USART_Init(USART2, &USART_InitStructure);
// Enable
USART_Cmd(USART2, ENABLE);
}
|